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Introduction
Oxidative stress is caused by an imbalance between the production 

of Reactive Oxygen Species (ROS) and a biological system’s abilities 
to detoxify and prevent the resulting damage. It can result from the 
overexpression of pro-oxidant species in cells, and/or the reduction of 
their antioxidant capacities.

Free radicals may possess advantageous biological effects, such 
as the formation of the second messenger cGMP by stimulating the 
activation of guanylate cyclase under the influence of the superoxide 
anion [1], the increased production of interleukin-2 (IL-2) by T cells 
when they are activated by the superoxide anion [2] or the activation of 
the transcription nuclear factor κB (NF-κB) by hydrogen peroxide [3].

Meanwhile, most of their effects are deleterious for nucleic acids, 
lipids and proteins [4] and oxidative stress is thought to be involved in 
the development of numerous diseases like cancer [5], Parkinson’s or 
Alzheimer’s disease [6] or myocardial infarction [7]. With regards to 
dermatology, the role of ROS is more and more highlighted in various 
diseases such as melanoma [8], acne [9,10] or vitiligo [11].

The ROS production may be increased under pathological 
conditions such as inflammation or cancer, but also under the 
influence of external factors, especially UV-radiation [12]. Skin, 
because of its direct interface with the environment, is the major source 
of UV-induced ROS for the body. Owing not only to environmental 
UV-exposure but also to the pro-oxidant state generated during 
melanogenesis, melanocytes are both ‘instigators and victims of 
oxidative stress [8].

Influence of the Melanogenesis on the Redox Status of 
Melanocytes

Melanocytes are dendritic cells located at the epidermis-dermis 
junction. They contain melanosomes, which feature membrane-
bound cytoplasmic organelles. Melanocytes synthesize melanin in 
the melanosome before passing the melanosomes to the surrounding 
keratinocytes, giving the skin its color. 

Melanogenesis is a complex process where the rate-limiting 
enzyme tyrosinase is synthesizing melanin by utilizing L-tyrosine, 
dihydroxyphenylalanine (L-DOPA) and 5,6-dihydroxyindole as 
substrates. First, L-tyrosine is hydroxylated to form L-DOPA, which 
is further oxidized to L-DOPAquinone which will then be further 
processed into eumelanin (black or brown pigment) and phaeomelanin 
(yellow or red pigment) [13]. DOPAquinone, once produced, generally 
forms eumelanin through spontaneous reactions involving cyclization, 
decarboxylation, oxidation, and polymerization. However, TRP-2 
can generate 5,6-dihydroxyindole-2-carboxylic acid (DHICA) from 
DOPAchrome and TRP-1 will catalyze the oxidation of DHICA to 

indole-5,6-quinone carboxylic acid [14]. In the absence of thiols, 
DOPAquinone is immediately converted to DOPAchrome and leads 
to eumelanin production. When glutathione (GSH) and cysteine are 
present, they can react with DOPAquinone intermediates to divert 
melanin pigment synthesis from eumelanin to phaeomelanin [15]. 

Immediate response of the melanocytes to UVA results in tanning, 
which is due to a combination of photo-oxidation of melanin, 
augmented dendricity and induction of melanin transfer from the 
melanocytes to the keratinocytes [16]. The delayed pigmentation, 
induced by both UVA and UVB, comprises of a proliferation of 
melanocytes, increased transfer of melanosomes to the keratinocytes 
and augmented melanin synthesis.

As it can be observed, melanogenesis consists of a sequence of 
oxidation reactions. It results in a continuous generation of ROS all 
along the process of melanogenesis: H2O2 during its early stages [17] 
but also during the redox cycling from indoles to quinones [18], 
hydroxyl radicals and superoxide anion due to the catalytic activity of 
tyrosinase [19]. In addition, oxidative intermediates including reactive 
quinones, which are cytotoxic to proteins and DNA in the cells, are 
generated during melanogenesis [15]. 

