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Introduction
Many quantitative trait association and mapping studies have been 

conducted in animals and plants in the past 20 years. Although these 
studies were conducted independently, they could address the same or 
similar subjects or questions. Thus, their results can be combined to 
refine conclusions drawn from these studies. Often, we may ask how a 
causative locus identified for a given trait in one population corresponds 
to those detected in other populations. Or, does a detected QTL show 
consistent effect in several populations? While individual studies may 
be different in reference populations, experimental designs, and many 
other respects, a well-conducted meta-analysis can provide stronger 
appraisal of available evidence, and hence reducing uncertainty and 
disagreement among studies [1-3].

The term, meta-analysis, was coined by G. V. Glass in 1976 when 
he proposed that distinct methods are needed to integrate the findings 
from a body of research [4]. Since then, meta-analysis has become 
an important method for quantitative aggregation and synthesis of 
knowledge from independent studies in medical, social, and behavioral 
sciences [5] as well as in studies of candidate genes and QTLs [6-9] 
Broadly speaking, a meta-analysis is a quantitative review and synthesis 
of the results obtained from related but independent studies using 
appropriate statistical methods [10]. In QTL studies, for example, 
pooling of results across several studies provides greater statistical 
power for QTL detection and more precise estimation of their effects, 
leading to conclusions that are stronger relative to individual studies 
[11]. The recent development of QTL databases, such as Animal 
QTLdb [12-14] has provided platforms with which QTL results from 
individual studies can be compared, combined and synthesized.

However, combining QTL results across several studies can be 
very challenging because they differ in many aspects. For examples, 
studies may use different marker densities, linkage disequilibrium, 
sample sizes, population types, experimental designs, and statistical 
methods. Hence, heterogeneity may be extensive and difference may 
be due to between-study variation of true effect sizes as well as chance 
variations resulting from sampling of individuals into studies. Roughly 
speaking, two categories of meta-analysis methods have been proposed 
for the analysis of candidate gene and QTL research. A meta-analytic 
fixed-effect model assumes homogeneity of outcomes from individual 
studies, which may not be true in practice. Whereas a meta-analytic 
random-effect model takes account of heterogeneity among studies, 
it typically assume a normal distribution of study-specific outcomes. 
However, such a distribution may be multi-modal [15]. In reality, 
population stratification and admixture are common in practice, 
leading to a mixture with unobservable underlying components [16].

In this paper, we discuss several parametric methods applicable to 
meta-analysis of quantitative trait association and mapping studies, and 
propose the use of a non-parametric Bayesian model with a Dirichlet 
process prior (referred to as the DPP model) for QTL meta-analysis. 
The DPP model relaxes the normality assumption of study-specific 
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Abstract
Meta-analysis is an important method for integration of information from multiple studies. In quantitative trait 

association and mapping experiments, combining results from several studies allows greater statistical power for 
detection of causal loci and more precise estimation of their effects, and thus can yield stronger conclusions than 
individual studies. Various meta-analysis methods have been proposed for synthesizing information from multiple 
candidate gene studies and QTL mapping experiments, but there are several questions and challenges associated 
with these methods. For example, meta-analytic fixed-effect models assume homogeneity of outcomes from individual 
studies, which may not always be true. Whereas random-effect models takes into account the heterogeneity among 
studies they typically assume a normal distribution of study-specific outcomes. However in reality, the observed 
distribution pattern tends to be multi-modal, suggesting a mixture whose underlying components are not directly 
observable. In this paper, we examine several existing parametric meta-analysis methods, and propose the use of 
a non-parametric model with a Dirichlet process prior (DPP), which relaxes the normality assumptions about study-
specific outcomes. With a DPP model, the posterior distribution of outcomes is discrete, reflecting a clustering property 
that may have biological implications. Features of these methods were illustrated and compared using both simulation 
data and real QTL data extracted from the Animal QTLdb (http://www.animalgenome.org/cgi-bin/QTLdb/index). The 
meta analysis of reported average daily body weight gain (ADG) QTL suggested that there could be from six to eight 
distinct ADG QTL on swine chromosome 1. 
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effects by replacing it with a more general, discrete, “nonparametric 
prior”. It also handles mixture data with an unknown number of 
components. Features of these models were illustrated and compared 
using simulation data and real QTL mapping data extracted from the 
Animal QTLdb. 

Statistical Methods
Parametric models for meta-QTL analysis  

Consider an outcome, say effect size of a candidate gene (or a 
putative QTL). Assume that we plan to combine results from k primary 
studies. For individual study i, let iγ  be a point estimate of the true 
gene effect iq , such that

i i ieγ q= + ,                                                                                          (1)

where ie is a residual term. If the study sample sizes are moderate or 
large, each iγ  is approximately normally distributed according to the 
central limit theorem. That is,  

( )2~ ,i i iNγ q ζ , for 1,...,i k= ,                  (2)

where 2
iζ  is the variance of iγ . The quantity 2

iζ  is typically assumed to 
be known in a meta-analysis and approximated by the sample variance 

2
is . 

