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Introduction
Melatonin is a ubiquitous methoxyindole present in most 

living species, including unicellular microorganisms, plants, most 
invertebrates and vertebrates and humans. The first function of 
melatonin in phylogeny may have been cytoprotective [1]. As such, 
melatonin could be among the natural molecules that are effective 
in treating neoplastic malignancies. Despite a number of studies 
that have established the potentiality of melatonin as an adjuvant in 
the treatment of cancer melatonin’s importance on cancer therapy 

remains largely unappreciated. Several aspects of this subject have 
been reviewed elsewhere [2-8]. The aim of this report is to update the 
present knowledge on the possible mechanisms involved in melatonin 
oncostasis (Figure 1) and to assess what is known about the therapeutic 
application of melatonin in cancer patients.

Melatonin Oncostasis 
Antiproliferative effects

Numerous studies have shown that melatonin has remarkable 
oncostatic properties and can reduce the promotion and/or progression 
of tumors. Its antiproliferative properties have been demonstrated 
in an extensive variety of tumors including breast, endometrial, 
prostate, colon, and ovarian cancers, choriocarcinoma, melanoma, 
neuroblastoma, osteosarcoma, and leukemia, with particular efficacy 
in lymphoproliferative tumors [9-15] (Figure 2).

Melatonin exerts direct anticancer actions by inhibiting the 
proliferation and growth of tumor cells. The potential signaling 
pathway responsible for inhibiting cell proliferation requires further 
investigation, but several explanations are possible, as follows.

Modulating the cell cycle: Melatonin increases the duration of 
the cell cycle in cancer cells by either expanding the G1 phase (thus 
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Abstract
Melatonin is a natural substance ubiquitously distributed and present in almost all living species, from unicellular 

organisms to humans. Melatonin is synthesized not only in the pineal gland but also in most tissues in the body 
where it may have a cytoprotective function via paracrine or autocrine effects. Melatonin is effective in suppressing 
neoplastic growth in a variety of tumors. The mechanisms involved include antiproliferative effects via modulation 
of cell cycle, ability to induce apoptosis in cancer cells, anti-angiogenic and antimetastatic effects, anti-estrogenic 
activity, the capacity to decrease telomerase activity, immune modulation, and direct and indirect antioxidant 
effects. Besides these oncostatic properties, melatonin deserves to be considered in the treatment of cancer for 
two other reasons. First, because its hypnotic-chronobiotic properties, melatonin use that can allow the clinician to 
effectively address sleep disturbances, a major co-morbidity in cancer. Second, because melatonin’s anxiolytic and 
antidepressant effects, it has a possible application in two other major co-morbidities seen in cancer patients, i.e. 
depression and anxiety. This report summarizes the possible mechanisms involved in melatonin oncostasis and 
reviews what is known about the clinical application of melatonin as an adjuvant therapy in cancer patients.
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Figure 1: The several mechanisms through which melatonin can exert oncostatic effects. They include antiproliferative effects via modulation of cell cycle, ability 
to induce apoptosis in cancer cells, metabolic, anti-angiogenic and antimetastatic effects, anti-estrogenic activity, the capacity to decrease telomerase activity, the 
regulation of genomic instability and of the immune system, and direct and indirect antioxidant effects. See text for details.

Anti-
proliferative 

Effects 

Cell cycle 
modulation 

Activation of 
p38 MAPK 

Inactivation 
of AKT 

pathway 

Inactivation 
of NF-κB 

Suppression 
of EGFR 

Calcium
/ CaM 

antagon
ism 

Down-
regulation of 

PKC 

Decreasing 
gene 

transcription 

Figure 2: The antiproliferative effects involved in melatonin oncostasis comprise the modulation of cell cycle, activation of p38 MAPK and inactivation of the AKT 
pathways, inactivation of NF-κB, suppression of EGFR, calcium/CaM antagonism, down-regulation of PKC and the decrease of gene transcription associated with cell 
proliferation. See text for details.
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delaying the entrance of cells into the S phase) or by arresting cells in 
the G2/M phase [15]. Prolonging G1 and delaying progression to S 
phase is one way that melatonin drives tumor cells to become more 
differentiated. These data are important because aggressive tumors are 
associated with poor differentiation [16,17], an effect that seems to be 
mediated by modulation of expression of genes related to the cell cycle 
[18,19]. 

In cancer, the cell cycle is commonly deregulated, contributing to 
tumorigenesis by amplification or overexpression of cyclins. Melatonin 
downregulates the activity of cyclin-dependent kinase (CDK) 4 and 
CDK2 [20]. The cyclin D/CDK4 complex initiates phosphorylation 
of retinoblastoma protein, which is then further phosphorylated by 
cyclin E/CDK2. Phosphorylation of phosphorylated retinoblastoma 
protein triggers the steps required for the cell to enter S phase [21]; 
thus, inhibition of these CDKs by melatonin may block cancer cell 
cycle progression. Cyclin B is associated with CDK1, and melatonin 
also inhibits the transcriptional activity of cyclin B and CDK1 which 
after association promotes entry into mitosis, thereby blocking cell 
progression at the G1 and G2/M phases [13,22]. 

Although melatonin induces alterations in cell cycle progression, 
these effects depend on the overall metabolic and differentiation state 
of the cancer cells. Loureiro et al. [23] demonstrated that forcing 
mitochondrial metabolism in embryonal carcinoma stem cells 
leads to reduced proliferation and pluripotency and to spontaneous 
differentiation. Therefore, it can be presumed that the melatonin-
dependent antiproliferative effect requires an active mitochondrial 
metabolism.

Inducing activation of p38 mitogen activated protein kinase 
(MAPK): Melatonin induces phosphorylation (activation) of p38 
MAPK, suggesting that this signaling kinase plays a key role in cell 
growth inhibition [24-26]. P38 MAPK activates kinases involved in 
phosphorylation of cyclin D1, enhancing its proteasome-dependent 
degradation and delaying progression through G1 [27]. In addition, 
evidence suggests that p38 MAPK can induce B cell lymphoma Bcl-
2 associated X protein (Bax) activation, leading to its mitochondrial 
translocation prior to apoptosis. MAPK signaling pathways are 
responsible for melatonin antiproliferative effects in some cancer cells 
[18,24,26,28]. 

Inactivation of the AKT pathway: Activation of the 
phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/ protein kinase 
B (AKT)/ mammalian target of rapamycin (mTOR) signaling pathway 
is related to advanced tumor stage [29]. AKT is another important 
protein kinase (PK) that phosphorylates key signaling molecules 
controlling cell proliferation, size, differentiation, survival and apoptosis 
[30]. Evidence suggests that melatonin induces downregulation of the 
phosphorylation of mTOR and AKT, thus attenuating the expression 
of survival genes such as McL-1, Bcl-xL, cyclin D1, and cyclin E, both 
in breast cancer [30,31] and hepatoma cells [32].

Inactivation of nuclear factor kappa-light-chain-enhancer of 
activated B cells (NF-κB)

Toll-like receptors are cell surface sensors that can initiate pathways 
to stimulate cell proliferation, as well as recruiting immune cells to 
provide support for cancer progression. Toll-like receptors activation, 
via a myeloid differentiation primary response gene 88 (MyD88)-
dependent pathway, induces an inflammatory response and promotes 
activation of the transcription factor NF-κB. The antiproliferative 
effect of melatonin involves negative regulation of MyD88 [33] and 
NF-κB [34]. These factors have proliferative effects by direct action on 

cyclin D1. NF-κB also induces interleukins, cytokines, chemokines and 
cyclooxygenase (COX)-2. COX-2 overexpression and prostaglandin 
E2 production correlate significantly with invasiveness, prognosis, and 
survival in several types of cancer [35]. Therefore, COX-2 inhibitors 
can be important anticancer agents and, additionally, act additively 
with chemotherapy. Again, the action of melatonin in repressing the 
expression of COX-2 may account for its oncostatic effects [36].

Suppression of the epidermal growth factor receptor (EGFR) 
mechanism: Mitogenic regulators such as peptide growth factors, 
including epidermal growth factor (EGF) and related peptides such 
as transforming growth factor (TGF)-α, which share the same EGFR, 
are well recognized for playing pivotal roles in cancer progression via 
autocrine/paracrine stimulation of malignant epithelial cell growth 
[37]. Thus, an important antiproliferative action of melatonin may 
depend on the suppression of the EGFR mechanism [38].

Acting as a calcium/calmodulin (Ca2+/CaM) antagonist: 
Ca2+/CaM is another important molecule that plays a role in cell 
proliferation. It is involved in cell cycle progression and cytoskeletal 
integrity [39]. The antiproliferative effects of melatonin in certain 
cancer cells may depend on melatonin binding to Ca2+/CaM as well 
as on melatonin-induced changes in the intracellular distribution 
of CaM [39]. CaM binds to many enzymes and activates them, e.g., 
adenylate cyclase. Repressed adenylate cyclase activity is associated 
with reduced cAMP levels within cells, which can lead to altered PKA, 
cAMP binding protein, and p300 coregulator expression/activation, 
as well as the attenuation of phospho-activation and transactivation 
of various transcription factors [40]. Therefore, melatonin, acting as 
a CaM antagonist, may block reentry of cells into the cell cycle and 
mitosis [38]. 

Down-regulation of PKC: PKC appears to promote tumor growth 
because cytoskeletal proteins phosphorylated by PKC are necessary 
for mitosis. Melatonin down-regulation of PKC can be thus another 
mechanism involved in its oncostatic effect [38]. 

Decreasing gene transcription associated with cell proliferation: 
The transcription of Nestin, Bmi-1, and Sox2 has been used as a marker 
of cell proliferation. These genes are involved in the development of 
the nervous system [41] and in cancer progression [42-44]. Melatonin 
at high concentrations decreases cell viability and decreases transcript 
levels of genes associated with cell proliferation [45]. In addition, 
melatonin significantly increases gene expression of endocan and 
downregulates the activity of alkaline phosphatase and lactate 
dehydrogenase, thereby promoting differentiation of cancer cells, 
which may concur to melatonin’s anticancer properties [46].

Ability to induce apoptosis

Although melatonin protects normal cells from apoptosis [47,48] it 
promotes apoptotic cell death in several types of cancer cells [10,49-53]. 
The reason for this discrepancy is not known. Therefore, a mechanistic 
clarification is needed regarding the differential responses of normal 
and cancer cells to melatonin in terms of apoptosis regulation.

The effects of melatonin on apoptosis are mediated by different and 
interacting pathways as 

Activation of p53-related pathways: Melatonin-based apoptosis is 
assumed to involve activation of p53-related pathways. The p53 protein 
acts in apoptosis, cell cycle arrest, and DNA repair [54]; it causes 
cell cycle arrest primarily by activating the transcription of a cyclin-
dependent kinase inhibitor, p21/waf1, and induces apoptosis via the 
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transcriptional activation of the pro-apoptotic Bcl-2 family member 
Bax gene [55]. 

Melatonin enhances p53 protein expression and that of several 
pro-apoptotic proteins including Bax and p21 [56] and depresses 
phosphorylated mouse double minute 2 homolog (MDM2), a major 
physiological antagonist of p53. AKT activation is performed through 
PI3K-dependent phosphorylation, and phosphorylated AKT (AKT-P) 
is required to phosphorylate MDM2, thus allowing MDM2 to enter 
into the nucleus and interact with p53. Melatonin significantly reduces 
the AKT-P/total AKT ratio [28].

Inactivation of the p53 gene is commonly observed in human 
cancer and is associated with resistance to cell death [57]. More than 
50% of human cancers exhibit loss of normal p53 function and/or 
defects in the p53 signaling pathway. Therefore, agents that might 
inhibit the development of resistance to chemotherapy could be useful 
in clinical practice. 