There are conflicting reports about the role of melanin and 
melanin intermediates as pro-oxidants or antioxidants. While melanin 
can exhibit a photoprotective effect, it’s pro-oxidant and antioxidant 
activity appears to depend on the redox state of the melanocytes [20], 
on the relative eumelanin/phaeomelanin contents, the levels of melanin 
intermediates [21], and the composition and concentration of reactive 
metal ions in the melanosome microenvironment [22]. Generation of 
H2O2 in response to UV correlates inversely with melanin content of the 
skin, suggesting an antioxidant property of the latter [23] while cultures 
of human melanocytes with high melanin content were reported to 
be more vulnerable to UVA- induced oxidative DNA damage than 
melanocytes with lower melanin content [24]. Still in cultured human 
melanocytes, UVA- stimulation appears to increase DNA damage 
most likely through phaeomelanin and/or melanin intermediates [25].

Abstract
Melanocytes are the site of melanogenesis, a chemical reaction leading to the production of melanin. By its 
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oxidative stress, can lead to either hypopigmentation, or hyperpigmentation or even a carcinogenic process. Phototypes 
present different susceptibilities to each of these diseases, originally caused by a prooxidant/antioxidant imbalance.

In any case, administration of antioxidants appears to be helpful in their treatment.

Jo
ur

na
l of Pigmentary Disorders

World Health Academy

ISSN: 2376-0427

Journal of Pigmentary Disorders 



Volume 1 • Issue 4 • 1000127Pigmentary Disorders
ISSN: JPD,JPD, hybrid open access journal

Citation: Diehl C (2014) Melanocytes and Oxidative Stress. Pigmentary Disorders 1:127. doi:10.4172/JPD.1000127

Page 2 of 5

Role of Oxidative Stress in Various Pigmentation 
Disorders

With the growing understanding in both skin physiology and 
oxidative stress mechanisms, the role of the latter is better defined in 
the occurrence of more and more pigmentation disorders.

Melasma
Melasma is a common pigmentary disorder whose pathogenesis 

is currently far from being perfectly understood. Unfortunately there 
is a lack of reliable reports about the prevalence of melasma, as most 
studies are conducted in dermatology clinics which may indicate 
some ascertainment bias [39]. A randomized study in a Hispanic 
female population in Texas reported a prevalence of 8,8% [40] while 
in Southwest Asia the prevalence has been reported as high as 40% 
in females and 20% in males [41]. It is important to highlight that 
all phototypes do not have an equal risk of developing melasma: 
a multicenter survey of females from nine countries revealed that 
Fitzpatrick skin phototypes III and IV were more commonly affected 
than lighter ones [42]. Melasma might be caused by the presence of 
more biologically active melanocytes in the affected skin, rather than 
an increase in melanocytes number [39]. While a genetic component 
is probably involved in melasma, sun exposure and hormonal changes/
imbalance are exacerbating factors but not causative ones. As there 
were no studies evaluating the role of oxidative stress in melasma, 
it was recently reported for the first time that the balance between 
oxidants and antioxidants was disrupted and oxidative stress was 
increased in melasma [43]. Prior to this finding, various antioxidants 
had been reported in the past as improving melasma. Topical and oral 
melatonin have been found to improve the redox balance along the 
treatment, and as a consequence, Melasma Area Severity Index (MASI) 
score experienced significant reduction in those patients [44].

An 8-week course of oral procyanidin+vitamins A, C and E was also 
proved to be effective in Filipino women with epidermal melasma [45]. 
Silymarin, a natural polyphenolic flavonoid, used as a cream during 4 
weeks, was shown to give significant improvement in pigmentation and 
lesion size reduction in melasma patients [46]. More commonly used in 
daily practice, vitamin C is also an effective and safe option for treating 
melasma. Ascorbic acid is the most plentiful antioxidant in human 
skin. As it is water soluble, it functions in the aqueous compartment of 
the cell and protects it from oxidative stress by sequentially donating 
electrons to neutralize the free radicals [47]. Ascorbic acid can protect 
against UVA-dependent melanogenesis through the improvement of 
antioxidant defense capacity of melanocytes, and inhibition of NO 
production through down-regulation of eNOS and iNOS mRNA [48]. 
Its clinical efficacy in a 25% cream was assessed in melasma, based on 
the MASI and Mexameter scores [49].