The analysis under homogeneity assumes that the unknown 
parameter is the same over all independent studies, 1 2 ... nq q q µ= = = =
, and the only source of uncertainty comes from the sampling 
of individuals into studies. Then, the maximum likelihood (ML) 
estimation of μ is given by

1ˆML i ii
ii

w
w

µ γ= ∑∑
  with standard error

( )ˆ 1/ML ii
se wµ = ∑ ,                                                   (3)

where 21/=i iw s . The ML estimate of μ is the weighted average 
of the estimates of the effects in the k studies, with weights equal to 

21/i iw s= . This is the basis for the traditional fixed-effect meta-analy-
sis. Use of inverse variance weights minimizes the variance of estima-
tor of parameter μ. If all weights are equal (i.e., 1 ... ks s s= = = ), ˆMLµ  
becomes 

1ˆ iik
µ γ= ∑  with standard error ( )ˆ /se s kµ = .                 (4)

A statistical test of homogeneity uses the statistic

( )2 2
1ˆ ~i i ML ki

Q w γ µ χ −= −∑ ,                  (5)

where 2
1kχ −  is a Chi-squared random variable with k-1 degrees of free-

dom. If Q is not greater than the ( )100 1 a−  percentile of the 2
1kχ −  dis-

tribution, then the null hypothesis holds and we would conclude that 
the k studies share a common mean μ (which is estimated by ˆMLµ ). Oth-
erwise, the alternative hypothesis aH  is accepted, and we would proceed 
either by attempting to identifying sources of heterogeneity in the popu-
lation or by fitting a meta-analytic random-effects model instead.

Meta-analytic random-effects model

In real situations, heterogeneity is present and should be considered 
in the analysis. In a meta-analysis of QTL mapping experiments, for 
example, two types of heterogeneity are of primary interest [17]: locus 

and effect size heterogeneity. Under the scenario of locus heterogeneity, 
a locus could affect the trait of interest in one population but it might 
have no effect in another one. Likewise, the same locus may influence 
the trait in all populations, but its effect size may vary over populations. 
The latter is referred to as size heterogeneity, which happens, for 
example, when the frequency of the causal allele is much smaller in 
some populations than in others or when lcoi interact, or when there 
are differences in environmental variability. In the presence of locus or 
size heterogeneity, differences among studies arise from both between-
study variation of true effect size and chance variation due to sampling 
of individuals within studies. Thus, a fixed-effects model tends to 
underestimate variability and generate p-values which are too low. If 
between-study variation is not accounted for properly, meta-analytic 
results will overstate significance.  

A heterogeneity model assumes that the true study-specific effects 
'i sq , for 1,...,i k= , are different from each other and vary according to 

some distribution, e.g., a normal distribution with mean μ and variance 
σ2. That is,  

 ( )2~ ,i Nq µ σ .                                   (6)

Then, γI can be expressed linearly as

i i ieγ q= +

( )i ieµ q µ= + − +

i iu eµ= + + ,                                                                            (7)

where 2~ (0, )iu N σ . This is a meta-analytic random-effects model. 
Marginally, the distribution of γI 

is approximated as

( )2 2~ ,i iN sγ µ σ + .                  (8)

If 2 0σ = , model (8) reduces to the meta-analytic fixed-effect 
model.  

Assuming 2σ  is known, the ML estimate of μ can be obtained 
similarly as

( )
( )

( )1ˆ iML ii
ii

w
w

µ σ σ γ
σ

= ∑∑
,                 (9)

where ( ) 2 21/ ( )iiw sσ σ= + . Thus, the estimator of μ is also a weighted 
average, but the weight is adjusted to take into account the additional 
variability between studies ( 2σ ). The restricted maximum likelihood 
(REML) approach can be used to estimate the variance components in 
the model. The REML estimate of 2σ  can be obtained by iterating with

( )
( ) ( )222 21ˆ ˆ

1REML i REML iii
ii

kw s
kw

σ σ γ µ
σ

 
= − − + ∑∑

,     (10)

where ˆREMLµ  is calculated using the same formula as that of ( )ˆ
MLµ σ  

but replacing ( )iw σ  with ( ) ( )2ˆ ˆ1/REML REML ii
w sσ σ= + . 

