
Volume 4 • Issue 3 • 1000220
J Appl Computat Math
ISSN: 2168-9679 JACM, an open access journal 

Open AccessResearch Article

Ganie et al., J Appl Computat Math 2015, 4:3 
DOI: 10.4172/2168-9679.1000220

Keywords: Sequence space; Non-Archimedean property; Matrix
transformations

Preliminaries, Background and Notation
The theory of matrix transformations is a wide field in summability; 

it deals with the characterizations of classes of matrix mappings 
between sequence spaces by giving necessary and sufficient conditions 
on the entries of the infinite matrices.

The classical summability theory deals with a generalization of 
convergence of sequences and series. One original idea was to assign 
a limit to divergent sequences or series. Toeplitz [1] was the first to 
study summability methods as a class of transformations of complex 
sequences by complex infinite matrices.

Let X, Y be two sequence spaces and let A=(ank) be an infinite  
matrix of real or complex  numbers ank, where  ,  ∈n k N . Then,  the 
matrix A defines the  A  transformation from X into Y , if for every 
sequence ( )      = ∈kx x E X  the sequence Ax={(Ax)n}, the A-transform of 
x exists and is in Y; where ( )  

 =∑ nk kn
k

Ax a X  For simplicity in notation, 
here and in what follows, the summation without limits runs from 0 
to ∞. By :∈A X Y  we mean the characterizations of matrices from X 
to Y i.e., :  →A X Y . A sequence x is said to be A-summable to l if Ax 
converges to l which is called as the A-limit of x [1-5].

For a sequence space X, the matrix domain XA of an infinite matrix 
A is defined as

{ ( ) : ( ) }ω= = = ∈A k kX x x x x

Let F be a non-trivial, non-archimedian field which is complete 
under the metric of valuation. If x=(xk) =(x1, x2 , ... , Xk , ... ),    ∈kX F
is a sequence defined over F , this assumption ensures not only the 
completion of the sequence spaces we consider but also the absolute 
convergence of a series in F implies convergence in F. In what follows

∑ kx  denote 
1

∞

=
∑ k
k

x  and the notion of convergence and boundedness 

will be in k=1 relation to the metric of valuation of the field.

Assume here and after that p=(Pk) is bounded sequence of positive 
reals, so that 0 < Pk ≤ sup Pk=H < ∞ and M=max{1 , H}. We shall assume 
throughout the text that 1 1

1
− −
+ =

k kp q provided Pk>1 for all ∈k N .

The spaces l∞ (p) , c(p) and c0(p) were defined by Maddox [6-10] 
as follows:

( ) ( ){ }, :      :    sup   .∞ = <∞kp
k k

k
l P F x x x

( ) ( ){ },      :    lim 0, .: = − = ∈kp
k kk

c P F x x x l l C

( ) ( ){ }0 ,      :    lim . :  0= →kp
k kk

c P F x x x

( ) ( ){ },      :    lim  : .<  = ∞kp
k kk

P F x x xl

( )
1

     :    (k! 0 as k  ( ) : .χ = → →∞ 
 
 

k
k kx x xF

We denote by ( )χ F  the collect ion of all entire functions 

( ) =∑ k
kf z z x of exponential order 1 and type 0[3,8].

c0 (F), c(f) and l∞ are non-Archimedian Banach spaces with Non-
Archimedian norm, || ||   sup = k

k
x x . If x=(xk) is an element of ( )χ F

then 
1

|| ||   {(k! ,k 1}= ≥k
kx sup x  satisfies the following conditions:

(i) | |   0>x , | | 0=x  if and only if x =(0, 0, ...) where 0 is the zero
element of the field F.

(ii) { }|   | | |  , | y |+ ≤x Y max x .

(iii) ( ) ( ) { }| |  |,  ,  1 , | ||≤ ∈ =tx G t x t F G t max t .

Hence ( )χ F  is a metric space defined over F with a metric
( ) ,    |  |= −d x y x Y .

Main Results
We begin with the following lemma [7] which is essential in the 

text.

