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   Anti-Neutrophil Cytoplasmic Antibody (ANCA)-Associated Vasculitis (AAV)
comprises a group of small-vessel vasculitides including Granulomatosis with
Polyangiitis (GPA), Microscopic Polyangiitis (MPA) and Eosinophilic
Granulomatosis With Polyangiitis (EGPA). These syndromes are
characterized by necrotizing inflammation of blood vessels and are commonly
associated with circulating ANCAs directed against Myeloperoxidase (MPO)
or Proteinase 3 (PR3), enzymes present in neutrophil azurophilic granules.
Traditionally, ANCAs have been considered central to the pathogenesis of
AAV, responsible for activating neutrophils and causing vascular injury.
However, emerging evidence suggests that the pathophysiology of vessel
wall necrosis in AAV extends far beyond the direct effects of ANCAs,
involving a complex interplay of immune cells, inflammatory mediators,
genetic susceptibility, complement activation, endothelial dysfunction and
tissue-resident immune mechanisms. Understanding these multifactorial
processes is essential to unravel the full spectrum of vascular injury in AAV
and to develop more targeted therapeutic interventions [1].
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Introduction 

Description
     Although ANCAs play a crucial initiating role, their mere presence does
not fully account for disease severity, organ specificity, or clinical
heterogeneity. Studies have shown that ANCAs can exist in asymptomatic
individuals without active vasculitis, indicating that additional factors are
necessary to precipitate vessel wall injury. Neutrophils, when primed by
inflammatory cytokines such as TNF-α or IL-1β, translocate MPO and PR3
to their cell surface, making them accessible to circulating ANCAs. The
complement system, especially the alternative pathway, has emerged as a
central player in the amplification of vascular damage in AAV. Activation of
this pathway leads to generation of C3a and C5a, potent anaphylatoxins that
promote leukocyte recruitment, vascular permeability and inflammation. C5a,
in particular, acts as a priming agent for neutrophils and augments ANCA-
induced activation. The C5a receptor (C5aR) on neutrophils creates a
positive feedback loop, further fueling the inflammatory cascade. Animal
models of AAV have demonstrated that blockade of C5aR can abrogate
disease features even in the presence of ANCAs, highlighting the importance
of complement-mediated amplification. The therapeutic efficacy of
complement inhibitors, such as avacopan, in clinical trials lends further
credence to this paradigm [2,3].

   Another pivotal mechanism involves endothelial cell dysfunction and injury,
which primes the vascular niche for necrosis. Activated neutrophils adhere to 
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endothelial surfaces through upregulation of adhesion molecules such as
ICAM-1 and VCAM-1. They release reactive oxygen species, elastases and
proteases that compromise endothelial integrity. NETs and degranulation
products also initiate direct cytotoxicity, leading to apoptosis or necrosis of
endothelial cells. The loss of endothelial barrier function allows infiltration of
immune cells into the vessel wall, setting the stage for full-thickness necrotizing
inflammation. Moreover, endothelial injury leads to the exposure of normally
sequestered antigens and Damage-Associated Molecular Patterns (DAMPs),
perpetuating autoimmunity and inflammation. Beyond neutrophils, monocytes
and macrophages play significant roles in orchestrating tissue destruction and
remodeling in AAV. These cells infiltrate perivascular tissues and release
matrix metalloproteinAses (MMPs), cytokines like IL-6 and IL-1β and
procoagulant factors that exacerbate necrosis and thrombosis. They contribute
to the formation of granulomatous inflammation, especially in GPA, where
necrotizing granulomas can be found in the respiratory tract. Macrophages also
produce TNF-α and IL-23, sustaining Th17 cell responses that drive chronic
inflammation. Importantly, tissue-resident macrophages and dendritic cells may
be involved in the early sensing of neutrophil-derived DAMPs, contributing to
the local immune activation independent of systemic ANCA levels [4].

Finally, coagulation pathways and thrombosis are intimately linked to vessel
wall necrosis in AAV. Endothelial injury activates tissue factor and exposes
subendothelial collagen, triggering the coagulation cascade. Neutrophil-derived
products such as NETs serve as a scaffold for thrombus formation.
Concurrently, a reduction in anticoagulant mechanisms, including protein C and
antithrombin, promotes a prothrombotic state. Microvascular thrombosis, in
conjunction with inflammation, leads to ischemic injury and tissue necrosis.
This thromboinflammatory axis is increasingly recognized as a therapeutic
target, with potential roles for anticoagulants and antiplatelet agents in selected
patients [5].

Conclusion
    In summary, the mechanisms underlying vessel wall necrosis in ANCA-
associated vasculitis extend significantly beyond the direct effects of ANCAs.
Neutrophil activation, NET formation, complement amplification, endothelial
injury, monocyte and T-cell-mediated inflammation, genetic susceptibility and
prothrombotic pathways all converge to produce the characteristic
necrotizing vasculitis seen in AAV. Understanding these multifaceted
processes is crucial for developing targeted therapies that go beyond
immunosuppression to modulate specific elements of the disease cascade.
As insights into these mechanisms deepen, they promise to reshape
diagnostic approaches, risk stratification and personalized treatment
strategies for this complex and potentially life-threatening group of diseases.
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