Bayesian implementation

Within the Bayesian framework, all unknowns are treated as 
random. Under the homogeneity assumption (which corresponds to 
the meta-analytical fixed-effect model), a normal prior distribution, 

( )2
0 0~ ,Nµ µ τ , is assigned to μ, where μ0 

and 2
0τ  are known 

hyperparameters. The Bayesian analysis incorporates information 
from both the prior and the data to obtain posterior inference about 
the unknown parameter. It can be shown that the conditional posterior 
distribution of μ is also normal. 
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( ) ( ) ( )1 1

2 2 2
0 0 0 0| ~ ,i i i ii i i

else N w w wµ τ τ µ γ τ
− −

− − − 
+ + +  

 
∑ ∑ ∑ ,       (11)

where “else” represents the data, all parameters other than μ, and all 
known hyper-parameters. Hence, the posterior mean of μ is:

( ) ( ) ( )1
2 2

0 0 0| i i ii i
E else w wµ τ τ µ γ

−
− −= + +∑ ∑ .                    (12)

If 2
1 2 ... −= = = =kw w w s  , then we have

( )
2 2

0
02 2 2 2

0 0
| ksE else

ks ks
τ

µ µ γ
τ τ

− −

− − − −
= × + ×

+ +
,              (13)

where 
1

1 k

i
i

k
γ γ

=

= ∑ . Hence, the posterior mean of μ is the weighted 

average of the prior mean (μ0) and of the data mean ( γ ), and the 

weights are ( )2 2 2
0 0/ ksτ τ− − −+  and ( )2 2 2

0/ks ksτ− − −+ , respectively. 

If 2
0τ  is very large (which approximates a flat prior distribution for 

μ), then 2
0 i ii i

w wτ − + →∑ ∑  and the posterior mean of μ in (12) 

coincides with the maximum likelihood estimate in (3).  

Under the heterogeneity assumption (i.e., random-effects model), 
if 2σ  is known and μ follows a normal prior distribution a priori, that 

is, ( )2
0 0~ ,Nµ µ τ , the posterior mean of μ takes a form similar to (12): 

( )
( )( ) ( )( )2

0 02
0

1ˆ | iii
ii

E else w
w

µ τ µ σ γ
τ σ

−
−

= +
+

∑∑
,            (14)

However, 2σ  is unknown. In a Bayesian model, a scaled 
inverse chi-square prior distribution is typically assumed to 2σ
: ( ) ( )2 2 2

0 0~ ,p Sσ χ υ− , where 0υ  and 2
0S  are the (known) degrees 

of freedom and scale parameters, respectively. Then, draws from the 
posterior distributions of 2σ , μ and 'u s  can be generated using a 
Gibbs sampler, by iteratively simulating values from their respective 
fully conditional distributions: 

2 2 2 2
0 0 0

1

| ,
k

i
i

else n S uσ χ υ υ−

=

 
 ∝ + +
 
 

∑ ,                                    (15)

    ( ) ( )( ) ( )1 1
2 2 2 2 2 2

0 0 0 0| ~ ,i i i i ii i i
else N s s u sµ τ τ µ γ τ

− −
− − − − − − 
+ + − +  

 
∑ ∑ ∑               

                                                                                                               (16)

and ( ) ( )( ) ( )1 12 2 2 2 2| ~ ,i i i i iu else N s s sσ γ µ σ
− −− − − − − 

+ − + 
 

,

for 1,...,i k= .                                                                                   (17)

Bayesian non-parametric model with a Dirichlet process 
prior

Recall that i iuq µ= +  and ( )2~ 0,iu N σ in the parametric random-
effects model. However, the normality assumption, ( )2~ 0,iu N σ , 
lacks neither theoretical nor empirical support. Hence, the DPP model 
can be used instead, because it makes a weaker assumption about the 
distribution of study-specific outcomes. 

In the DPP model, we replace ( )2~ 0,iu N σ  with ~
iid

iu G , i∀ , 

where G is some general distribution, ~G π , and π is a “nonparametric 
prior”. A choice for π is the Dirichlet process [18,19]. That is,  

( )0~G DP Ga .                                                  (18)

Here, 0G  is a “baseline” distribution function, which is also referred 

to as the “center” of the DP prior in the sense that ( )( ) ( )0. .E G G=
, and α is interpreted as a precision parameter indicating the degree 
of concentration of the prior on G around some parametric family. In 
particular, we assume ( )2

0 0| ,i uG N u u σ≡ , where 0u  can take a fixed 
value (say 0 0u = ) or it can be treated as an unknown quantity in the 
model. In the latter case, a prior distribution about 0u  is needed in 
the Bayesian model. To complete the model specification, independent 
hyper-priors are assumed as follows:

( )2 2
0 0 0 0| , ~ ,Nµ µ τ µ τ ,                 (19)

and

( )2
1 2~ / 2, / 2Gammaσ τ τ− .                 (20)

The precision parameter α of the DP prior can take a fixed value. Or, 
it can be treated as unknown and inferred from the analysis. Typically, 
a Gamma prior distribution is assumed to α and the statistical method 
for estimating α follows [20,21]. The computational implementation of 
the model is based on the marginalization of the DP and on the use of 
MCMC methods for conjugate priors [22-24]. Some details on posterior 
sampling of unknown parameters are provided in the Appendix.