Activation of intrinsic and extrinsic apoptotic pathways: 
Several studies using different tumor cell types have also reported that 
melatonin induces caspase 3 and 9 activation [24,58,59]. Other studies 
have shown the release of pro-apoptotic agents from mitochondria, 
triggered by melatonin in tumor cells [10,24]. The mechanisms of 
melatonin’s induction of apoptosis include mitochondrial membrane 
depolarization and permeability transition pore induction, which 
strongly suggests involvement of the mitochondrial-mediated pathway 
of apoptosis. Melatonin treatment in cholangiocarcinoma increases 
intracellular reactive oxygen species (ROS), which increase caspase 
activation because of their toxicity. Therefore, activation of ROS 
production by melatonin is associated with cytotoxicity in cancer cells 
[60]. 

Furthermore, melatonin increases calcium uptake, and the rise in 
calcium levels may lead to activation of PKCα together with PKCδ and, 
in consequence, could trigger the extrinsic apoptotic cascade [6]. In the 
extrinsic apoptotic pathway, melatonin could induce a pronounced rise 
in caspase 8 associated with augmented expression of both Fas and its 
ligand FasL.

The intrinsic and extrinsic pathways are connected by the 
caspase-8–mediated cleavage of the pro-apoptotic Bcl-2 family 
member BH3 interacting-domain death agonist (Bid), which 
translocates to mitochondria to trigger the release of cytochrome C. 
Melatonin increases the activation and association of Bax and Bid and 
is associated with a detectable rise in the expression of both proteins 
[11,49]. For example, melatonin upregulates Bax and the conversion 
of caspase-3 to cleaved form in human colorectal cancer cells [15]. 
Melatonin also promotes Bcl-2 down-regulation [10], suggesting that 
it may be an important endogenous cell death modulator. Moreover, 
melatonin synergistically promotes chemotherapy-induced apoptosis, 
mainly through downregulation of Bcl2 and elevation of pro-apoptotic 
proteins.

On the other hand, melatonin induces Bim expression [61]. Bim 
interacts with other Bcl-2 proteins to antagonize their anti-apoptotic 
activities, leading to apoptosis. Moreover, Bim is modulated by several 
transcription factors such as forkhead box proteins O (FOXO). 
Melatonin upregulates FOXO3a-mediated activation of the pro-
apoptotic protein Bim and enhances endoplasmic reticulum stress-
induced apoptosis through inhibition of COX-2 expression and 
reduction of Bcl-2 levels, and by an elevation of the pro-apoptotic 
transcription factor C/EBP homologous protein (CHOP). Woo et 
al. demonstrated that melatonin has an antitumor function through 

down-regulation of COX-2 expression by inhibition of NF-κB and p38 
MAPK activation [62]. Therefore, the stimulatory effects of melatonin 
on apoptosis in cancer cells involve both the intrinsic and the extrinsic 
apoptotic pathways [6]. 

Regulation of histone deacetylases (HDACs): HDACs are 
critical regulators of gene expression that enzymatically remove the 
acetyl group from histones. Recent work has shown evidence of a 
close relationship between transcriptional repression by blockade of 
acetylation of histones and apoptosis induction. HDAC4, one of the 
class IIa HDACs, is an important regulator of gene expression as a 
part of transcriptional corepressor complexes. HDAC4 nuclear import 
is necessary for melatonin-induced H3 deacetylation on the bcl-2 
promoter and subsequent bcl-2 suppression [63].

HDAC1s are frequently overexpressed in various types of human 
cancer, melatonin treatment decreasing expression of HDAC1 [64]. 
Fan et al. reported that melatonin acts as a suppressor in colorectal 
cancer cells and osteosarcoma cells via HDAC signaling inhibition. 
On the other hand, HDAC1 inhibitors induce ROS production, so 
oxidative stress might be an important mechanism by which melatonin 
induces cancer cell death [64].

Melatonin also downregulates sirtuin (Sirt) 1, thus leading 
to increased p53 acetylation. Acetylated p53 is preserved from 
degradation and triggers the intrinsic apoptotic pathway. Moreover, 
proliferation and viability of cancer cells are impaired through Sirt1 
melatonin-dependent inhibition [39,65].

Activation of the TGFβ-1 pathway: Melatonin-dependent late 
apoptosis is associated with activation of the TGFβ-1 pathway, leading 
to increased phosphorylated mothers against decapentaplegic homolog 
(Smad) 2 and Smad3 levels and enabling interaction with Smad4 
[16,28,66]. Smad2/Smad4 or Smad3/Smad4 complexes can thus enter 
the nucleus where they lead to the transcriptional induction of TGFβ-
1–related genes.

These data suggest that different apoptotic pathways are triggered 
by melatonin because TGFβ1 is involved only in a late stage of 
apoptosis. It seems that an early programmed cell death is associated 
with a significant increase in the p53/MDM2 ratio and with apoptosis-
inducing factor (AIF) release, and that a late apoptotic process is 
TGFβ1-dependent, in which activated caspase 7 is associated with both 
caspase 9 activation and a reduced Bcl2/Bax ratio [66].

Thus, although melatonin can reduce cell proliferation by 
mechanisms that involve cell death by apoptosis [17,67], the exact 
pathways by which melatonin influences apoptosis and why it has both 
pro- and anti-apoptotic actions remain to be defined [68,69]. Because 
melatonin increases the population of necrotic cells, it may play an 
important role as a tumor suppressor and/or chemotherapeutic agent 
against tumors. 

Modulation of the immune response 

Natural killer (NK) cells are potent effectors of cancer 
immunoediting and can destroy tumors directly via exocytosis of 
cytotoxic granules. Other apoptotic-inducing mechanisms of NK cells, 
such as antibody-dependent cellular cytotoxicity, Fas ligand and tumor 
necrosis factor (TNF)-α secretion, have been discovered [70,71]. In 
addition to direct cytotoxicity, NK cells play an important role in the 
regulation of the anti-tumor adaptive immune response because they 
produce cytokines such as interferon-γ, TNF-α, interleukin (IL)-10, 
and several chemokines and growth factors. Hence, NK cells influence 



Citation: Cardinali D, Escames G, Acuña-Castroviejo D, Ortiz F, Fernández-Gil B, et al. (2016) Melatonin-Induced Oncostasis, Mechanisms and 
Clinical Relevance. J Integr Oncol S1: 006. doi:10.4172/2329-6771.S1-006

Page 5 of 25

J Integr Oncol ISSN: 2329-6771 JIO, an open access journal
Oncology and Biophysics: A Need for 

Integration

macrophages, neutrophils and dendritic cells during the immune 
response [72]. 

A reduction in circulating NK cells has been described in cancer 
patients [73]. Numerous reports have demonstrated that melatonin 
increases the number of NK cells under a variety of conditions. 
Melatonin administration to leukemic mice results in a quantitative and 
functional enhancement of NK cells [74]. Although the mechanism has 
not been defined directly, one possibility is that melatonin acts through 
increased IL-2 production via melatonin receptors in T-helper cells 
[75], which leads to an increase in NK cell number and function [76]. 
T-helper cells play a crucial role in protection against malignancy. In 
addition, studies performed in patients with cancer have documented 
that immunological treatment with IL-2 plus melatonin induces 
a significant increase in the number of NK cells [77]. Therefore, the 
oncostatic actions of melatonin can also include direct augmentation 
of NK cell activity [2]. 

Melatonin increases not only the number of NK cells, monocytes, 
and leukocytes but also their production of interleukins (IL-2, IL-6, 
IL-10, IL-12) [9,78]. Melatonin exerts immunomodulatory anticancer 
activity by (a) augmenting the antitumor immune response by 
promoting IL-2 release from Th-1 lymphocytes, which may express 
melatonin receptors; (b) enhancing IL-12 production by dendritic 
cells in response to IL-2; and (c) decreasing oncogene expression and 
therefore biological malignancy [79]. Indeed, IL-2 is fundamental as a 
growth factor for T lymphocytes, with these cells playing an essential 
role in the generation of an effective anticancer immunity. Also, 
melatonin decreases expression of CD4+ CD25+ regulatory T cells and 
Foxp3 in tumor tissue [80].

Because of its antioxidative effects, melatonin reduces 
chemotherapy-induced lymphocyte damage [81]. An important 
strategy in cancer therapy is the activation of the immune system to 
induce a potent anti-tumor response. Thus the role of melatonin as an 
immunoenhancer deserves consideration [82] (Figure 3).

Metabolic effects

Two metabolic effects of melatonin are relevant for its oncostatic 
activity (Figure 3C).

Inhibition of aerobic glycolysis: Cancer cells use elevated 
amounts of glucose to enhance lactate production via glycolysis, 
which is maintained in conditions of high oxygen tension. This type of 
glucose metabolism is termed aerobic glycolysis [83], a phenomenon 
inhibited by melatonin, thus reducing glucose metabolism. Melatonin 
decreases the uptake of glucose and modifies the expression of the 
GLUT1 transporter in prostate cancer cells, supporting a critical role in 
the uptake of glucose by cancer cells [84].

Inhibition of linoleic acid uptake: In addition to glucose 
metabolism, linoleic acid serves as an energy source for tumor 
growth and as a specific tumor growth–signaling molecule. Several 
investigations have shown that high intake of linoleic acid increases 
growth rates of human and murine tumors [40,85]. Linoleic acid is 
converted within the tumor to 13-hydroxyoctadecadienoic acid (13-
HODE), which augments the mitogenic effects of EGF and insulin-like 
growth factor-1 (IGF-1) to enhance downstream phosphorylation of 
ERK1/2 and AKT, leading to amplified cell proliferation and survival 
responses [86]. In addition, 13-HODE induces p38 MAPK [86].

Blask et al. [87,88] demonstrated that melatonin directly inhibits 
tumor growth by suppressing the cAMP-dependent tumor uptake 
of linoleic acid and its metabolism to the mitogenic molecule 13-

HODE. Melatonin may exert its suppressive effects on tumor linoleic 
acid metabolism via a MT1 melatonin receptor–mediated reduction 
in cAMP formation. Blask et al. [89] demonstrated that in human 
breast cancer xenografts, suppression of the circadian amplitude 
of nocturnal melatonin production causes a significant increase in 
linoleic acid uptake and its conversion to 13-HODE, stimulating tumor 
growth. Light at night suppresses the direct antiproliferative effects of 
endogenous melatonin on human cancer [90,91]. Therefore, some 
antitumor effects of melatonin correlate with melatonin receptor (MT1/
MT2)-dependent inhibition of linoleic acid uptake [89]. In addition, 
melatonin could suppress the Warburg effect by reducing 13-HODE 
formation and thus activation of AKT, which is a major stimulatory 
pathway for aerobic glycolysis [92].

Apoptosis 

Activation 
of p53-
related 

pathways 

Activation 
of intrinsic 

and 
extrinsic 
pathways 

Regulation 
of HDACs 

Activation 
of TGFβ-1 
pathway 

Figure 3A: The promotion of apoptosis in cancer cells produced by melatonin 
is given by the activation of p53-related pathways, activation of intrinsic and 
extrinsic apoptotic pathways, regulation of HDACs and activation of TGFβ-1 
pathway. 
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Figure 3B: Melatonin antiestrogenic activity includes the interaction 
with ER, down-regulation of ER expression and inhibition of testosterone 
aromatization. C. Melatonin metabolic effects related to oncostasis includes 
inhibition of aerobic glycolysis and of linoleic acid uptake. D. Melatonin effects 
on genomic instability comprise regulation of circadian gene disruption and 
normalization of L1 retrotransposon expression. See text for details.
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Anti-angiogenic activity

Angiogenesis is an essential step in the development of primary 
tumors. Cancer cell growth relies on new vessel formation for nutrients 
and oxygen supply [93]. Tumor-induced angiogenesis is a complex 
process mediated and controlled by growth factors, cellular receptors 
and adhesion molecules. Hypoxia-inducible factor 1 (HIF1a) induces 
the expression of several genes such as vascular endothelial growth 
factor (VEGF), thus increasing new vessel formation and allowing 
metastatic spreading by connection to the preexisting vessels [94]. 
Moreover, VEGF appears to be frequently overexpressed in cancer 
cells, which consistently correlates with tumor size and histologic 
tumor grade [95].

