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Cardiovascular disease is the main cause of death globally. Arterial 
stiffening significantly contributes to the progression of cardiovascular 
disease [1-3] including atherosclerosis, coronary heart disease, 
hypertension and stroke. The molecular mechanisms governing 
arterial stiffening and the phenotypic changes in vascular smooth 
muscle cells associated with the stiffening process are critical areas in 
cardiovascular biology, mechanics and pathology. Evidence suggests 
that arterial stiffness can drive aberrant vascular smooth muscle cell 
dedifferentiation, migration, and proliferation within the vessel wall 
[4-9]. Yet, the underlying mechanisms regulating arterial stiffening and 
the molecular changes within vascular smooth muscle cells associated 
with the stiffening process remain unclear.

Vascular smooth muscle cells are highly, but not terminally, 
differentiated cells and constitute a major component of the 
biomechanically active cell layer in the media of arteries. In response 
to vascular injury, vascular smooth muscle cells play a major role in 
neointima formation when they transition from a contractile state to a 
synthetic state in which they exhibit increased migration, proliferation, 
and extracellular matrix protein production (i.e. collagen, fibronectin 
and lysyl oxidase) [8-11]. Vascular smooth muscle cell dedifferentiation, 
migration and proliferation occur during vascular development 
and tissue repair in response to vascular injury. Deregulation of 
vascular smooth muscle cell phenotype can lead to the progression 
of cardiovascular disease. The difference between physiological and 
pathological migration and proliferation has been attributed to a 
failure to cease migration and proliferation once tissue repair has been 
completed. Thus, many research laboratories use primary cell culture 
of vascular smooth muscle cells to study the role of matrix stiffness-
mediated mechanosensing in regulating vascular smooth muscle cell 
behaviours.

To explore how stiffness affects vascular smooth muscle cell 
function, many laboratories have adapted the use of engineered 
extracellular matrix protein-coated polyacrylamide hydrogels of 
biologically relevant stiffness to mimic in vivo patho-physiological 
microenvironments. The main advantages of this compliant/
deformable substrate system are that 1) the polyacrylamide hydrogels 
are biologically inert as adhesive polymer surfaces and only the 
extracellular matrix proteins, such as fibronectin and collagen that are 
covalently bound to their surface, can function as cellular ligands, and 
2) the stiffness can be easily controlled by changing the relative ratio 
of acrylamide to bis-acrylamide to mimic the stiffness levels of most 
biological tissues. This system has been used in many mechanobiology 
studies to investigate the role of extracellular matrix stiffness on vascular 
smooth muscle cell proliferation [4,7,12], migration [13,14], stiffness 
[7,12,15,16], cell-cell adhesion [12], cyclooxygenase-2 regulation [5,17]  
and extracellular matrix production (i.e. collagen, fibronectin, and 
lysyl oxidase) [5,18]. These studies have highlighted the importance of 
extracellular matrix stiffness and biomechanical signals in regulating 
key cellular processes in cell/vascular biology, aging [18] and diseases 
including atherosclerosis [5,19] and fibrosis [20]. Yet, the underlying 
mechanisms regulating vascular stiffening and the molecular changes 
within vascular smooth muscle cells associated with the stiffening 
process remain unclear. Thus, current research themes are to 
identify signalling pathways by which physiological arterial stiffness 

controls vascular smooth muscle cell function and to determine how 
pathological arterial stiffness disrupts that control which contributes 
to the progression of cardiovascular disease. These research findings 
will be significantly relevant for clinical revascularization procedures 
(angioplasty and stenting), where the risk of restenosis attributable to 
neointimal formation may be mitigated by targeting certain mechano 
sensitive proteins to maintain lumen diameter, vessel function, and 
physiological arterial stiffness. Thus, current and future work by 
researchers may lead to new therapies for treating cardiovascular 
disease.
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