Lemma 4.1: Let Tn(x) be a sequence of continuous linear functionals 
defined on a complete linear metric space E over F. Let ( ) | < ∞nlim T x
for each ∈x E . Then there exists a fixed number M and a closed sphere 
⊂S E  sue that ( ) |   <Tn x M  for all x E S and for all n>1.
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Since ( )
1

|| ||      = ∑ k k
p p

kx x  is evidently a non-Archmedian norm in 
the sense that, it satisfies the stronger form of triangular inequality

{ }||   ||  || || , || y ||+ ≤x Y max x . With this as norm as in the Archimedian 

case, we can establish the following theorem.

Theorem 4.2:

 (i) l(p, F) is non-Archimedian Banach space.

(ii) If Pk>1 for all  ∈k N so that 1 1
1

− −
+ =

k kp q  and ∑ kka x  converges for 

every ( ) ,  ,∈x l p F then ∑ kq
ka  is convergent.

Theorem 4.3: 

( ) ( )( ) ,   :   χ∈A l p F F if and only if
1

nk ksup ( !| a | q ) 0 ,→ →∞n

k
n as n                            (1)

where Pk > 1 for all  ∈k N and 1 1
1

− −
+ =

k kp q .

Proof: Sufficiency: Let ( ) ( )   ,  = ∈kx x l p F  and (1) holds so that 

∑ kp
kx converges, converging to L(say). Then by Holders inequality, 

we have

( )

( ) ( )
( )

( )

1 1

1 1

11

1 1

( ! ) !

! !

sup ! ( ! )

sup ! ( ! )

=

≤

≤

≤

∑

∑ ∑

∑

∑

k

k kk k

k kk

n

k

nk

q pq
nk k

q

n
n

n np

npn

k

n n

k

q
nk

q
nk

a x

a x

a

n y n

n n

n n L

n n La

Hence, by using (1) we get 
1

( 0! ) →kq n
nkyn  as n →∞  so that

( ) ( )  χ= ∈ny Y F .

Necessity: We now suppose that ( ) ( )( ), : . χ∈A l p F F If condition 
(1) does not hold, then for some E > 0, there exists subsequences of n, 
such that

( )
1

sup ! ε>∑ kq
nk

n

k
an                         (2)

for sufficiently large n.

Since =∑ knn ky a x  is defined for all ( ) ( )   ,= ∈kx x l p F , from 

Theorem 2.2 (ii) (above),∑ kq
nka  is convergent, so that we have

0→ →∞kq
nka as k  for every fixed n.

Hence we have
1

lim( ! ) 0=kq n
nkk

an  for ever y fixed n.                        (3)

Taking ( ) ( ) ,= ∈kx e l p F in  =∑ knn kY a x to get ( ) ( )  χ= ∈n nkY a F ,

This gives

1

(
2

! ) ε
<kq n

nkan for n > nk and every fixed k.                           (4)

Now, we shall construct a sequence ( ) ,  ∈x l p F and prove that 
the corresponding ( ) ( )χ= ∉ny y F  using (2), (3) and (4). Then that will 
suffice to prove the necessity of the condition (1).

By (2), first choose n1 for n such that

( ) 1
1

1

sup !| | ε>kq n
n k

k
n a                              (5)

Having fixed an n1, by (3) we can choose
1nak for k such that 

( ) 1
1

1

1

1
1

sup !| |
2
ε

+ ≤ <∞
<k

n

q n
n k

k k
n a                                (6)

Hence, from (5) and (6) we get

( ) 1
1

1

1

1
sup !| | ε
≤ <

>k

n

q n
n k

k k
n a

Therefore, there is a k1, 111≤ ≤ nk k  such that

( ) 1
1 1

1

!| | ε>kq n
n kn a .                     (7)

Next by (2) and (4) choose n2 > n1 such that

( ) 2
2

1

2
1
sup !| | ε
≤ <∞

>kq n
n k

k
n a                                    (8)

 And

( ) 2
2

1

1

2
1
sup !| |

2
ε

≤ <
>k

n

q n
n k

k k
n a .                                  (9)

This is possible if n2 is large enough that n2 > max( nk) such that

( ) 2
2

2 1

1

2
1

sup !| |
2
ε

+ ≤ <
<k

n n

q n
n k

k k k
n a                                    (10)