The anti-angiogenic properties of melatonin have been reported 
in numerous studies. Melatonin decreases serum levels of VEGF in 
metastatic cancer patients [96]. Several studies have reported that 
melatonin-related anti-angiogenic activity in cancer cells is mediated, 
at least in part, by inhibition of HIF1a nuclear translocation, which 
is required for its transcriptional activation and subsequent VEGF 
expression [96,97]. Park et al. [98] demonstrated that melatonin 
suppresses tumor angiogenesis by inhibiting HIF-1 and VEGF 
via sphingosine kinase 1 in colon cancer cells. On the other hand, 
miRNAs play critical roles as modulators of angiogenesis [99]; e.g., 
overexpression of miRNA 3195 and miRNA 374b inhibits mRNA 
expression of HIF-1alpha, HIF-2alpha, and VEGF in hypoxia in 
prostate cancer cells, melatonin enhancing the expression of these 
miRNAs [100]. Therefore, the anti-angiogenic activity of melatonin 
can be the result of suppressing of HIF-1alpha by miRNA.

Endothelin-1 (ET-1) synthesis in blood vessels is considered to 
be one of the main stimulants of angiogenesis in primary tumors and 
contributes to angiogenesis and metastasis [101]. Melatonin suppresses 
the formation of ET-1 by inhibiting endothelin-converting enzyme 1 
[102]. Additionally, this inhibition is associated with a reduction in 
edn-1 mRNA expression (the first step in ET-1 synthesis), which in 
turn results from the inactivation of FOXO1 and NF-B transcription 
factors [103].

Melatonin also inhibits other tumor growth factors, such as IGF 
and EGF, which are strong mitogens that stimulate tumor angiogenesis 
[102,104]. Therefore, melatonin seems to suppress cancer angiogenesis 
through several complementary mechanisms.

Antimetastatic effects

Metastasis formation involves changes in tumor cells to acquire 
greater migration and invasion capacity via mechanisms that are not yet 
fully understood [105]. Melatonin has antimetastatic effects mediated 
by the inhibition of p38 MAPK and matrix metalloproteinases 2 and 
9 [106,107], which are involved in the degradation of the basement 
membrane and metastatic cell extravasation. Since PKC induces stress 
fiber thickening and decreases focal adhesion to promote tumor cell 
migration and invasion, melatonin may reduce stress fiber formation 
and thickening via PKC inhibition [108].

Epithelial–mesenchymal transition (EMT) has also been seen in 
cancer cells as they acquire invasive and metastatic phenotypes [109]. 
EMT is characterized by cellular changes, including the loss of cell 
adhesion proteins, cytoskeleton reorganization, and increased motility 
and invasiveness. Also linked to the progression of EMT is the Wnt/β-
catenin pathway, since β-catenin is a core component of the adherent 
junctions due to binding to E-cadherin [110]. Inhibition of glycogen 
synthase kinase (GSK) 3β by AKT or Wnt signaling leads to metastasis. 

However, when this pathway is activated, GSK3β phosphorylates 
β-catenin, triggering its ubiquitination and subsequent proteasome-
mediated degradation. Therefore, GSK3β regulates EMT and metastasis 
via its phosphorylation by AKT [111]. Melatonin, by inhibition of 
AKT, leads to inhibition of EMT and the development of a metastatic 
phenotype [112]. Melatonin’s activation of GSK3β and inhibition of 
β-catenin may thus promote mesenchymal-to-epithelial transition 
(MET) to suppress the metastatic potential of tumors [113]. Melatonin 
could suppress metastasis by the blockade of AKT-mediated phospho-
inhibition of GSK3β, leading to the ubiquitination of β-catenin, as well 
as by the suppression of p-p38 MAPK [40].

An increase in inducible nitric oxide synthase (iNOS) expression 
is associated with early recurrence [114] and metastatic processes 
[115,116]. Belgorosky et al. [117] showed that human colorectal 
adenocarcinoma cells that express iNOS are more invasive than 
the non–iNOS-expressing cells. In addition, NO inhibition reduces 
vascularization, and the inhibition of angiogenesis is accompanied by 
tumor growth reduction [117]. It is well known that melatonin inhibits 
both the expression and activity of iNOS and NO levels [118-121]. 

Anti-estrogenic activities

The extensively studied anti-estrogenic properties of melatonin are 
the basis for its oncostatic actions in hormone-dependent mammary 
cancer [16,41] (Figure 3B).

Interaction with estrogen receptors and down-regulation of 
their expression, binding to DNA, and transactivation: Melatonin 
interferes with the activation of the estrogen receptor (ER), behaving as 
a selective ER modulator [122-124]. ER is a member of a superfamily of 
ligand-inducible transcription factors that bind to specific recognition 
sequences in the DNA of responsive genes. These genes become 
transcriptionally activated to produce mRNAs and proteins involved 
in numerous cell processes such as proliferation and differentiation. In 
the absence of estradiol (E2), the inactive receptor is complexed with a 
variety of proteins that block its ability to interact with DNA whereas 
in the presence of E2, the receptor undergoes a conformational change 
that allows its binding to coactivators, initiating the transcription of 
target genes. Melatonin downregulates ER expression by suppressing 
ER gene transcription, resulting in a reduction in ER mRNA and 

Metaboli
c effects 

Inhibition 
of aerobic 
glycolysis 

Inhibition 
of linoleic 

acid uptake 

Figure 3C: Melatonin metabolic effects related to oncostasis includes 
inhibition of aerobic glycolysis and of linoleic acid uptake. 
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protein levels [125,126]. Melatonin also inhibits the mitogenic effects 
of E2 in cancer cells by blocking its ability to stimulate binding of ER to 
DNA: melatonin inhibits binding of the E2–ER complex to the estrogen 
response element (ERE) on DNA [38]. Melatonin cannot by itself affect 
the transcriptional activity of ER in the absence of E2. 

The inhibitory effect of melatonin on ER is augmented in the 
presence of EGF. ER transactivation by melatonin plus EGF renders 
the receptor less sensitive to E2 and thus less efficient in regulating the 
transcription of E2-responsive genes that are critical for breast cancer 
cell proliferation [38]. Furthermore, melatonin not only inhibits the 
action of growth stimulatory factors but also stimulates the production 
or release of growth inhibitory factors [127].

The anti-estrogenic effects of melatonin seem to be mediated 
through MT1 receptors, which are coupled to Gi proteins and inhibit 
adenylate cyclase activity, thus decreasing the activity of the cAMP/PKA 
signaling pathway [16]. ERα is activated by elevated intracellular cAMP 
levels. E2 increases cAMP, thus enhancing ER-mediated transcription 
[16]. The reduction of cAMP could be the mechanism underlying the 
decreased E2-induced ERα transcriptional activity brought about by 
melatonin [124]. 

In addition, the association of CaM with the E2–ERα complex 
facilitates its binding to DNA. Therefore, the inactivation of CaM 
by melatonin could also explain the anti-estrogenic actions of the 
methoxyindole [128]. Melatonin can be considered a specific inhibitor 
of E2-induced ERα –mediated transcriptional activation, whereas it 
does not inhibit ERβ-mediated transactivation [16]. These data suggest 
that melatonin has an important influence on gene expression in 
human breast cancer cells.

Estrogen enzyme modulator action: In breast cancer occurring in 
postmenopausal women, estrogens are synthesized in the mammary 
tissue from androgenic precursors of adrenal origin. Estrogens are 
the product of androgen metabolism catalyzed by the aromatase 
enzyme complex [124]. Aromatase activity in breast cancer tissue is 
higher than in non-malignant breast tissue, resulting in an increased 
production of estrogen within breast tumors [129]. Melatonin inhibits 
the expression and activity of enzymes, such as P450 aromatase, 
estrogen sulfatase, and 17β-hydroxysteroid dehydrogenase, involved 
in the synthesis and transformation of biologically active estrogens, 
thus behaving as a selective enzyme modulator [130,131]. Melatonin 
also inhibits the increased proliferation of MCF-7 breast cancer cells 
induced by testosterone [132]. Because testosterone ultimately leads 
to proliferation via its transformation into estrogens, the inhibitory 
effects of melatonin could be due to the blockade of the formation of 
estrogens from androgens [132]. In addition, melatonin potentiates the 
effects of other anti-aromatases such as aminoglutethimide [16].

The ability of melatonin to modulate aromatase activity and 
expression has been explained by the binding of melatonin to MT1 
receptors [133]. Thus, cAMP can be the link between melatonin 
and aromatase activity in breast cancer cells. In addition, melatonin 
stimulates the expression and activity of estrogen sulfotransferase, the 
enzyme responsible for the transformation of E2 into the biologically 
inactive estrogen sulfates [16]. 

Capacity to decrease telomerase activity

Telomerase is a specialized ribonucleoprotein DNA polymerase 
that extends the telomeres of eukaryotic chromosomes. Activation 
of telomerase plays an important role in carcinogenesis, providing 
a mechanism for an unlimited neoplastic cell division capacity [90]. 

Telomerase is activated in most human cancers, and the death of tumor 
cells is associated with a decline in detectable telomerase activity [134]. 
In normal cells, melatonin increases telomerase activity [135] but in 
cancer cells, it attenuates telomerase activity both in vivo and in vitro 
[136]. All telomerases contain a telomerase catalytic protein component 
(TERT) and a RNA subunit, which constitute the minimum structure 
for telomerase activity. In MCF-7 cancer cells, melatonin inhibits 
telomerase activity and the expression of the TERT mRNA subunit 
[136]. Agonism of the nuclear receptor of melatonin decreases TERT 
RNA levels, whereas agonism of the MT1 membrane receptor increases 
it [137]. This finding suggests an interaction between the membrane 
and nuclear melatonin signaling pathways to modulate telomerase 
activity.

Telomerase is considered an important therapeutic target because 
telomerase inhibition leads to cancer cell death. The reduction of 
telomerase expression by melatonin can be an important event in the 
ability of this molecule to limit tumor growth. 

Function as a free radical scavenger

Melatonin has a marked dose-dependent antioxidative effect, 
providing protection against damage from carcinogenic substances 
and acting as a free radical scavenger [138]. ROS generation is a major 
factor involved in carcinogenesis [139]. Several transcription factors 
with roles in cell growth and death can be activated by ROS through 
distinct intracellular pathways. Moreover, free radicals damage all 
cellular components such as lipids, proteins, and DNA, and damage 
of DNA by oxidative stress has been implicated as a main contributing 
factor in the development of cancerous growth [139]. 

The oxidative damage of mitochondria is also strongly involved 
in carcinogenesis [140]; e.g., it is hypothesized that mitochondrial 
changes can be associated with cholangiocarcinoma development 
[141]. Mitochondrial impairment produces ROS and reactive nitrogen 
species (RNS) that in turn reduce mitochondrial bioenergetics, favoring 
cell damage and death [142,143]. Effectively, melatonin treatment 
significantly inhibits cholangiocarcinoma development [141]. 
Melatonin is a special class of antioxidant because when scavenging 
free radicals, it is processed in a series of metabolites that are also 
free radical scavengers [144]. In addition to direct scavenger activity, 
melatonin has a genomic effect, inducing expression of antioxidant 
enzymes such as glutathione peroxidase, glutathione reductase and 
superoxide dismutase [145] as well as reducing the expression of 
pro-oxidative enzymes, e.g., iNOS [118,121]. Therefore, melatonin 
may inhibit cancer growth through its ability to directly or indirectly 
neutralize ROS and RNS production. 

Another interesting aspect of melatonin is that it is taken up by 
mitochondria, providing in situ protection against oxidative damage 
[146,147]. Several reports have shown that melatonin improves 
mitochondrial function, reduces mitochondrial oxidative status, and 
increases the activity of the respiratory chain [146,148]. Melatonin, 
but not other antioxidants (e.g., vitamins C and E, N-acetylcysteine) is 
highly efficient in maintaining mitochondrial glutathione homeostasis 
in extremely oxidative conditions, closing the mitochondrial 
permeability transition pore [149] and promoting mitochondrial 
survival [150,151].