A salient feature of the DPP model is that the distribution of ui 
has point masses located at previous draws uj ( j i≠ ). This implies a 
clustering property: the values of 'u s  (and hence ' sq ) for the primary 
studies are clustered by the DPP model. For example, if ui represents a 
QTL location (relative to μ) in the i-th study, the clusters of 'u s  on a 
specific chromosome can have meaningful implication for the number 
of putative QTLs and their locations. Let 1,..., mg g  be m distinct values 
among k estimates of QTL locations 1,..., ku u , where 1 m k≤ ≤  at 
the t-th iteration of the sampler. Then, the unique values of 1,..., kg g  
induce a partitioning into m clusters. For each cluster, say j, all the 

'u s  belonging to this cluster take on the same value jg . Biologically, 
each cluster can represent a hypothetic (meta-) QTL. In the Bayesian 
context, the marginal posterior distribution of the number of clusters 
(i.e., number of QTLs) can be constructed by directly counting the 
number of distinct values of 'u s  at each iteration of the sampler. 
Following [24], the 'g s  can be simulated from their fully conditional 
distributions, which in turn improves the chain mixing.

Results
Meta-analysis of a candidate gene effect: A simulation study

In this simulation study, a candidate gene effect was estimated for 
30 independent populations each with a varying effect size (Table 1). 
Briefly, the effects of this gene in the first 10 study populations were 
generated from N(0, 2) and those for the remaining study populations 
were generated from N(8, 3). This obviously creates a mixture 
distribution when simulated gene effects for the 30 primary studies 
are pooled (Figure 1). For each primary study population, the sample 
variance 2

is  of the gene effect was assumed to be known and generated 
from a gamma distribution (shape=1, scale=0.25). 

The R package “metaphor” was used to compute the parametric 
models [25]. The overall mean of the candidate gene effects was 
estimated using equation (3) for the fixed-effect model and equation 
(10) for the random-effect model. Based on the meta-analytic fixed-
effect model, the mean (standard error) of the candidate gene effect 
across the 30 populations was 6.35 (0.03), with a 95% confidential 
interval (CI) between 6.23 and 6.42. This overall gene effect was 
significant from zero (p<0.0001), and the test for heterogeneity 
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was very significant as well: Q (df = 29) = 6709.69 with p < 0.0001. 
By taking the significant heterogeneity of the candidate gene effects 
into consideration, the random-effect model estimated the overall 
gene effect to be 5.41 with a standard error of 0.78. This estimate was 
closer to the weighted average of the simulated mean effects (5.33 = 
0×33.33% + 8×66.67%) than that obtained from the fixed-effect model. 
The total amount of heterogeneity was estimated to be 18.05 with the 
standard error being 4.79. Furthermore, a Bayesian model under the 
heterogeneity assumption about the gene effects was implemented 
using an R programs that we developed, with unknown parameters 
estimated from posterior samples generated by posterior distributions 
(15), (16) and (17), respectively. Assuming a normal prior distribution 
for study-specific gene effects, the Bayesian analysis estimated the 
overall candidate gene effect to be 5.40, which was very close to the 
estimate obtained from the random-effect model.

Obviously, while this candidate had varied effects on the 30 study 
populations, knowing only the overall mean of the gene effects did not 
convey as much information as needed to postulate its influence on the 
trait. Forest plots [26] clearly show the relative strength (effect size) of 

this candidate gene in each of the primary studies, as obtained from 
the parametric random-effects model (Figure 2). Estimated effect size 
for these studies (each represented by a rectangle) and their CIs (each 
represented by a horizontal line) are plotted on the right-hand side of 
this graph, with the names of the studies listed on the left-hand side. 
The area of each rectangle is proportional to the study’s weight in the 
meta-analysis. The common effect size estimated by the meta-analysis 
is plotted as a diamond. A vertical line representing no effect is also 
shown. If the CI for an individual study overlaps with this line, the effect 
size for the individual study is not significant. The same interpretation 
applies to the overall mean of the candidate gene effect sizes estimated 
by the meta-analysis. Clearly, estimated candidate gene effects in 
the 30 individual studies varied dramatically, which made it hard to 
draw a consistent conclusion about this gene effect. Nevertheless, 
the meta-analytic random effect model estimated the 95% CI of the 
overall gene effect to be between 88.66 and 120.83. This is indication 
that this candidate gene effect is significant because its 95% CI does not 
overlap with the vertical line representing no effect. As a comparison, 
the posterior distribution of the overall gene effects, obtained from the 
Bayesian model, is shown below the forest plots (Figure 2). 