Now from (8) and (10) we get

( ) 2
2

2

1

2
1
sup !| | .ε
≤ <

>k

n

q n
n k

k k
n a            

Therefore, there exists a k2 > k1 in 2
1≤ ≤ nk k , that is in 

1 21+ ≤ ≤n nk k k
such that

( ) 2
2 2

1

2 !| | ε>kq n
n kn a                     (11)

Proceeding like this, by (2), (3) and (4) we can find nm > nm-1 and km 

> km-1 in 1≤ ≤
mnk k such that

( )
1

1

1
sup !| | .

2
ε

−≤ <
<k m

m
nm

q n
m n k

k k
n a                          (12)

( )
1

1

sup !| | .
2
ε

+ ≤ <∞
<k m

m
nm

q n
m n k

k k
n a                             (13)

( )
1

!| | .ε>k m
m m

q n
m n kn a                                    (14)

{ 1
1 2

1 2

| |
k 0,

, if   , ,..
if   , ,x

− =
≠=

qk
nka k k k

k k k                 (15)

so that ( )   ,  ∈x l p F , then

1

1 1 1

1

1 1 1
1 1

| ! | ! !
∞

+

= +∑ ∑
n

n

k

n n k k n k k
k

n y n a x n a x

Gives
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1

1 1 1

1

1 1

1

1 1 1
1 1

1 1
1

! ! !

 !| , ! .

∞

+

∞

+

= −

  ≤  
  

∑ ∑

∑

n

n

n

k

n k k n n k k
k

n n k k
k

n a x n y n a x

max n y n a x

  (16)

Now, by using (15) and (7) we have

1
1

1 1 1 1 1 11 1 1
1

! ! ! ε= = <∑
n

k
k

q n
n k k n k k n kn a x n a x n a             (17)

( )1 1
11

1 1
11

! sup !
∞

+ ≤ <∞+

<∑
nn

n k k n k k
k kk

n a x n a x

( )1
1

1
1

     sup ! ,
+ ≤ <∞

≤ k

n

q

n k
k k

n a  by (15)

1

,  (6).   
2
ε <  

 

n

by               (18)

Using (17) and (18) in (16), we have
1

1

11max !| |, .
2
εε

   <   
   

n
n

nn y

Then
1 2

2 2 2 2

1 21 1 1

∞

+ +

= + +∑ ∑ ∑
n n

n n

k k

n n k k n k k n k k
k k

y a x a x a x

Gives

2

2 2 2 2

1 1 2

2 2 2 2
1 1 1

!  max ! , ! , ! .
∞ ∞

+ + +

  ≤  
  

∑ ∑ ∑
n

n n n

k

n k k n n k k n k k
k k k

n a x n y n a x n a x    (19)

Now, by using (15) and (11) we have

2
2

2 2 2 2 2 22 2 2
1

! ! ! .ε= = <∑
n

k
k

q n
n k k n k k n kn a x n a x n a (20)

Thus,

2

2 2 22 2
1

! !
=

=∑
nk

n k k n k k
k

n a x n a x , by (15)

2

2 22  ! , 
2
ε = <  

 
k

n
q

n kn a by (11)              (21)

( )2 2
22

2 2
11

  ! sup !
∞

+ ≤ <∞+

≤∑ k

n

q

n k k n k
k kk

n a x n a , by (15)   

2

 
2
ε <  

 

n

, by (10)   (22)

Now, by using (20), (21) and (22) in (19) we get

2

2

2

2

2max !| |, , .
2 2
ε εε

 
    <     

     

nn
n

nn y

Hence, 2

22 !| | ε> n
nn y so that ( ) 2

2

1

2 !| | ε>n
nn y .

Continuing in this way using (15) and the inequalities (12), (13) 
and (14), we can show that

( )
1

!| | .ε>m
m

n
m nn y

So that ( )
1

!| | m
m

n
m nn y does not tend to zero as →∞mn .

Hence, ( ) ( )χ∉ny F , which gives a contradiction so that (1) is 
necessary. Hence the proof is complete.
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