Free radicals and their derivative products can activate nuclear 
factors such as NF-κB, leading to the production of proinflammatory 
cytokines, which in turn enhance inflammation and further ROS 
generation [152]. Therefore, antioxidants capable of decreasing 
intracellular free radicals also can reduce NF-κB activation and 
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proliferation of cancer cells [18]. As already mentioned, melatonin has 
potent anti-inflammatory properties [118,119,153-156] and prevents 
NF-κB activation by oxidative stress [157]. It inhibits growth of 
glioma cells, and this inhibition is associated with a decrease in basal 
levels of intracellular free radicals [19,158] and inhibition of NF-κB 
transcription [18]. Antioxidant agents can enhance the cytotoxic action 
of chemotherapeutic drugs [159].

Regulation of genomic instability

Two aspects of genomic stability are relevant for melatonin-induced 
oncostasis. They include regulation of circadian gene expression and 
that of the long interspersed element 1 (L1) retrotransposon (Figure 
3D).

Circadian disruption: The production of melatonin at night by the 
pineal gland represents a highly reliable output signal of the circadian 
clock, and the suppression of pineal melatonin production in response 
to light at night might explain the rise in cancer that has accompanied 
industrialization [160,161]. The repression of the nocturnal circadian 
melatonin signal promotes tumor aerobic glycolysis and the expression 
and activation of the signaling pathways involved in tumor proliferation 
and survival that drive resistance in cancer cells to endocrine therapies 
and chemotherapies [40]. Therefore, the melatonin signal regulates 
metabolic and cell signaling activities to inhibit cancer initiation, 
promotion, and progression [162], and these effects can be mediated 
by melatonin MT1/MT2 receptors [163]. 

Circadian synchronization is coordinated by the suprachiasmatic 
nuclei (SCN) of the hypothalamus, as the master clock located in SCN 
neurons controls peripheral circadian clock genes. At the same time, 
these genes can subsequently regulate the clock-controlled genes that 
are involved in the cell cycle [164]. Light may directly affect tumor 
growth through PER1 and PER2, which in turn regulate cell cycle and 
apoptosis-regulated genes. Effectively, the deregulation of per and Cry 
clock genes is related to cancer development. Melatonin is involved 
in modulating clock genes and therefore could restore abnormal 
apoptotic processes [6].

Melatonin can also alter DNA methylation patterns, thus decreasing 

the expression of oncogenic genes while simultaneously up-regulating 
the expression of tumor suppressor genes. Light exposure at night may 
affect overall DNA methylation and clock gene expression, including 
PER2, to promote tumor progression [40].

Regulation of L1 expression: One well-known cause of cancer is 
genomic instability, and one of the intrinsic DNA-damaging agents 
that can cause different types of genomic instability in human cancers is 
the L1 retrotransposon. It has been reported that melatonin suppresses 
the expression of L1 in human cancer in a receptor-mediated manner 
[165].

On the other hand, it seems that light exposure at night promotes 
genomic instability. Therefore, upregulation of L1 expression and 
light exposure at night could be contributing factors driving genomic 
instability relevant to cancer risk. De Haro et al. reported that expression 
of endogenous L1 elements in prostate cancer is suppressed by 
circulating melatonin and that this regulation is disrupted by exposure 
to light at night, which suppresses nocturnal melatonin production. 

The general conclusion is that melatonin exerts anticancer effects by 
multiple pathways and in a number of experimental models in vivo and 
in vitro. Table 1 summarizes relevant data on this subject. Melatonin 
decreases growth in most tumor cell lines by increasing necrosis, 
decreasing proliferation, and increasing apoptosis [14,141,166]. Taken 
together, the different pathways involved in carcinogenesis, including 
cell proliferation and metastasis, are important targets of melatonin, 
which represents a unique molecule able to interact with these different 
pathways, reducing oncogenesis. Further studies are needed to 
determine the multiple oncostatic mechanisms of action of melatonin.

In addition, melatonin increases the efficacy of anticancer drugs 
and has multiple protective effects against drug toxicity [167,168]. The 
data support the clinical use of melatonin in the co-treatment of cancer.

Clinical Application of Melatonin in Cancer
Three are the major reasons why melatonin deserves to be 

considered in the treatment of cancer. First, melatonin is a hypnotic-
chronobiotic agent that can allow the clinician to effectively address 
sleep disturbances, a major co-morbidity in cancer. Second, the 
anxiolytic and antidepressant effects of melatonin underline its 
possible application in two other major co-morbidities (i.e. depression 
and anxiety) in cancer patients, Third, melatonin has a number of 
oncostatic properties (as reviewed in the previous sections of this 
article) that could make it an effective adjuvant of chemotherapy and 
radiotherapy. We will briefly review these three possible applications of 
melatonin from a clinical standpoint.

Sleep disorders are very common among cancer patients [169]. 
However, they generally remained underdiagnosed and poorly 
treated [170-173]. In a cross-sectional survey study on nearly 1,000 
cancer patients to examine the prevalence of sleep problems, sleep 
disturbance was most prevalent among the lung and breast cancer 
patients. Sleep complains included excessive fatigue (44% of patients), 
restlessness leg syndrome (41%), insomnia (31%) and excessive diurnal 
somnolence (28%) [174]. It must be noted however that an imprecise 
conceptualization of sleep has led to narrowly focused interventions 
being diffusely targeted to symptoms, rather than focused and specific 
to one or more sleep disorders underlying those symptoms [175]. This 
is important because although many interventions for sleep in cancer 
have shown efficacy, the majority of these studies are too targeted to 
undefined subtypes of insomnia.

Genomic 
stability 

Circadian 
disruption 

L1 
expression 

Figure 3D: Melatonin effects on genomic instability comprise regulation 
of circadian gene disruption and normalization of L1 retrotransposon 
expression. See text for details.
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Subjects Measured Results Ref

20 women with clinical stage I or II 
breast cancer

Plasma melatonin 
levels over 24 h

In 10 patients, whose tumors were estrogen receptor positive, the nocturnal increase in plasma 
melatonin was much lower than that observed in 8 control subjects. Women with the lowest peak 
concentration of melatonin had tumors with the highest concentrations of estrogen receptors. 
A significant correlation was found between the peak plasma melatonin concentration and the 
tumor estrogen receptor concentration in 19 of the patients

[218]

Normal individuals, women with breast 
cancer, and women at high risk for 

breast cancer

Plasma melatonin 
levels over 24 h

The mean daytime and nighttime plasma levels, and the range of melatonin day to night differences 
for women with breast cancer and women at high risk for breast cancer were comparable to 
each other and to the normal subjects. Women with estrogen or progesterone receptor-positive 
tumors had a significantly lower mean plasma melatonin day to night difference.A strong inverse 
correlation was observed between the plasma melatonin concentration and the quantities of 
estrogen or progesterone receptor in the primary tumor. Plasma melatonin did not correlate 
with tumor glucocorticoid receptor content or stage of breast cancer among these patients, or 
with menopausal status, age, parity, or the plasma levels of estrone, estradiol, progesterone or 
gonadotropins among all individuals studied. 

[219]

42 cancer patients of both sexes 
(breast cancer, 10; lung cancer, 13; 

colon cancer, 11; soft tissue sarcoma, 
4; testicular cancer, 1; Hodgkin's 

disease, 1; peritoneal mesothelioma, 2).

Melatonin serum 
levels before and 28 
days after each cycle 

of chemotherapy

Regardless of the type of tumor and chemotherapeutic regimen, 12/16 patients (75%) whose 
melatonin enhanced after chemotherapy had an objective regression. In contrast, 2/26 patients 
only (8%) whose melatonin did not enhance after chemotherapy had a clinical response. 
The percentage of objective responses was statistically significantly higher in patients with a 
chemotherapy-induced melatonin increase than in those with no melatonin increase

[220]

35 patients with breast cancer (23 
primary tumors); 28 patients with 
untreated benign breast disease

Serum melatonin 
levels over 24 h

A 50 % depression of peak and amplitude found in the group of patients with primary breast 
cancer. The peak significantly declined with increasing tumor size: 27 % at Stage T1, 53 % at T2 
and 73 % at T3. Patients with secondary breast cancer had a melatonin profile similar to controls

[221]

86 patients with breast cancer Daytime plasma 
melatonin values

Patients in the advanced disease group had significantly higher levels than those in the adjuvant 
treatment group, and patients with progressive disease had significantly higher values than those 
in remission or with stable disease. No significant differences were found between different 
dominant metastatic disease sites. Multiple-regression tests showed a significant inverse 
correlation between survival and melatonin values

[197]

Patients with bening (14) or malignant 
(10) breast cancer vs. 160 controls

Daily pattern of 
urinary aMT6s

Women with malignant tumors had significantly lower 24 h concentrations of urinary aMT6s with 
a decrease in the amplitude of the rhythm compared to women with benign tumors. The amount 
of urinary aMT6s was dependent upon the age of the subject but was not affected by either 
menopausal status or body mass index. However, when the women with malignant tumors were 
compared with a large group of normal women of the same age their urinary aMT6s levels were 
not outside the normal range

[222]

17 patients with breast cancer (9 
primary tumors); 4 patients with 
untreated benign breast disease

Serum melatonin and 
aMT6s levels over 

24 h

Nocturnal melatonin and aMT6s levels and their circadian amplitudes were significantly depressed 
in the group of patients with primary breast cancer. In contrast, patients with secondary breast 
cancer showed nocturnal melatonin and aMT6s concentrations and amplitudes similar to benign 
breast disease

[223]

8 young men, 7 elderly patients with 
benign prostatic hyperplasia and 9 
patients of similar age with primary 

prostate cancer

Serum and urine 
melatonin and aMT6s 

levels over 24 h

The circadian patterns of melatonin and aMT6s in serum were very similar in the different groups. 
Mean value and amplitude were significantly depressed by 40-60% in with primary prostate 
cancer (40-60%) as compared to the other groups. Circadian rhythms similar to those of serum 
were found in urine

[224]

138 women (68 were diagnosed with 
endometrial cancer, 70 had abnormal 

bleeding¡

Plasma melatonin 
levels

A significant correlation was found between melatonin plasma levels and the presence of 
endometrial cancer. The mean plasma melatonin value was 6.1 pg/ml in the cancer-positive 
group and 33.2 pg/ml in the cancer-negative control group.

[225]

10 patients with untreated non small 
cell lung cancer vs. 10 healthy subjects 

Diurnal plasma 
rhythm of melatonin, 

cortisol and other 
hormones

Melatonin levels and melatonin/cortisol ratio were significantly lower in patients. Disruption of 
circadian rhythmicity of melatonin levels were found in cancer patients. [226]

127 patients diagnosed with breast 
cancer and 353 matched control 

subjects

Levels of aMT6s in 
24-h urine samples

No statistically significant differences in urinary aMT6s concentrations were observed between 
women who developed breast cancer and control premenopausal or postmenopausal women [198]

147 women with invasive breast cancer 
and 291 matched control subjects

Levels of aMT6s in 
the first morning urine

In logistic regression models, the relative risk of invasive breast cancer for women in the highest 
quartile of urinary aMT6s compared with those in the lowest was 0.59. This association was 
essentially unchanged after adjustment for breast cancer risk factors or plasma sex hormone 
levels but was slightly weakened when the analysis included 43 case patients with in situ breast 
cancer and their 85 matched control subjects. The exclusion of women who had a history of night-
shift work left our findings largely unchanged. 