The DPpackage [27] was used to compute the Bayesian DPP 
model. The Markov chain Monte Carlo sampling consisted of 200,000 
iterations, thinned at every one-tenth, with a burn-in period of 10,000 
iterations. The saved samples are used for posterior inference. In this 
analysis, the parameter a  was assumed to known and arbitrarily set 
to be 0.05. The number of clusters was estimated to be 8.70, with a 95% 
HPD interval between 8 and 10 clusters. The posterior mean (standard) 
of the overall mean of the gene effect was estimated to be 5.42 (0.74), 
which corresponded well to the estimate from the random-effect model. 
The posterior distributions of the cluster number, and the overall mean 
and variance of this candidate effects are shown in (Figure 3). 

By simulation, the candidate gene effects in the 30 populations 
actually represent a mixture of two normal distributions, N(0,2) and 
N(8,3). In reality, however, we do not know how many categories the 
mixture is actually formed with. This could cause some difficulties 
to the parametric mixture model because the exact number of 
components would need to be inferred. In contrast, the DPP model 
handles naturally a mixture with an unknown number of components. 

Candidate gene effect
Study Mean Variance

1 2.9694 0.1319

2 -0.8076 0.5277

3 -3.1172 0.3557

4 2.4559 0.0579

5 4.6262 0.0352

6 1.4093 0.1737

7 0.6137 0.1140

8 -1.5614 0.2686

9 1.6295 0.0167

10 -0.4216 0.0108

11 13.2721 0.3186

12 10.4219 0.3432

13 7.0050 0.2510

14 6.2682 0.0062

15 8.0910 0.2885

16 4.6931 0.1483

17 9.4562 0.2221

18 10.8908 0.0855

19 8.4665 0.0145

20 7.4688 0.0282

21 6.8679 1.1789

22 8.6690 0.4515

23 12.5752 0.0505

24 6.5805 0.0104

25 10.5907 0.0051

26 2.4470 0.2859

27 5.3087 0.2550

28 7.4948 0.1571

29 3.7154 0.1869

30 4.1030 0.1366

Table 1: Mean and sample variance of a candidate gene in 30 simulation 
populations.

Figure 1: Kernel density plots (bandwidth=1.25) of simulated effects of a 
candidate gene in 30 primary study populations: (a) populations whose can-
didate gene affects were generated from N(2,0); (b) populations whose can-
didate gene effects were generated from N(8,3); (b) mixtures of populations 
from both groups. 
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Our results show that the number of clusters of gene effects was 
estimated larger than that of simulated categories. This was because we 
arbitrarily assigned a small value to the parameter α. In the DPP model, 
the inference about the cluster number is sensitive to this parameter 
[21]. Recall that α in the DPP model represents the degree of belief in 
G0 

(which is assumed to be normal in the present analysis). In other 
words, α is interpretable as a measure of how close G0 is to the true but 
unknown distribution G. As a →∞ , the prior for G “concentrates” 
on G0. On the other hand, a small value of α indicates that the data 
is diffuse, and that the non-parametric model using the Dirichlet 
process prior would fit the data better than the parametric methods 
assuming a normal distribution of ' sq . This was exactly the case with 

the present simulation study. Although estimated number of clusters 
of gene effects (which is 8.79) was larger than the actual number of 
categories in the simulation (which is 2), the gene effect estimated for 
each of these study populations based on the DPP model corresponded 
very well to its simulated value (Figure 4). This result indicates that the 
DPP model tends to group populations with similar gene effects and 
hence fits the data very well, even if the inferred and the true numbers 
of categories may not necessarily match each other.   

Meta-analysis of ADG QTL locations in swine chromosome 1

As an illustrative application, meta-analyses were conducted 
to combine QTL results on average daily gain (ADG) on swine 
chromosome 1 (SSC1). The summary data included means and 95% 
CIs of QTL position data extracted from the Animal QTLdb database 
(http://www.animalgenome.org/cgi-bin/QTLdb/index). This data set 
represented 21 ADG QTLs reported by 13 independent studies (Table 
2). Estimated QTL position (POS) were obtained from the original 
studies and the corresponding standard errors (SE) were computed 
based on the 95% CI of QTL positions. For the QTL locations lacking 
reported CI (whose QTLID are marked by “*”), we assigned an average 
SE to each of them, for the sake of simplicity.  

Tree plots of the 21 ADG QTL locations evidently indicated that 

Figure 2: Forest plot showing the candidate gene effects obtained from 30 
primary study populations (rectangles) and the overall mean of the gene 
effect estimated from the meta-analytic random-effect analysis. Below the 
forest plot is the posterior distribution of the overall mean of the candidate 
gene effects estimated based on a Bayesian model under the heterogeneity 
model.