Vitiligo
Vitiligo is an acquired depigmentation disorder featuring 

circumscribed depigmented macules due to the destruction of 
melanocytes from the lesional skin responding to an autoimmune 
mechanism [50]. However, the early death of vitiligo melanocytes was 
shown to be provoked by their increased sensitivity to oxidative stress, 
impacting tyrosinase activity and eumelanin synthesis [51,52]. It was also 
demonstrated that there were very high levels of H2O2 and concomitant 
reduced activity of catalase in the epidermis of patients with vitiligo 
[53], reducing the levels of methionine sulfoxide reductase A and B 
and thioredoxin/thioredoxin reductase which triggers oxidative stress, 

As it was seen, during the process of melanogenesis, oxidative 
insults responsible for melanocyte damage can be caused not only by 
various ROS, namely H2O2, hydroxyl radicals and superoxide anion, 
but also by intermediates in melanin synthesis.

Antioxidant Defense System of Melanocytes
The pool of endogenous antioxidants in the melanocytes comprises 

enzymatic substances such as Superoxide Dismutase (SOD), Catalase 
(CAT), Glutathione Peroxidase (GPx), Glutathione Reductase (GR), 
and Thioredoxin Reductase (TR). Non-enzymatic antioxidants include 
ascorbic acid, Glutathione (GSH) or α-tocopherol [26]. Obviously, 
enzymatic and non-enzymatic antioxidants work together to maintain 
an optimal redox balance in the melanocytes, and prevent oxidative 
damage at this stage. As key players in the homeostasis of epidermal 
cells, in particular melanocytes, paracrine factors are influencing 
the redox status of the latter. Endothelin-1 (ET-1) produced by the 
keratinocytes is a melanogenic factor reducing H2O2 generation in 
melanocytes [27]. ACTH, which is further processed by amidation 
and acetylation to α-MSH, has been identified in both melanocytes 
and keratinocytes [28]. Most of the actions of α-MSH in the skin are 
via the melacortin-1 receptor (MC-1R) expressed on the cell surface 
of melanocytes. α-MSH stimulation increases both levels and activity 
of catalase and reduces UV-induced H2O2 expression [27,29] reducing 
oxidative DNA damage induced by the same [23]. Further, activation of 
MC-1R by α-MSH regulates intracellular redox status by up regulating 
the expression of various antioxidant genes (heme oxygenase-1 [HO-
1], ferritin and peroxiredoxin-1) [23,30], Mitf, and APE-1 [27].