[227]

3,966 postmenopausal women
Levels of aMT6s in 
12-h overnight urine 

samples

Increased melatonin levels were associated with a statistically significantly lower risk of invasive 
breast cancer in postmenopausal women. Among the 3966 women in the cohort, 40 of the 992 
women in the highest quartile of aMT6s developed breast cancer during follow-up, compared with 
56 of the 992 women in the lowest quartile 

[228]

33,528 women (follow-up 11 years). 
525 incident cases of breast cancer

Self-reported sleep 
duration. Levels of 

aMT6s in 24-h urine 
samples

Among women postmenopausal at baseline, breast cancer risk decreased with increasing sleep 
duration. Irrespective of gender, urinary aMT6s levels increased with increasing self-reported 
hours of sleep.

[229]

180 premenopausal women with 
incident breast cancer and 683 

matched controls

Levels of aMT6s in 
12-h overnight urine 

samples

In logistic regression models, the relative risk of invasive breast cancer for women in the highest 
quartile of total overnight aMT6s output compared with the lowest was 1.43. A relative risk (OR= 
0.68) was found between overnight aMT6s level and breast cancer risk in women with invasive 
breast cancer diagnosed >2 years after urine collection and a significant inverse association in 
women with a breast cancer diagnosis >8 years after urine collection (OR, 0.17). 

[230]
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The possible causes of sleep disorders in patients with cancer are 
diverse; when pre-existing sleep problems occur they often seem to be 
aggravated by cancer. Cancer itself (e.g. tumor invasion symptoms, 
pain), chemotherapy, corticosteroid treatment, environmental factors 
or psychological distress are among the factors to contribute to 
disruption of sleep. Sleep loss can be followed by immunosuppression 
thus impacting on the course of the disease [169,170,176,177].

The type and frequency of hypnotic medication were recorded 
in a sample of 1984 patients who had previously underwent cancer 
treatment [178]. Hypnotics were taken by 22.6% of patients. Among 
the factors associated with increased use of hypnotic medication, to 
be older, to have more stressful life events experienced during the 
past 6 months, to suffer higher levels of anxiety or past or current 
chemotherapy treatment, were quoted. Almost 80% of participants 
who were taking drugs were prescribed benzodiazepines (mostly 
lorazepam and oxazepam), followed by zopiclone (9%). It must be 
noted that regardless that many drugs are currently approved for the 
treatment of insomnia, very few have been tested for safety or efficacy 
in patients with cancer [179].

Melatonin can have a place in treating sleep disorders in cancer 
patients. Its potentiality in treating sleep disturbances is relevant 
because the sleep-promoting compounds that are usually prescribed 
in cancer patients, like benzodiazepines and related Z drugs, have 
many adverse effects, such as next-day hangover, dependence and 
impairment of cognition. Indeed, a number of studies point out to a 
beneficial effect of melatonin in a wide variety of sleep disorders [180] 
and melatonin is increasingly recognized as an effective medication 
to stop benzodiazepine/Z drug abuse in patients [181]. Melatonin 
has been used for improving sleep in patients with insomnia mainly 
because it does not cause hangover or show any addictive potential. 
Melatonin’s efficacy has been demonstrated in most [182,183] but 
not all meta-analysis [184]. Brain imaging studies in awake subjects 
have revealed that melatonin modulates brain activity pattern to 
one resembling that of actual sleep [185]. A consensus of the British 
Association for Psychopharmacology on evidence-based treatment of 
insomnia, parasomnia and circadian rhythm sleep disorders concluded 
that melatonin is the first choice treatment when a hypnotic is indicated 
in patients over 55 years [186]. 

As melatonin exhibits hypnotic and chronobiotic properties of 
a short duration, the need for the development of prolonged release 
preparations of melatonin or of melatonin agonists with a longer 
duration of action on sleep regulatory structures in the brain arose. 
Slow release forms of melatonin (e.g., Circadin®, a 2 mg- preparation 
developed by Neurim, Tel Aviv, Israel, and approved by the European 
Medicines Agency, EMEA, in 2007) and the melatonin analogs 
ramelteon (approved by the Food and Drug Administration, FDA, 
in 2005), agomelatine (approved by EMEA in 2009) and tasimelteon 

(approved by FDA in 2013) are examples of this strategy. It must be 
noted that as shown by the binding affinities, half-life and relative 
potencies of the different melatonin agonists it is clear that studies using 
2-5 mg melatonin/day are unsuitable to give appropriate comparison 
with the effect of the above mentioned compounds, which in addition 
to being generally more potent than the native molecule are employed 
in considerably higher amounts [180]. 

Concerning the second reason why melatonin can be useful 
in cancer patients, depression is a frequent and serious comorbid 
condition affecting the quality of life. Such comorbidity reduces the 
compliance with treatment and aggravates the physical consequences 
of the disease. Although there are studies showing that about 40% of 
tumor patients need professional psycho-oncological support [187] 
only less than 10% of patients are referred for psychosocial intervention 
in daily clinical practice [188]. Studies of effective pharmacotherapy are 
relatively scarce in cancer patients with depression and they are biased 
by a high number of dropouts due to side effects relating to the use of 
antidepressants compared to placebo [179]. It is therefore difficult to 
determine with clarity as to what is the best pharmacological treatment 
for major depression in cancer patients.

Circadian rhythm abnormalities, as shown by the sleep/wake cycle 
disturbances, constitute one the most prevalent signs of depression 
[189]. The disturbances in the amplitude and rhythm of melatonin 
secretion that occur in patients with depression resemble those seen 
in subjects with chronobiological disorders, thus suggesting a link 
between melatonin secretion disturbance and depressed mood. Since 
melatonin is involved in the regulation of both circadian rhythms and 
sleep, any antidepressant drug with effects on melatonin receptors 
could be an advantage in treatment. Melatonin treatment has been 
found effective to treat circadian rhythm disorders [180,190]. As far 
as its antidepressant activity, melatonin (10 mg/day) was inactive to 
affect bipolar affective disorder [191] and improved sleep with no effect 
on symptoms of depression in major depressive disorder [192,193]. 
Among the analogs developed to improve the efficacy of melatonin’s 
effects, agomelatine (Valdoxan®, Servier, France) has been licensed by 
the EMEA for the treatment of major depression disorder in adults. 
Agomelatine has a unique pharmacological profile as it is both a 
MT1/MT2 melatonin receptor agonist and an antagonist of 5-HT2C 
receptors. As the first melatonergic antidepressant, agomelatine 
displays a non-monoaminergic mechanism of action [180]. MT1 and 
MT2 receptors also appear to be involved in sedating and anxiolytic 
effects of melatonergic drugs which have been linked to a facilitatory 
role of melatonin on γ-aminobutyric acid transmission [194]. This 
antiexcitatory action of melatonin may underlie the anxiolytic, 
antihyperalgesic and antinociceptive effects of melatonergic agents, all 
them of potential application in cancer patients [4,181]. In a double-
blind, placebo-controlled study of 54 women undergoing surgery for 
breast cancer and receiving 6 mg of melatonin or placebo for 3 months, 

Subjects Measured Results Ref

640 nurses and midwives, 321 working 
on rotating night shifts vs 319 working 

on only day basis

Morning levels of 
aMT6s in urine 

samples. Computer-
assisted measure 
of mammo-graphic 

density

The adjusted means of percentage of mammographic density and absolute density were slightly, 
non significantly, higher among women working rotating night shifts. There was no significant 
association between morning aMT6s and mammographic density

[231]

Prospective cohort study (1977-2009) 
of 251 breast cancer cases and 727 

matched controls

Morning levels of 
aMT6s in urine 

samples.

No significant association was found between aMT6s and breast cancer risk, either overall (for 
highest third vs. lowest, multivariable-adjusted odds ratio = 0.90, 95% confidence interval: 0.61, 
1.33) or by menopausal status. 

[232]

aMT6s: 6-sulfatoxymelatonin

Table 1: Melatonin levels in cancer patients.
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the risk of developing depressive symptoms was significantly lower 
than placebo [195]. Likewise, health-related quality of life assessment 
in patients with advanced, non-small cell lung cancer and receiving 
10–20 mg melatonin daily was better than placebo, particularly in 
social well-being [196]. A higher extent of DNA damage was observed 
in the placebo group, and this was associated with a lower survival, 
implying the protective effect of melatonin in healthy cells [196]. In 
another study, 95 postmenopausal women with a prior history of stage 
0-III breast cancer and who had completed active cancer treatment, 3 
mg of melatonin or placebo was used for 4 months. Subjects receiving 
melatonin experienced significantly greater improvements in subjective 
sleep quality but there were no significant differences in measures of 
depression or hot flashes, presumably because of the low amounts of 
melatonin used [171] (Table 2).

With few exceptions [197-199], melatonin levels were found to be 
decreased in cancer patients (see Supplementary Table 1). One active 
issue in scientific research is the possibility that working non-day hours 
is associated with an increased risk of cancer, most notably breast 
and prostate cancer. The major idea behind this is that the reduced 
melatonin secretion plays a crucial role in the occurrence of cancer. 
A number of studies have addressed this question by employing both 
case–control and cohort designs, thus supporting [200,201] or not 
supporting [202] such an association. The inconsistencies may depend 
on the definition of “shift work” [203]. A major support derives from 
meta-analysis studies, a procedure that combines data from several 
studies and treats those data as one large study. Although meta-analyses 

can be informative, they are questionable because of the dissimilarity 
among studies. 

This argument is also relevant for results on the third aspect 
of clinical application of melatonin in cancer, i.e. the therapeutic 
effect of melatonin in cancer patients. Literature data on this point 
are summarized in the Supplementary Table 2. Two meta-analyses 
have been published to assess melatonin efficacy in treating cancer 
patients. The first meta-analysis was a systematic review of randomized 
controlled trials of melatonin in solid tumor cancer patients and its 
effect on survival at 1 year [204]. It included 10 studies published 
between 1992 and 2003 and comprised 643 patients. Melatonin reduced 
the risk of death at 1 year with effects consisting across melatonin dose, 
and type of solid cancer. No relevant adverse events were reported. 

In the second meta-analysis 8 eligible randomized controlled trials 
of solid tumor cancers (n=761) were selected [205]. The dosage of 
melatonin used was 20 mg orally, once a day. Melatonin significantly 
improved the complete and partial remission and 1-year survival rate 
and decreased radiochemotherapy-related side effects. It must be noted 
that all trials examined in both meta-analyses included solid tumor 
cancers and were unblinded and all except one were conducted by the 
same group of researchers at the same hospital network. 

In addition, relevant negative results concerning melatonin efficacy 
in cancer patients have been published. In a trial designed to compare 
whole brain radiation therapy alone to radiation therapy and 20 mg/day 
melatonin for patients with brain metastases from solid tumors, neither 

Subjects Design Study´s 
duration Treatment Measured Results Ref.

33 patients with 
metastatic renal 
cancer

Randomized 
open trial 5 days IL-2 alone or IL-2 plus melatonin (10 

mg/day p.o. at 2000 h) Clinical outcome

The frequency of episodes of severe 
hypotension and depressive symptomatology 
were significantly greater during IL-2 alone 
than during IL-2 + melatonin. No other toxicity, 
including capillary leak syndrome, vomiting 
and fever, were significantly influenced by the 
concomitant treatment with melatonin

[233]

54 patients with 
metastatic solid 
tumors 

Open trial 2 months Melatonin was given i.m. at a daily 
dose of 20 mg at 1500 h for 2 months Clinical outcome

The clinical response was as follows: 1 partial 
response (cancer of pancreas), 2 minor 
responses (colon cancer and hepatocarcinoma) 
and 21 with stable disease. The remaining 30 
patients rapidly progressed within the first 2 
months of therapy

[234]

42 patients 
with advanced 
melanoma

Open label 
study

Median 
follow-up of 
33 weeks

Melatonin from 5 t0 700 mg/m2/day in 
four divided doses p.o.