(a)

(b)

Figure 3: Posterior distributions of unknown parameters estimated from the 
non-parametric meta-analysis model with Dirichlet process prior: (a) clusters 
of gene effects among the 30 primary study populations; (b) mean of the 
baseline distribution, (c) variance of the baseline distribution. 

Figure 4: Estimation of the candidate gene effects using the non-parametric 
meta-analysis model with a Dirichlet process prior (DPP model): (a) cor-
relation between simulated candidate gene effects from 30 primary study 
populations and  their predicted value from the DPP model; (b) kernel den-
sity plots (bandwidth=0.3) of predicted candidate gene effects from the DPP 
model.

Candidate gene effects

0 2 4 6 8 10 12
0

5
10

Correlation=0.9863

Gene effects from the DPP model

G
en

e 
ef

fe
ct

s 
fro

m
 p

rim
ar

y 
st

ud
ie

s

0 5 10

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

J Biomet Biostat                                                                                                                                   ISSN:2155-6180 JBMBS, an open access journalAdvances in Markov Chain Monte Carlo 
Methods and Survival Analysis



Citation: Wu XL, Gianola D, Hu ZL, Reecy JM (2011) Meta-Analysis of Quantitative Trait Association and Mapping Studies using Parametric and 
Non-Parametric Models. J Biomet Biostat S1:001. doi:10.4172/2155-6180.S1-001

Page 6 of 5

REFID QTLID CHR POS SE TRAIT SIGLEV
ISU0007 841 1 43.73 1.51 ADG ++
16978171 2846 1 101 4.52 ADG ++
16978171 2847 1 115 4.52 ADG ++
16415521 *2885 1 119.5 5.52 ADG NA
16415521 *2886 1 67.6 5.52 ADG NA
16478944 3133 1 143 6.51 ADG ++
12807782 3665 1 133.8 3.42 ADG ++
12807782 3673 1 60 3.91 ADG ++
17121599 3914 1 86.1 17.22 ADG ++
17121599 3917 1 105.8 17.22 ADG ++
9922390 448 1 139 5.36 ADG ++
9922390 447 1 139 5.36 ADG ++
10656927 139 1 79 0.18 ADG ++
10656927 140 1 79 0.19 ADG ++
11403749 170 1 140.5 2.42 ADG ++
12081807 659 1 140.5 8.80 ADG ++
ISU0002 319 1 12 1.86 ADG +
ISU0002 *320 1 121.3 5.52 ADG NA
9922390 446 1 139 5.36 ADG +
9263050 *495 1 102.9 5.52 ADG NA
11048919 *549 1 134 5.52 ADG NA
1 REFID = reference ID; QTLID = QTL ID; CHR = chromosome where the QTL is localized; POS = reported map position of the QTLs; SE = standard error of reported 
map position of the QTLs; * study with missing 95% confidential interval of QTL locations.

Table 2: Estimated positions and standard errors for average daily body weight gain (ADG) QTLs on swine chromosome 1 (data extracted from Animal QTLdb) 1

they could represent several distinct ADG QTLs on SSC1 (Figure 5). 
Thus, estimating only a common (central) QTL location for these QTLs 
conveys no biological meaning. This renders that a meta-analytic fixed-
effects model under the homogeneity assumption would not be a valid 
solution to this problem. Also, a random-effects model did not fit this 
situation well because the kernel density of the reported ADG QTL 
locations is clearly multi-modal (Figure 6a) and it by no means looks 
like a normal distribution. 

Instead, the DPP model can be used to analyze this dataset because 
it makes a weaker assumption about the form of study-specific QTL 
locations. A noting feature with the DPP model is that it introduces a 
clustering property, and each cluster can represent a distinct (meta-)
QTLs. Based on the DPP model, estimated QTL locations corresponded 
very well to the reported QTL locations (Figure 6b). Plots of the posterior 
samples of the ADG QTL locations on swine chromosome 1 (Figure 
6c) captured well the shape of the kernel density plot of the 21 reported 
ADG QTL locations (Figure 6b). This coincidence demonstrates that 
the DPP model could fit the data well when the distribution of QTL 
location (or any outcome) deviates from a normal distribution.

In this analysis, the parameter α was treated as an unknown 
parameter and inferred from its conditional posterior distribution. 
Assuming a beta prior distribution, α ~beta(2,20), the posterior mean 
(standard error) of α was estimated to be 0.335 (0.319). The number of 
clusters for the ADG QTL locations was estimated to be 6.73 with 95% 
HDP interval being between 6 and 8, indicating that the 21 reported 
ADG QTLs could present from 6 to 8 distinct ADG QTLs on SSC1. 
The mean (variance) for the baseline distribution were 76.99 (460.8), 
which corresponded to the overall estimate of QTL locations that could 
be obtained from parametric models. However, the interpretation of 
this overall mean in the baseline population is interpreted differently. 
The posterior distributions of the cluster number, and the mean and 
variance of the baseline distribution are shown in (Figure 7).