The Redox Status of Melanocytes Depends on the Skin 
Color

Variations of the skin and hair color are genetically determined 
and depend on the relative content of phaeomelanin and eumelanin. 
While eumelanin could be considered as the ‘normal’ end product of 
melanogenesis, some conditions may divert melanin pigment synthesis 
from eumelanin to phaeomelanin. It was discovered in 1995 that 
specific mutations at the (MC-1R) gene were responsible for the switch 
from eumelanin to phaeomelanin: impaired receptor activity produces 
phaeomelanin, whereas high MC-1R activity leads to the production 
of eumelanin [31]. Chemically, this diversion from eumelanin to 
phaeomelanin is explained by the fact that when Glutathione (GSH) 
and its precursor cysteine are present, they react preferably with 
DOPAquinone intermediates and lead to phaeomelanin production 
through cysteinylDOPA. The consequence is that the consumption 
of the two intracellular cell protectors GSH and cysteine lowers the 
cellular defense mechanisms against oxidative stress in the melanocytes 
[32,33]. Although cysteinylDOPA was suggested to have a role in 
scavenging ROS [34], this is only an intermediary in the chemical 
reaction, and phaeomelanin would behave as a unique ‘living’ polymer 
and biocatalyst that may grow by simple exposure to monomer building 
blocks and then trigger autoxidative processes [33]. This increased risk 
of oxidative damage with increased phaeomelanin production could 
potentially put nevus cells, recognized precursors of melanoma, at 
risk of oxidative damage [35,36]. To date, there is no clear view about 
whether eumelanin has a pro-oxidant or antioxidant capacity and this 
issue remains controversial. In contrast, there is growing evidence that 
phaeomelanin is a potent pro-oxidant. In both barn owls and eagles, 
the degree of black and reddish pigmentation, directly correlated 
to eumelanin/phaeomelanin balance, was positively and negatively 
correlated, respectively, with resistance to oxidative stress [37,38].
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leading to melanocyte death [54]. These high levels of H2O2 are also 
logically oxidizing both ACTH and α-MSH. All these consequences of 
high levels of H2O2 can be reversed by treatment with catalase [27]. On 
the other hand, in vitiligo the levels of various enzymatic antioxidants, 
namely catalase, glutathione peroxidase and glutathione reductase were 
also found to be altered, explaining abnormally high levels of H2O2 [55]. 
It was recently suggested that oxidative stress appeared to be the initial 
triggering factor of vitiligo, being further exacerbated by autoimmune 
factors and oxidative stress [56].

Whilst vitiligo is classically reported as affecting 0.5-1% of the 
worldwide population, here too is appearing a disparity between 
phototypes. A Brazilian study [57] conducted in 669 patients with 
vitiligo reports that the most frequent phototype in vitiligo patients was 
phototype III. Although this trial had been conducted in Sao Paulo, 
there was still a risk for some ascertainment bias in the absence of 
demographic data of phototype prevalence in this area. However, an 
Estonian study [58] has some relevancy, as the majority of Estonian 
phototypes are I and II. Among 155 patients with vitiligo the majority 
(65.8%) had phototype III, twice more than patients with phototype II 
(32.9%).

This data strongly suggests that higher phototypes are more likely 
to be affected by vitiligo than lighter ones, which appears to be in 
complete contradiction with the report that UV-stimulated production 
of H2O2 inversely correlates with the melanin content of the skin [23].

Based on the aforementioned evidence, treatment of vitiligo with 
antioxidants makes sense and reported trials sustain the interest of 
using CAT/SOD creams alone [59] or combined with NB-UVB [60]. A 
novel gel formulation containing phenylalanine, Cucumis melo extract 
and N-acetylcysteine was also showing a good efficacy and promising 
results [61]. Oral intake of antioxidants was giving good results in term 
of repigmentation in mice (vitamin A, C, E+selenium+zinc) [62] and 
also in humans (vitamin E) [63].

Melanoma
Melanoma is less common than other skin cancers. Globally its 

incidence tends to increase. Many European countries are showing an 
annual increase in incidence higher than 2% [64], although in some 
regions it tends to reach a plateau [65]. This increase may be at least 
partly attributed to better health education in the population and 
among the practitioners, with more and more popular concern for this 
problem, leading to a better and wider detection.

Sun exposure has long been mentioned as the major risk factor 
for melanoma, but to date it appears to be at least controversial. This 
apparent association between sun exposure and risk of melanoma 
was based on comparative odds between Queensland (Australia) and 
the UK, two countries with quite comparable populations in term of 
genetics and phototypes, exposed to very different sun conditions. In 
that case, the odds ratio was reported as four times higher in the former 
than in the latter [66]. However, a metaanalysis published in 2005 
supported the hypothesis that there was a positive association between 
the risk of melanoma and intermittent sun exposure, and an inverse 
association with high continuous pattern of sun exposure, suggesting 
that the relation with sunshine was not dose-dependent [67]. Obviously 
sunlight is a major promotor of ROS in the skin, both by inducing 
high levels of ROS and impairing the physiological antioxidant 
defense mechanisms. Exposing melanocytes to UV results in a rapid 
generation of H2O2 and corresponding decrease in catalase activity 
[68] and reduced Ho-1 expression [27]. Disregarding the role of UV 
exposure, there is increasing evidence for the responsibility of oxidative 