Clinical outcome. Serum 
FSH, LH and TSH 
levels

6 patients had partial responses and 6 additional 
patients had stable disease. The median 
response duration was 33 weeks for the partial 
responders. The toxicity encountered was 
minimal and consisted primarily of fatigue in 17 
of 40 patients. Decreased levels of FSH were 
found

[235]

63 consecutive 
metastatic non 
small cell lung 
cancer patients 

Randomized 
open trial 1 year

Patients were randomized to receive 
melatonin (10 mg p.o. at 1900 h, n = 
31) or supportive care alone (n = 32)

Clinical outcome

The percentage of both stabilizations of disease 
and survival at 1 year was significantly higher 
in patients treated with melatonin. No drug-
related toxicity was seen in patients treated with 
melatonin

[236]

20 metastatic non 
small cell lung 
cancer patients 

Open trial 4 weeks

Melatonin was given p.o. at a daily 
dose of 10 mg at 2000 h 
starting 7 days before the onset of IL-2 
administration. IL-2 was given s.c. at a 
dose of 3 x 106 IU.m2 every 12 h for 5 
days/week for 4 weeks). In responder 
patients a second cycle was given 
after a rest-period of 21 days.

Clinical outcome

A partial response was achieved in 4/20 (20%) 
patients. Ten other patients had a stable 
disease (50%), whereas 6 patients progressed. 
Toxicity was low in all cases

[237]
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Subjects Design Study´s 
duration Treatment Measured Results Ref.

30 advanced 
cancer patients

Randomized 
open trial 4 weeks

Patients were randomized to receive 
IL-2 (3 x 106 IU.m2 twice/daily for 6 
days/week for 4 weeks, with or without 
melatonin 10 or 50 mg given daily p.o. 
at 2000 h

Immune parameters

IL-2 together with melatonin, but not IL-2 
alone, induced a significant increase in mean 
number of lymphocytes, T lymphocytes, NK 
cells, CD25-positive cells and eosinophils. 
Soluble IL-2 receptor and neopterin increase 
was significantly higher during IL-2 given twice/
daily than during IL-2 plus melatonin, while no 
difference was seen in TNF rise

[238]

35 patients with 
advanced tumors 
of the digestive 
tract (colorectal 
cancer: 14; 
gastric cancer: 
8; hepato-
carcinoma: 6; 
pancreas adeno-
carcinoma: 7)

Open trial 4 weeks

Melatonin was given p.o. at a daily 
dose of 50 mg at 2000 h starting 
7 days before the onset of IL-2 
administration. IL-2 was given s.c. at a 
dose of 3 x 106 IU.m2 every 12 h for 6 
days/week for 4 weeks)

Clinical outcome

A complete response was achieved in two 
patients (gastric cancer: 1; hepatocarcinoma: 1). 
Six other patients obtained a partial response: 
(gastric cancer: 2; hepatocarcinoma: 2; colon 
cancer: 1; pancreas cancer: 1). Stable disease 
was obtained in 11/35 (31%) patients, whereas 
the remaining 16 patients (46%) progressed. 
The response rate was significantly higher in 
untreated patients than in those previously 
treated with chemotherapy

[239]

82 patients, 72 
of whom showed 
distant organ 
metastases 
(non-small cell 
lung cancer: 
19; hepato-
carcinoma: 16; 
colon cancer: 15; 
gastric cancer: 
11; cancer of 
pancreas: 11; 
breast cancer: 6; 
other: 4)

Open trial 4 weeks

Melatonin was given p.o. at a daily 
dose of 40 mg at 2000 h 
starting 7 days before the onset of IL-2 
administration. IL-2 was given s.c. at a 
dose of 3 x 106 IU/m2 every 12 h for 6 
days/week for 4 weeks)

Clinical outcome, 
immune parameters

Objective tumor regression were achieved in 
17/82 (21%) patients. The median duration 
of response was 8+ months. A stabilization 
of disease was obtained in 30 patients, while 
the other 35 patients progressed. The lack of 
progression was associated with a significantly 
higher increase in lymphocyte and eosinophil 
mean number and with a significantly lower 
increase in neopterin mean levels. The 
treatment was well tolerated in all patients

[240]

14 patients with 
metastatic gastric 
cancer

Open trial Variable

Melatonin was given p.o. at a daily 
dose of 50 mg at 2000 h starting 
7 days before the onset of IL-2 
administration. IL-2 was given s.c. at 
a dose of 3 x 106 IU/m2 every 12 h for 
6 days/week for 4 weeks). In patients 
in whom the disease did not progress, 
a second cycle was given after a rest 
period of 21 days

Clinical outcome

A tumor regression was obtained in 3/14 (21%) 
patients, complete response in 1 and partial in 
2, with a median duration of 13 + months. The 
disease stabilized in 6/14 (43%) patients and 
progressed in the remaining 5 (36%). Survival 
was significantly longer in patients with response 
or stable disease than in those with progression. 
Toxicity was low in all cases

[239]

14 patients with 
un-resectable 
hepato-cellular 
carcinoma

Open trial Variable

Melatonin was given p.o. at a daily 
dose of 50 mg at 2000 h 
starting 7 days before the onset of IL-2 
administration. IL-2 was given s.c. at 
a dose of 3 x 106 IU/m2 every 12 h for 
6 days/week for 4 weeks). In patients 
in whom the disease did not progress, 
a second cycle was given after a rest 
period of 21 days

Clinical outcome

Objective tumor regressions were obtained in 
5/14 (36%) patients (one complete response, 
four partial responses), with a median duration 
of 7 months. 6 patients had stable disease, 
while the other 3 progressed. Toxicity was low 
in all cases

[241]

50 patients with 
brain metastases 
due to solid 
tumors

Randomized 
open trial 1-2 years

Supportive care alone (steroids plus 
anticonvulsant agents) or supportive 
care plus melatonin (20 mg/day p.o. 
at 2000 h)

Clinical outcome

The survival at 1 year, free-from-brain-
progression period, and mean survival time 
were significantly higher in patients treated 
with melatonin than in those who received the 
supportive care alone

[242]

22 patients with 
metastatic renal 
cell carcinoma

Open trial 12 months
Human IFN, 3 mega- units i.m.3 times 
per week, plus melatonin, 10 mg p.o. 
every day

Clinical outcome

There were seven remissions (33%): three 
complete, involving lung and soft tissue and four 
partial. Nine patients achieved stable disease, 
and five progressed. General toxicity was mild. 
Fever, chills, arthralgias, and myalgias occurred 
rarely. Leukopenia and hepatic enzyme 
elevation were modest and always reversible

[243]

14 metastatic 
solid tumor 
patients

Randomized 
open trial 12 days

Recombinant human TNF was given 
at a daily dose of 0.75 mg i.v. for 5 
consecutive days. Melatonin was given 
p.o. at a daily dose of 40 mg, starting 7 
days before TNF

Clinical outcome

Lymphocyte mean number observed at the 
end of TNF infusion was significantly higher in 
patients treated with TNF plus melatonin than 
in those receiving TNF alone. Asthenia and 
hypotension were significantly less frequent 
in patients treated with TNF plus melatonin, 
whereas no difference occurred in the frequency 
of fever and chills

[244]
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Subjects Design Study´s 
duration Treatment Measured Results Ref.

60 patients with 
locally advanced 
or metastatic 
non-small cell 
lung cancer who 
were randomized 
to receive 
immune-therapy 
or chemo-therapy

Randomized 
open trial 6 months

Immunotherapy consisted of IL-2 (3 
million IU/day s.c. for 6 days/week for 
4 weeks) and melatonin (40 mg/day 
orally every day, starting 7 days before 
IL-2); in nonprogressing patients, a 
second cycle was repeated after a 21-
day rest period, then they underwent 
a maintenance period consisting of 
one week of therapy every month until 
progression. Chemotherapy consisted 
of cisplatin and etoposide; cycles of 
chemotherapy were repeated every 21 
days until progression

Clinical outcome

No complete response was obtained. Mean 
progression-free period and the percentage 
survival at 1 year were significantly higher 
in patients treated with immunotherapy 
than in those treated with chemotherapy. 
Toxicity was substantially lower in patients 
receiving immunotherapy than in those given 
chemotherapy

[245]

30 patients with 
gastro-intestinal 
tract tumors 

Randomized 
open trial 1 week

A high-dose IL-2 (18 million IU/day s.c. 
for 3 days) or low-dose IL-2 (6 million 
IU/day s.c. for 5 days) plus melatonin 
(40 mg/day orally). Patients underwent 
surgery within 36 hours from IL-2 
interruption

Clinical 
outcomeImmune 
parameters

IL-2 plus melatonin were able to prevent 
surgery-induced lymphocytopenia but rather 
an increased mean number of lymphocytes, T 
lymphocytes and T helper lymphocytes were 
found. Toxicity was less in patients treated with 
IL-2 plus melatonin

[246]

14 patients with 
untreatable 
endocrine tumors 
(mostly thyroid 
cancer, carcinoid 
and endocrine 
pancreatic 
tumors)

Phase II pilot 
study 2 months

Melatonin was given p.o. at a daily 
dose of 50 mg at 2000 h 
starting 7 days before the onset of IL-2 
administration. IL-2 was given s.c. at 
a dose of 3 x 106 IU/m2 every 12 h for 
6 days/week for 4 weeks). In patients 
in whom the disease did not progress, 
a second cycle was given after a rest 
period of 21 days

Clinical outcome

A partial response was achieved in 3/12 (25%) 
patients (carcinoid tumor: 1; neuroendocrine 
lung tumor: 1; pancreatic islet cell tumor: 1). 
Another patient with gastrinoma had a more 
than 50% reduction of tumor markers. Toxicity 
was low in all patients

[247]

14 advanced 
solid tumor 
patients, affected 
by thrombo-
cytopenia

Open trial

Melatonin was given p.o. at a daily 
dose of 40 mg at 2000 h starting 
7 days before the onset of IL-2 
administration. IL-2 was given s.c. at a 
dose of 3 x 106 IU.m2 every 12 h for 6 
days/week for 4 weeks)

Clinical outcome. 
Platelet number

A normalization of platelet number occurred 
in 10/14 (71%) patients, and platelet mean 
number significantly increased on treatment. No 
important therapy-related toxicity was observed

[248]

40 patients 
with estrogen 
receptor-negative 
post-menopausal 
metastatic breast 
cancer patients

Randomized 
open trial 1 year

Patients were randomized to receive 
tamoxifen alone (20 mg/day orally) or 
tamoxifen plus melatonin (20 mg/day 
p.o. in the evening)

Clinical outcome

No complete response was seen. Partial 
response rate was significantly higher in patients 
treated with tamoxifen and melatonin than in 
those receiving tamoxifen alone (7/19 vs 2/21). 
Percent of survival at 1 year was significantly 
higher in patients treated with tamoxifen plus 
melatonin than in those treated with tamoxifen 
alone (12/19 vs 5/21)

[249]

50 patients 
with metastatic 
colorectal cancer 

Randomized 
open trial 1 year

Patients were randomized to receive 
supportive care alone or s.c IL-2 (3 
million IU/day for 6 days/week for 4 
weeks) plus melatonin (40 mg/day 
orally) 

Clinical outcome

No spontaneous tumor regression occurred 
in patients receiving supportive care alone. A 
partial response was achieved in 3/25 patients 
treated with immunotherapy. Percent survival at 
1 year was significantly higher in patients treated 
with immunotherapy than in those treated with 
supportive care alone (9/25 vs. 3/25)

[250]

30 patients with 
glio-blastoma

Randomized 
open trial 1 year

Patients were randomized to receive 
radiotherapy alone or radiotherapy 
plus melatonin (20 mg/daily orally) until 
disease progression

Clinical outcome

Both the survival curve and the percent of 
survival at 1 year were significantly higher 
in patients treated with radiotherapy plus 
melatonin than in those receiving radiotherapy 
alone (6/14 vs. 1/16). Radiotherapy or steroid 
therapy-related toxicities were lower in patients 
concomitantly treated with melatonin

[251]

116 patients with 
advanced solid 
tumors

Randomized 
open trial 1-5 weeks

Patients treated with IL-2 (3 x 106 IU/ 
day s.c. every day, 6 days/week for 
4 weeks) or with TNF (0.75 mg/day 
i.v. for 5 days) were randomized to 
receive or not a concomitant melatonin 
administration (40 mg/day orally in 
the evening, starting 7 days prior to 
cytokine injection)

Clinical outcome

The occurrence of hypotension was significantly 
less frequent in patients concomitantly treated 
by melatonin than in those who received the 
cytokine alone, during either IL-2: or TNF 
immunotherapy

[252]
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Subjects Design Study´s 
duration Treatment Measured Results Ref.