Figure 5: Meta analysis of average daily body weight gain (ADG) QTL loca-
tions on swine chromosome 1: (a) Forest plots of reported ADG QTL loca-
tions obtained from 21 primary studies; (b) Posterior distribution of the over-
all mean of QTL locations on swine chromosome 1, obtained based on a 
Bayesian model under the heterogeneity assumption; (c) Plots of estimated 
ADG QTLs sorted by their respective locations. 

(a)

(b)

                                                          
(c)

QTL locations
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Discussion and Conclusions
We have demonstrated that meta-analysis is a useful method for 

integration of information from multiple candidate gene studies and 
quantitative trait loci (QTL) mapping experiments. While individual 
studies may yield varied pictures of the candidate gene or QTL, 
pooling of results from several studies can reach a conclusion that is 
more consistent and stronger relative to individual studies. The use of 
parametric meta-analytic models to meta analysis of quantitative trait 
association and mapping studies is limited by their strong assumptions, 
such as the homogeneity or the normality assumption about study-
specific outcomes. These assumptions may not be valid in real 
situations. Instead, a non-parametric model with a Dirichlet process 
prior (DPP) makes weaker assumptions about study outcomes and it 
could fit data better than parametric models.

The DPP model involves a parametric family ( )0G t , a positive 
number α, and a prior distribution ( )p t  on t. Here., t is a set of 
parameters for G0. For example, { }2,µ σ=t  if a normal baseline 
distribution is assumed. The process can be understood in two steps. 
In the first, parameters t are picked from p(t), and, in the second, G is 
picked from the Dirichlet distribution with parameters α and ( )0G t
. This leads to the integral ( ) ( )0DP G p da∫ q q . Suppose we generate 

Figure 6: Average daily body weight gain (ADG) QTL locations on swine 
chromosome 1: (a) Kernel density plot (bandwidth=5) of ADG QTL loca-
tions obtained from 21 primary studies; (b) Correlation between reported 
ADG QTL locations from 21 primary studies and the estimated QTL loca-
tions obtained using the non-parametric meta-analysis model with a Dirichlet 
process prior (DPP); (c) Posterior distribution of clusters of QTL locations 
inferred using the DPP model. 
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Figure 7: Posterior distributions of the cluster number (left), and the mean 
(middle) and variance (right) of the baseline distribution, estimated using 
the non-parametric meta-analysis model with a Dirichlet process prior. All 
results pertain to average daily body weight gain QTLs on swine chromo-
some 1. 

samples from { }
iid

i Gq


. Because G is discrete, with positive probability, 

there will be ties among the 'i sq . In other words, the 'i sq  will form 

clumps. When α is small, the first few probabilities ( 'jP s ) add up to 
nearly 1, resulting in higher probability ties. This gives rise to important 
consequences regarding the posterior distribution of θ given the data 
γ. Consider the distribution of θi and let θ-i be θ without θi. Because 
of the propensity for clumping, the posterior of θi is more affected by 
those in θ-i whose values are close to ˆ

iq . This property results in a way 
of pooling information that involves weighing results of similar studies 
more heavily [20].

Because the posterior distribution of the outcome parameter 
is discrete in the DPP model, it implies a clustering property that 
may have important biological implications. For example, inferred 
clusters of QTL locations could correspond to distinct QTL. With this 
clustering property, the DPP model could better capture the underlying 
patterns of the data variation than parametric models, thus providing 
an effective method for aggregating and synthesizing information from 
multiple independent studies. 

Finally, the meta-analytic models are described without any study-
level covariate (also referred to as a moderator), yet it is possible 
to having such variables in the model as well. From a frequentist 
viewpoint, for example, with one or more moderator variables added 
to a fixed-effects model, it yields a meta-analytic fixed-effects-with-
moderators model:

'
i i ieγ µ= + +x β                                 (21)

where β is a vector containing all study-level covariates, and '
ix  is a row 

incidence vector (which takes values of 0 and 1, respectively). If one or 
more moderator variables are included in the random-effects model, it 
produces a meta-analytic mixed-effects-with-moderators model:

'
i i i iu eγ µ= + + +x β                 (22)

where ( )2~ 0,iu N σ . In the above model, the value of 2σ  represents 
the “amount of residual heterogeneity” in the true effects or outcomes, 
that is, the amount of variability among the true effects or outcomes that 
is not accounted for by the moderators included in the model. With the 
presence of moderators, the models can be implemented similarly, yet 
requiring some necessary modifications in the algorithms. 
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Appendix
Posterior sampling in the Bayesian meta-analysis model with 
a Dirichlet Process prior (DPP model)

