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Infectious diseases remain one of the leading causes of death 
worldwide. According to the latest World Health Organization 
estimates (2008; http://apps.who.int/ghodata/?vid=10012), deaths 
attributable to infectious diseases, including respiratory illnesses, is the 
2nd leading cause of death, responsible for an estimated 12.2M (21.5% 
of a total of 55.9M) deaths annually (Figure 1a), with cardiovascular 
diseases estimated as responsible for 30.5% of total deaths and 
neoplasms responsible for 13.6% of all deaths. The infectious disease 
burden is especially acute in developing countries. While infectious 
disease deaths account for less than 7% of the total in the “developed” 
countries (such as American and European Countries; Figure 1b), it 
is the leading cause of death in less-developed areas (Figure 1c). Since 
infectious diseases afflict all sectors of the population, with many 
infections being particularly serious for neonates and children, whereas 
most cardiovascular diseases and neoplasms afflict the more elderly, the 
cumulative life-adjusted burden of infectious diseases is significantly 
higher, and thus infectious diseases may be argued to be the most 
serious health concern.

Therefore, better understanding of the basic mechanisms of 
pathogenesis, as well as improved and more rapid diagnosis and 
treatment of medically relevant microorganisms is of paramount 
importance. Considerable progress has been made during the past 
century in how a variety of bacteria, fungi and viruses replicate. The 
ways in which host cells and organisms respond to these infectious 
agents has lagged, partially because of the greater complexity of 
eukaryotic organisms as compared to prokaryotic and viral agents. 
This barrier to knowledge advancement has been mitigated, in part, 
by significant recent improvements in analytical instrumentation and 
bioinformatics, combined with more extensive, and complete, genomic 
information about a growing list of organisms of human interest. These 
advances have led to explosive growths in the amount of information 
garnered from genomic, proteomic and functional assays.

For example, knowledge about many eukaryotic organisms’ 
entire gene repertoire has allowed development of micro-array-based 
techniques to study any given organism’s “transcriptome” and how 
that transcriptome is altered after infection by a variety of pathogenic 
microorganisms [1-4]. Transcriptomic profiling has enjoyed explosive 
growth during the past 10 – 15 years. However, less information is 
available about the quantitative and functional status of the host’s effector 
proteins and how these are affected by infection. Recent advances in 
mass spectrometry instrumentation have allowed the application of a 
variety of labeling methodologies to the study of proteomic alterations. 
These include: 2-dimensional difference in gel electrophoresis [5,6], 
isotope-coded affinity tags [7,8], isotope-coded protein labels (ICPL; 
[9]), isobaric tags for relative and absolute quantization [10-12], and 
stable isotope labeling of amino acids in cell culture [13-16], as well 
as  label-free methods [17-21].  Continued application of these types 
of methodologies will certainly expand the datasets of information 
about such changes. However, several daunting aspects of data 
analysis remain with respect to analysis of the huge datasets generated 
[22,23]. In addition, analysis of the quantitative differences often 
provides no clues about functional alterations. Thus, application of 

additional functional screens remains warranted. Examples include 
phosphoproteomics, since differential phosphorylation is one example 
of key post-translational modifications that can greatly impact proteins’ 
functional status. Another recent application that should provide 
additional functional information includes activity-based protein 
profiling to assess the active status of various enzyme classes [24-26].

In summary, the combination of results provided by conducting 
complementary analyses that make use of multiple modalities such as 
those outlined above should provide significant new information about 
mechanisms of pathogenesis induced by various medically relevant 
pathogens, which in turn should aid their diagnosis and treatment. 
However, better integrated tools to analyze the wealth of information, 
and to put that information into more useful clinical application, 
remain future challenges.
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Figure 1: Proportions of deaths World wide by various causes. a. Total Worldwide causes. b. Causes in Americas and Europe. C. Causes in all other 
regions. Data complied from http://apps.who.int/ghodata/?vid=10012. Percent values in each chart are shown only for the top 4 causes.
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