100 untreatable 
metastatic solid 
tumor patients

Randomized 
open trial Variable

Patients were randomized to receive 
supportive care alone or supportive 
care plus melatonin (20 mg/daily p.o. in 
the evening) until disease progression

Clinical outcome. TNF 
levels

There were 86 evaluable patients, the other 14 
patients having died from rapid progression of 
disease. The per cent of weight loss greater 
than 10% was significantly higher in patients 
treated by supportive care alone than in those 
concomitantly treated by melatonin, with no 
difference in food intake. Mean serum levels 
of TNF significantly decreased in patients 
concomitantly treated with melatonin

[253]

25 metastatic 
solid tumor 
patients other 
than breast 
cancer and 
prostate cancer 

Phase II pilot 
study Variable

Tamoxifen (20 mg/day) and melatonin 
(20 mg/day) were given p.o. until 
disease progression

Clinical outcome

Three patients had a partial response (12%, one 
cervix carcinoma; one melanoma; one unknown 
primary tumor). A stable disease was achieved 
in 13 other patients, whereas the remaining 
9 patients progressed. Performance status 
improved in 9/25 patients and a survival longer 
than 1 year was observed in 7/25 patients

[254]

30 node-relapsed 
melanoma 
patients

Randomized 
open trial 31 months

Patients were randomized to receive 
no treatment or melatonin (20 mg/
daily p.o. in the evening) until disease 
progression

The percent of disease-free survival was 
significantly higher in melatonin-treated 
individuals than in controls. No melatonin-
related toxicity was observed

[255]

14 metastatic 
prostate 
cancer patients 
refractory to a 
previous therapy 
with LHRH 
analogue 

Open trial 1-2 years

The LHRH analogue triptorelin was 
injected i.m. at 3.75 mg every 28 days. 
Melatonin was given p.o at 20 mg/
day in the evening every day until 
progression, starting 7 days prior to 
triptorelin

Clinical outcome. Serum 
levels of PSA, prolactin 
and IGF-1

A survival longer than 1 year was achieved in 
9/14 (64%) patients. PSA mean concentrations 
significantly decreased on therapy of triptorelin 
plus melatonin. In addition, a normalization of 
platelet number was obtained in 3/5 patients 
with persistent thrombocytopenia prior to study

[256]

70 advanced 
non-small cell 
lung cancer 
patients

Randomized 
open trial 1 year

Chemotherapy alone with cisplatin 
(20 mg/m2/day i.v. for 3 days) and 
etoposide (100 mg/m2/day i.v. for 3 
days) (Cycles were repeated at 21-
day intervals) or chemotherapy plus 
melatonin (20 mg/day orally in the 
evening)

Clinical outcome

A complete response was achieved in 1/34 
patients concomitantly treated with melatonin 
and in none of the patients receiving 
chemotherapy alone. Partial response 
occurred in 10/34 and in 6/36 patients treated 
with or without melatonin, respectively. The 
percent of 1-year survival was significantly 
higher in patients treated with melatonin plus 
chemotherapy than in those who received 
chemotherapy alone (15/34 vs. 7/36). 
Chemotherapy was well tolerated in patients 
receiving melatonin, and the frequency of 
myelosuppression, neuropathy, and cachexia 
was significantly lower in the melatonin group

[257]

80 patients with 
metastatic solid 
tumors who were 
in poor clinical 
condition (lung 
cancer: 35; 
breast cancer: 
31; gastro-
intestinal tract 
tumors: 14)

Randomized 
open trial Variable

Lung cancer patients were treated 
with cisplatin and etoposide, breast 
cancer patients with mitoxantrone, and 
gastrointestinal tract tumor patients 
with 5-FU plus folates. Patients were 
randomized to receive chemotherapy 
alone or chemotherapy plus melatonin 
(20 mg/day p.o. in the evening)

Clinical outcome

Thrombocytopenia was significantly less 
frequent in patients concomitantly treated with 
melatonin. Malaise, asthenia, stomatitis and 
neuropathy were less frequent in the melatonin 
group

[258]

31 patients with 
advanced solid 
tumors 

3 months Melatonin (10 mg/day p.o. in the 
evening)

Clinical outcome. Serum 
levels of TNF-α, IL-1, IL-
2, IL-6 and IFN-γ

After 3 months of therapy,19 patients (61%) 
showed disease progression. The other 
12 (39%) achieved disease stabilization. A 
significant decrease of IL-6 circulating levels 
was found

[259]

50 patients 
suffering from 
lung cancer, 
gastro-intestinal 
tract tumors, 
breast cancer 
or brain glio-
blastoma

Melatonin alone (20 mg/day orally in 
the dark period) or melatonin plus aloe 
vera tincture (1 ml twice/day)

Clinical outcome

A partial response was achieved in 2/24 patients 
treated with melatonin plus aloe and in none of 
the patients treated with melatonin alone. Stable 
disease was achieved in 12/24 and in 7/26 
patients treated with melatonin plus aloevera 
or melatonin alone, respectively. The percent 
1-year survival was significantly higher in 
patients treated with melatonin plus aloe vera

[260]
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Subjects Design Study´s 
duration Treatment Measured Results Ref.

20 previously 
untreated 
patients with 
inoperable lung 
cancer

Double blind 
placebo 
controlled 
study

2 months

2 cycles of carboplatin on day 1 and 
etoposide on days 1-3 every 4 weeks. 
Melatonin 40 mg or placebo (double-
blind) was given orally in the evening 
for 21 consecutive days, starting 2 
days before chemotherapy. Patients 
were randomized to receive melatonin 
either with the first or the second cycle

Hematologic 
parameters

The hematologic parameters--depth and 
duration of toxicity for hemoglobin, platelets 
and neutrophils were not significantly different 
between cycles with/without melatonin

[261]

14 metastatic 
breast cancer 
women

Open trial Variable

Epirubicin. at weekly intervals. 
Melatonin was given orally at 20 mg/
day in the evening every day, starting 
7 days prior to chemotherapy

Clinical outcome. 
Hematologicparameters

Evaluable patients were 12/14. The induction 
phase with melatonin induced a normalization 
of platelet number in 9/12 evaluable patients, 
and no further platelet decline occurred in 
chemotherapy. Objective tumor regression was 
achieved in 5/12 (41%) patients

[262]

250 metastatic 
solid tumor 
patients (lung 
cancer, 104; 
breast cancer, 
77; gastro-
intestinal tract 
neoplasms, 42; 
head and neck 
cancers, 27)

Randomized 
open trial 1 year

Chemotherapy consisted of cisplatin 
plus etoposide or gemcitabine alone 
for lung cancer, doxorubicin alone, 
mitoxantrone alone or paclitaxel alone 
for breast cancer, 5-FU plus folinic 
acid for gastro-intestinal tumors and 
5-FU plus cisplatin for head and neck 
cancers. Patients were randomized 
to receive melatonin (20 mg/day p.o. 
every day) plus chemotherapy, or 
chemotherapy alone

Clinical outcome

The 1-year survival rate and the objective tumor 
regression rate were significantly higher in 
patients concomitantly treated with melatonin 
than in those who received chemotherapy alone 
(tumor response rate: 42/124 chemotherapy 
+ melatonin versus 19/126 chemotherapy 
only; 1-year survival: 63/124 chemotherapy + 
melatonin versus 29/126 chemotherapy only). 
Melatonin significantly reduced the frequency of 
thrombocytopenia, neurotoxicity, cardiotoxicity, 
stomatitis and asthenia

[263]

30 metastatic 
renal cell cancer 
patients under 
chronic therapy 
with morphine 

Randomized 
open trial 3 years

Oral doses of morphine ranged from 
60 to 120 mg/day. Patients were 
randomized to receive morphine alone 
or morphine plus melatonin (20 mg/
day p.o. in the evening). IL-2 was s.c. 
administered at a dose of 6 million IU/
day for 6 days/week for 4 consecutive 
weeks. In non progressing patients, a 
second cycle was planned after a 21-
day rest period

Clinical outcome

 The percent of partial responses achieved 
in patients treated with morphine alone was 
significantly lower than that observed in patients 
concomitantly treated with melatonin (1/16 
vs. 4/14). The 3-year percent of survival was 
significantly higher in patients concomitantly 
treated with melatonin

[264]

12 advanced 
hematologic 
malignancies 
which did not 
respond to 
previous standard 
therapies 
(non-Hodgkin's 
lymphoma 
6; Hodgkin's 
disease, 
2; multiple 
myeloma, 2; 
acute myelo-
genous leukemia, 
1 and chronic 
myelo-monocytic 
leukemia, 1)

Open trial 30 months

IL-2 was s.c. administered at a dose 
of 3 million IU/day for 6 days/week 
for 4 consecutive weeks. Melatonin 
was given orally at 20 mg/day in the 
evening, without interruption. In non-
progressing patients, a second IL-2 
cycle was planned after a 3 week-rest 
period

Clinical outcome

A partial response was achieved in one 
patient with multiple myeloma. Stable disease 
occurred in 7 other patients, whereas the other 
4 patients progressed. The lack of progression 
was obtained in 8 out of 12 (67%) patients, 
with a median duration of 21+ months (14-30+ 
months). The treatment was well tolerated in all 
patients

[9]

30 patients with 
cancer-related 
thrombo-
cytopenia who 
did not respond 
to melatonin 
alone

Randomized 
open trial Variable

Patients were randomized to receive 
melatonin alone (20 mg/day orally 
in the evening) or melatonin plus 
5-methoxytryptamine (1 mg/day orally 
in the early afternoon)

Hematologicparameters

A normalization of platelet count was achieved 
in 5/14 (36%) patients treated with melatonin 
plus 5-methoxytryptamine and in none of the 
patients treated with melatonin alone. Mean 
platelet number significantly increased only 
in the patients treated with melatonin plus 
5-methoxytryptamine

[265]

20 metastatic 
patients, who 
progressed 
on previous 
antitumor 
therapies

Open trial 2 months Melatonin was given orally at 20 mg/
day in the evening 

Clinical outcome. VEGF 
levels in plasma

The clinical response consisted of minor 
response in 2, stable disease in 6 and 
progressive disease in the remaining 
12 patients. Non-progressing patients 
showed a significant decline in VEGF mean 
concentrations, whereas no effect was achieved 
in progressing patients

[266]
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duration Treatment Measured Results Ref.

100 patients 
with inoperable 
advanced primary 
hepato-cellular 
carcinoma

Open trial 2 years

Patients were treated separately 
by transcatheter arterial 
chemoembolization (n=50) 
and by transcatheter arterial 
chemoembolization + melatonin (20 
mg/day at 2000 h orally, starting 7 
days before (n=50)

Clinical outcome. IL-2 
and sIL-2R levels.

The effectivity rates of transcatheter arterial 
chemoembolization were significantly lower than 
that of transcatheter arterial chemoembolization 
+ melatonin . Melatonin protected liver function 
from the damage caused by transcatheter 
arterial chemoembolization. IL-2 levels of all 
patients significantly increased, whereas sIL-2R 
expressions decreased in the melatonin group

[267]

13 patients 
with metastatic 
melanoma 
patients 
progressing on 
dacarbazine plus 
IFN-α.