stress in both initiation and progression of melanoma [8], based on the 
finding that the activating V600EBRAF mutation, commonly expressed 
in nevi and melanoma, and could be induced by oxidative stress [69]. 
Melanoma risk was also found to be increased by MC-1R variant alleles 
[31,70] suggesting that ROS would be a driver of melanomagenesis 
[71]. Higher sensitivity of melanocytes from melanoma lesions to 
oxidizing agents was long demonstrated [71] as well as increased levels 
of markers of oxidative stress such as O2

- [72] or NOS [73].

Based on our phototype, we are not created equal for confronting 
the risk of melanoma. Melanomas are 10-20 times more frequent in 
white, Caucasian people than in non-white people [65]. Persons with 
fair skin, a poor ability to tan and a freckled complexion double their 
risk for melanoma [74]. In those persons with fair skin and red hair, 
specific mutations at the MC1R gene are responsible for the switch 
from eumelanin to phaeomelanin, inducing increased oxidative 
stress and higher risk of melanoma [35,36]. In a similar manner, it 
was demonstrated that recessive yellow mice with loss-of-function 
MC1R were developing more invasive melanoma than their albino 
counterparts [75].

Beneficial effects of antioxidants on individuals with melanoma 
susceptibility and under stress environment against development of 
melanoma seem warranted [14]. N-acetylcysteine (NAC) was found to 
inhibit tumor formation and delay the onset of UV-induced melanoma 
in HGF mice [76] through inhibition of oxidative DNA damage. In 
the same manner, some phytochemicals could be helpful. Gallic acid, 
commonly found in gallnuts, witch hazel, tea leaves or oak bark, was 
capable of exhibiting protective effects on human melanoma cells 
through improvement of their antioxidant defenses [77]. Genistein, 
a soy-isoflavon was also exerting growth inhibitory activities on 
human melanoma cells, mainly due to its antioxidant properties 
[78,79]. Quercetin, a dietary flavonoid, is also exerting anti-melanoma 
activities by inhibiting STAT3 signaling and modulating oxidative 
stress-induced melanogenesis [80,81]. A recent, promising paper was 
describing the melanogenesis alteration effect of Achillea millefolium 
essential oil in melanoma cells via suppression of oxidative stress [82].

Conclusion
As the whole melanogenesis process develops inside the 

melanocytes, they will constantly be exposed to oxidative stress by the 
chemical characteristics of the melanin production, which is a chain 
of oxidizing reaction, and due to the production of intermediary 
oxidative species or end products such as phaeomelanin which possess 
prooxidant properties. While phaeomelanin appears to be clearly 
prooxidant, eumelanin is more likely considered as a scavenger of 
ROS [83], which means that the ratio eumelanin/phaeomelanin will 
be crucial for assessing the prooxidant vs. antioxidant properties 
of melanin. This is probably an explanation for the controversy still 
existing with regards to the exact behavior of melanin on oxidative 
stress.

Along this brief but incomplete review, a prominent role could 
be attributed to oxidative stress in the pathogenesis of various 
dermatological diseases related with melanogenesis, namely melasma, 
vitiligo or melanoma.

However, it can be observed that oxidative stress can lead to either 
hypopigmentation (vitiligo) or hyperpigmentation (melasma) or even 
carcinogenic process following initial hyperpigmentation (melanoma). 

On the other hand, phototype makes us unequal in front of the 
occurrence of vitiligo, melasma or melanoma. This is probably worth 
further investigation.
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Finally, in any case antioxidants will have a place in our 
armamentarium for treating melanogenesis-related disorders.
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