Recall that ( )2~ ,γ q ζi i iN , for 1,...,=i k , where 2ζ i  is assumed to be 
known and approximated by the sample variance 2

is in the meta-
analysis. In the DPP model, we assume that 'q s come from some 
general distribution G and ( )0~ | ,aG D G G . For simplicity, assume 
that a  and 0G  are known, and this leads to a posterior distribution of 
q which is a mixture of Dirichlet processes [26]. By using the Polya 
urn representation of the DP [27], it can be shown that the conditional 
joint posterior distribution of  qi , conditional on { }2

is and the data 
( )1 2 ...γ γ γ γ= k

, take the following form: 

{ }( ) ( )
( ) ( )02 2

1:
1

|
| , | ,

1

a q δ q q
q γ γ q

a
<

=
=

+
∝

+ −
∑

∏
k i i jj i

i k i i i
i

G
p s p s

i
,             (A1)

where ( )2| ,γ qi i ip s  is the data density at qi  and 2
is  and ( )|δ q qi j  is a 

point mass on q j . At this point, the random distribution G has been 
integrated out, which in turn simplifies the algorithm because we only 
need to sample 'q s .

With (A1), we can show analytically the impact of the precision 
parameter a on the posterior inference of 'q s . When a approaches the 
infinite (a →∞ ), it can be shown that

{ }( ) ( ) ( ) ( )2 2 2
1: 0

1 1

| , | , | ,q γ q γ γ q q=
= =

= ∝∏ ∏
k k

i k b i i i i i i i
i i

p s G s p s G ,             (A2)

where ( ) ( ) ( )2 2
0

1 1

| , | ,q γ γ q q
= =

∝∏ ∏
k n

b i i i i i i i
i i

G s p s G  is the “baseline” posterior (i.e., 
the posterior assuming qi  to come from the baseline prior 0G ). On 
the other hand, if a takes a very small value, the posterior for qi  is 
largely based on other 'q s  that are close to γ i . In the latter case, This 
implies that the inference for qi  heavily depends on γ i  and its nearest 
“neighboring” 'γ s . 

A Gibbs sampler can be used to generate posterior samples for each 
of  'q s , say for qi , from its conditional posterior distribution:

{ } { }( ) ( ) ( )2 2
1: 0| , , | , |q q γ q γ δ q q≠ =

≠

+∑
k

i j i i k b i i i j i j
j i

p s q G s q

.             (A3)

Here, ( ) ( )2
0 0| ,a γ q q∝ ∫ i i i iq p s dG , which is a times the density of 

the marginal distribution of γ i  under the baseline prior 0G , and 
( )2| ,γ q∝j i j iq p s , which is the density of γ i  but replacing qi  with q j (i.e., 

q q=i j ). Note that the quantities  iq   are standardized to unit sum, that 
is, 0 1

≠
+ =∑ jj i

q q . Escobar and West (1995) have shown that, when 0G  
is a conjugate prior (say a normal distribution), the marginal is known 
analytically. Then, posterior simulation iteratively generates new values 
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of  'q s  from modified forms of  (A3). Given that bG  is of manageable 
form, the computations are straightforward and the integrations 
required to compute 0q  can be conveniently performed.

Instead of simulating qi  directly from a modified form of (A3), we 
can sample µ and iu , where q µ= +i iu . Now, assume that 'u s come from 
G and ( )0~ | ,aG D G G . Let ( ) ( )2

0 | 0,σ≡i i uG u N u , which is equivalent to 
saying ( ) ( )2

0 | ,q q µ σ≡i i uG N . Then, the posterior distribution of iu  takes 
a form similar to (A3):

( ) ( ) ( )2
0 ˆ ˆ| , |δ

≠

∝ +∑
k

i i i j i j
j i

p u else q N u v q u u ,   (A4)

where ( ) ( )( )12 2 2ˆ σ γ µ
−− − −= + −i i u i iu s s , ( ) 12 2 2ˆ σ

−− −= +i i uv s , ( )2| ,γ µ∝ +j j j jq N u s

, and ( ) ( ) ( )2 2 2 2
0 | , | 0, ,a γ µ σ a µ σ∝ + = +∫ i i i i u i i uq N u s N u du N s . Thus, 

the fully conditional posterior distribution of iu  is a mixture of N-1 
degenerate distributions, ( )δ ju , with point mass at ju ( ≠j i ), and of the 
parametric conditional distribution ( )2ˆ ˆ,i iN u v  under the assumption of 
a baseline distribution. Intuitively, the 'u s  can be simulated as follows: 
1) =i ju u  with probability jq , for 1,... 1, 1,...,= − +j i i k , or, 2) iu  is drawn
from ( )2ˆ ˆ,i iN u v  with probability 0q .

Please refer to Escobar and West (1995) for details about posterior 
sampling of other unknown parameters, such as µ , 2σ u  and a , in the 
DPP model.
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