Open trial 1 year

Cisplatin was injected i.v. for 3 days 
every 21 days. IL-2 was administered 
s.c. at 3 million IU/day from days 4 to 
9 and from days 11 to 16 of the cycle. 
Melatonin was given orally at 20 mg/
day in the evening, every day without 
interruption

Clinical outcome

One patient obtained a complete response, 
while a partial response was achieved in 3 
other patients. A stable disease occurred in 5 
patients, whereas the remaining 4 patients had 
a progressive disease. The treatment was well-
tolerated and no cisplatin -related neurotoxicity 
was observed

[268]

14 consecutive 
untreatable 
metastatic solid 
tumor patients

Cross-over 
randomized 
study

Variable

Two consecutive immunotherapeutic 
cycles at 21-day intervals with IL-2 
plus melatonin alone or with IL-2 plus 
melatonin (20 mg /day) and naltrexone 
(100 mg in the morning every next day) 

Hematologic 
parameters

The association of naltrexone further amplifies 
the lymphocytosis obtained after IL-2 plus 
melatonin

[269]

30 patients 
with metastatic 
colorectal cancer

Randomized 
open trial 1 year

Patients were randomized to be 
treated with irinotecan alone for 9 
consecutive weeks or irinotecan plus 
melatonin (20 mg/day)

Clinical outcome

No complete response was observed. A partial 
response (was achieved in 2 out of 16 patients 
treated with irinotecan alone and in 5 out of 14 
patients concomitantly treated with melatonin. 
Percent of disease-control achieved in patients 
concomitantly treated with melatonin was 
significantly higher than that observed in those 
treated with chemotherapy alone
 

[270]

100 consecutive 
metastatic non-
small cell lung 
cancer patients 

Randomized 
open trial 5 years

Patients were randomized to 
receive chemotherapy (cisplatin and 
etoposide) alone or chemotherapy and 
melatonin (20 mg/day).

Clinical outcome

Both the overall tumor regression rate and 
the 5-year survival results were significantly 
higher in patients concomitantly treated with 
melatonin. In particular, no patient treated with 
chemotherapy alone was alive after 2 years, 
whereas a 5-year survival was achieved in three 
of 49 (6%) patients treated with chemotherapy 
and melatonin. Chemotherapy was better 
tolerated in patients treated with melatonin

[271]

24 patients 
not amenable 
to standard 
anticancer 
treatment and 
with weight loss 
and/or decreased 
serum albumin 

Open trial 8 weeks
4.9 g of eicosapentaenoic acid and 3.2 
g of docosahexanoic acid, or 18 mg/
day of melatonin for 4 weeks

Serum or plasma 
TNF-α, IL1β, sIL2R. IL-
6, IL-8 and specific fatty 
acid levels

Serum levels of fatty acids increased with 
fish oil. No major changes in biochemical 
variables and cytokines were observed with 
any intervention. In the fish oil group, 5 of 13 
patients (38%) showed weight stabilization or 
gain compared with 3 of 11 patients (27%) in the 
melatonin group. After combining interventions, 
approximately 63% of patients showed such 
responses

[272]

370 metastatic 
solid tumor 
patients, suffering 
from non-small 
cell lung cancer 
or gastro-
intestinal tumors

Randomized 
open trial 2 years

Patients were randomized to receive 
chemotherapy alone or chemotherapy 
plus melatonin (20 mg/day orally in the 
evening every day)

Clinical outcome

The overall tumor regression rate achieved in 
patients concomitantly treated with melatonin 
was significantly higher than that found in those 
treated with chemotherapy alone. The 2-year 
survival rate was significantly higher in patients 
concomitantly treated with melatonin

[273]

126 Radiation 
Therapy 
Oncology 
Group recursive 
partitioning 
analysis Class 
2 patients with 
brain metastases

Phase II 
randomized 
trial

Variable

Class 2 patients with brain metastases 
were randomized to 20 mg of 
melatonin, given either in the morning 
or in the evening. All patients received 
radiation therapy in the afternoon. 
Melatonin was continued until 
neurologic deterioration or death

Clinical outcome

Neither of the randomized groups had survival 
distributions that differed significantly from the 
historic controls of patients treated with whole-
brain radiotherapy

[206]

846 patients 
with metastatic 
solid tumor (non-
small cell lung 
cancer or gastro-
intestinal tract 
tumors)

Randomized 
open trial 3 years

Patients were randomized to receive 
the best supportive care only, 
supportive care plus melatonin (20 
mg/day, orally in the evening), or 
melatonin plus supportive care plus a 
low-dose pf IL-2 for 5 days/week, for 4 
consecutive weeks

Clinical outcome

Melatonin alone was able to induce a significant 
increase of disease stabilization and survival 
time with respect to supportive care alone. The 
association of lL-2 with melatonin provided a 
further improvement in the percentage of tumor 
regressions and of 3-year survival with respect 
to melatonin alone

[274]
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20 consecutive 
patients, who 
underwent pelvic 
irradiation

Randomized 
open trial

The patients were randomized 
to be concomitantly treated with 
melatonin alone, with melatonin plus 
5-mthoxytryptamine or with s.c. low-
dose IL-2 

Hematologicparameters

Radiotherapy induced a significant decline 
in the mean number of lymphocytes while 
neither melatonin alone, nor melatonin plus 
5-methoxytryptamine were able to significantly 
reduce this decline.

[275]

14 untreatable 
metastatic cancer 
patients showing 
alterations of 
cortisol rhythm

Open trial 3 months Melatonin at 20 mg/day orally in the 
evening

Clinical outcome. 
Plasma cortisol rhythm.

Normalization of cortisol rhythm was achieved in 
4/14 (29%) patients. Moreover, stable disease 
was obtained in 6/14 (43%) patients under 
melatonin therapy, whereas the other 8 patients 
had progressive disease. The percentage 
of cortisol rhythm normalization achieved in 
patients with stable disease was significantly 
higher than that observed in patients with 
progressive disease

[276]

20 patients with 
untreatable 
metastatic solid 
tumor

Open trial 1 year Melatonin at 20 mg/day orally in the 
evening Immune paramters

Melatonin induced a statistically significant 
decline in mean T-reg cell numbers in patients 
who achieved disease control, whereas no 
effect was seen in those who had progressed. 
No in vitro effect of melatonin incubation was 
apparent

[277]

95 post-
menopausal 
women with 
a prior history 
of stages 0-III 
breast cancer 
who had 
completed active 
cancer treatment

Double-blind, 
placebo-
controlled 
study

4 months
Patients were randomly assigned to 
either 3 mg oral melatonin (n = 48) or 
placebo daily for 4 months 

Compliance and 
change in breast cancer 
biomarkers (estradiol, 
IGF-1, IGF-binding 
protein 3 and the IGF-1/
IGFBP-3 ratio

Short-term melatonin treatment did not influence 
the estradiol and IGF-1/IGBBP-3 levels [207]

Patients with 
advanced lung or 
gastro-intestinal 
cancer and 
cachexia

Double-blind, 
placebo-
controlled 
study

28 days Melatonin 20 mg p.o. versus placebo Clinical outcome

After interim analysis of 48 patients, the study 
was closed for futility. There were no significant 
differences between groups for appetite or other 
symptoms, weight, toxicity, or survival from 
baseline to day 28

[208]

Advanced, non-
small cell lung 
cancer

Double-blind, 
placebo-
controlled 
study

7 months
Patients were randomized to receive 
10 mg or 20 mg of melatonin p.o. or 
placebo.

Assessment of 
health-related quality 
of life (HRQoL) was 
completed at baseline, 
and at 2, 3 and 7 
months. DNA damage 
was measured during 
the first three months of 
chemo-therapy

Patients in the melatonin-treated group had 
significantly better HRQoL scores, particularly 
in social well-being. Median survival was 7.3 
months in the two groups. A greater amount 
of DNA damage marker was observed in the 
placebo-treated group, and this was associated 
with lower survival.

[196]

54 women 
undergoing 
surgery for breast 
cancer and 
without signs of 
depression on 
Major Depression 
Inventory (MDI) 

Double-blind, 
placebo-
controlled 
study

3 months 6 mg of melatonin p.o. or placebo

The primary outcome 
was the incidence of 
depressive symptoms 
measured by MDI. 

The risk of developing depressive symptoms 
was significantly lower with melatonin than with 
placebo

[195]

95 post-
menopausal 
women with a 
prior history of 
stage 0-III breast 
cancer

Placebo 
controlled 
study

4 months 3 mg of melatonin or placebo

Pittsburgh Sleep 
Quality Index (PSQI). 
Depression and hot 
flash assessment.

Compared to subjects on placebo, subjects 
randomized to melatonin experienced 
significantly greater improvements in subjective 
sleep quality as measured by the PSQI, 
including domains on sleep quality, daytime 
dysfunction and total score. There were 
no significant differences in measures of 
depression or hot flashes

[171]

5-FU: 5-fluorouracil; i.m. intramuscularly; IFN: interferon; IGF: insulin-like growth factor; IL: Interleukin; NK : natural killer; p.o. per os; PSA: prostatic specific antigen; s.c.: 
subcutaneous; sIL-2R: soluble IL-2 receptor; TNF : tumor necrosis factor; VEGF: Vascular endothelial growth factor.

Table 2: Effect of Melatonin in Cancer Patients.

controlled study in patients with advanced lung or gastro-intestinal 
cancer and cachexia, melatonin (20 mg/day) was ineffective to modify 
appetite, weight, toxicity, or survival from baseline to day 28 [208]. 

Conclusion
Melatonin can provide an innovative adjuvant strategy in cancer by 

combining their effects on the circadian rhythm with their oncostatic 

of the randomized groups had survival distributions that differed 
significantly from the historic controls of patients treated with whole-
brain radiotherapy [206]. In 95 post-menopausal women with a prior 
history of stages 0-III breast cancer who had completed active cancer 
treatment, a double-blind, placebo-controlled study with either 3 mg 
oral melatonin or placebo daily for 4 months, melatonin treatment did 
not affect breast cancer biomarkers [207]. In a double-blind, placebo-
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and cytoprotective properties. As discussed in the present review article 
melatonin is effective in suppressing neoplastic growth in a variety of 
tumors. The mechanisms involved include antiproliferative effects via 
modulation of cell cycle, ability to induce apoptosis in cancer cells, 
anti-angiogenic and antimetastatic effects, anti-estrogenic activity, 
the capacity to decrease telomerase activity, immune modulation, 
and direct and indirect antioxidant effects. Besides these oncostatic 
properties, melatonin deserves to be considered in the treatment of 
cancer for two other reasons. First, because its hypnotic-chronobiotic 
properties, melatonin use that can allow the clinician to effectively 
address sleep disturbances, a major co-morbidity in cancer. Indeed 
as with many other diseases, evidence supports the hypothesis that 
metabolic rhythms attenuation and / or disruption contribute to 
the etiology of cancer. Second, because melatonin’s anxiolytic and 
antidepressant effects, it has a possible application in two other major 
co-morbidities seen in cancer patients, i.e. depression and anxiety. 

An important remaining question to be considered is the 
melatonin dose employed. From the basis aspects of melatonin activity 
discussed in previous sections of this article, it emerges the necessity to 
employ melatonin doses in the 100 – 500 mg/day range to produce full 
expression of cytoprotection in experimental cancer models. Indeed, 
melatonin has a high safety profile, it is usually remarkably well tolerated 
and, in some studies, it has been administered to patients at very large 
doses. Escalating doses of melatonin up to 100 mg were devoid of 
undesirable activity in humans [209,210]. Melatonin (300 mg/day for 
up to 3 years) decreased oxidative stress in patients with amyotrophic 
lateral sclerosis [211] with very few undesirable side effects. In children 
with muscular dystrophy, 70 mg/day of melatonin reduced cytokines 
and lipid peroxidation [212]. Doses of 80 mg melatonin hourly for 4 
h were given to healthy men with no undesirable effects other than 
drowsiness [213]. In healthy women given 300 mg melatonin/day for 
4 months there were no side effects [214]. In a randomized controlled 
double-blind clinical trial on 50 patients referred for liver surgery a 
single preoperative enteral dose of 50 mg/kg melatonin was safe and 
well tolerated [215]. This underlines the urgent need for large clinical 
trials in the field of melatonin and cancer [216,217].
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