Matrix Transformations of Some Sequence Spaces Over Non-Archimedian Fields

Ab. Hamid Ganie*, Neyaz Ahmad‡ and Tanweer Jaleli

1Department of Mathematics, SSM College of Engineering and Technology, Pattan-191121, J & K
2Department of Mathematics, National Institute of Technology, Srinagar-190008, J & K

Abstract

The space $\chi(F)$ of all entire functions $f(z) = \sum x_k z^k$ of exponential order 1 and type 0 have been defined by Sirajudeen. In the present paper we characterize the matrix class concerning the space $\chi(F)$.

2010 AMS Mathematical Subject Classification: 46A45; 40C05; 46A35.

Keywords: Sequence space; Non-Archimedean property; Matrix transformations

Preliminaries, Background and Notation

The theory of matrix transformations is a wide field in summability; it deals with the characterizations of classes of matrix mappings between sequence spaces by giving necessary and sufficient conditions on the entries of the infinite matrices.

The classical summability theory deals with a generalization of convergence of sequences and series. One original idea was to assign a limit to divergent sequences or series. Toeplitz [1] was the first to study summability methods as a class of transformations of complex sequences by complex infinite matrices.

Let X, Y be two sequence spaces and let $A=(a_{nk})$ be an infinite matrix of real or complex numbers a_{nk}, where $n, k \in N$. Then, the matrix A defines the A transformation from X into Y, if for every sequence $x=(x_k) \in X$ the sequence $Ax=((Ax)_k)$, the A-transform of x exists and is in Y, where $(Ax)_k=\sum a_{nk}x_k$. For simplicity in notation, here and in what follows, the summation limits runs from 0 to ∞.

Let $A: X \rightarrow Y$. We mean the characterizations of matrices from X to Y i.e., $A: X \rightarrow Y$. A sequence x is said to be A-summable to l if Ax converges to l which is called as the A-limit of x [1-5].

For a sequence space X, the matrix domain X_A of an infinite matrix A is defined as

$$X_A = \{x = (x_k) : x = (x_k) \in oA \}$$

Let F be a non-trivial, non-Archimedian field which is complete under the metric of valuation. If $x=(x_k) = (x_1, x_2, \ldots, x_n, \ldots,)$, $X_1 \in F$ is a sequence defined over F, this assumption ensures not only the completion of the sequence spaces we consider but also the absolute convergence of a series in F implies convergence in F. In what follows we denote $\sum x_k$ and the notion of convergence and boundedness will be in $k=1$ relation to the metric of valuation of the field.

Assume here and after that $p= (P_k)$ is bounded sequence of positive reals, so that $0 < P_k \leq \sup P_k = H < \infty$ and $M=\max\{1, H\}$. We shall assume throughout the text that $P_{k+1} + q_k > 1$ provided $P_k > 1$ for all $k \in N$.

The spaces l_1, c and c_0 were defined by Maddox [6-10] as follows:

$$l_1(P,F): \{ x = (x_k) : \sup_k |x_k|^p < \infty \}$$

$$c(P,F): \{ x = (x_k) : \lim_k |x_k|^p = 0, l \in C \}$$

$$c_0(P,F): \{ x = (x_k) : \lim_k |x_k|^p \rightarrow 0 \}$$

$$l(P,F): \{ x = (x_k) : \lim_k |x_k|^p < \infty \}$$

$$\chi(F): \{ x = (x_k) : 0k|x_k|^p \rightarrow 0 as k \rightarrow \infty \}$$

We denote by $\chi(F)$ the collection of all entire functions $f(z) = \sum x_k z^k$ of exponential order 1 and type 0 as $0 \leq l \in C$.

$c_1(P,F), c_l$ and l_0 are non-Archimedian Banach spaces with Non-Archimedian norm, $||x|| = \sup_k |x_k|$. If $x=(x_k)$ is an element of $\chi(F)$, then $||x|| = \sup_k (|x|^p)$ satisfies the following conditions:

(i) $|x| > 0$, $|x| = 0$ if and only if $x = (0, 0, ...) where 0 is the zero element of the field F.

(ii) $|x + Y| \leq \max ||x||, ||y|| .

(iii) $|x| \leq \max \{t \} x, t \in F, G(t) = \max \{1, |t| \} .

Hence $\chi(F)$ is a metric space defined over F with a metric d(x, y) = ||x - y||.

Main Results

We begin with the following lemma [7] which is essential in the text.

Lemma 4.1: Let $T_n(x)$ be a sequence of continuous linear functionals defined on a complete linear metric space E over F. Let $\lim T_n(x) < \infty$ for each $x \in E$. Then there exists a fixed number M and a closed sphere $S \subset E$ such that $T_n (x) < M$ for all $x \in S$ and for all $n \geq 1$.

Received March 18, 2015; Accepted May 14, 2015; Published May 21, 2015

Copyright: © 2015 Ganie AH, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Since \(\| x \| = \left(\sum |a_i|^p \right)^{1/p} \) is evidently a non-Archmedian norm in the sense that it satisfies the stronger form of triangular inequality \(\| x + y \| \leq \max \{ \| x \|, \| y \| \} \). With this as norm as in the Archimedian case, we can establish the following theorem.

Theorem 4.2:
(i) \((l(p, F))\) is non-Archmedian Banach space.
(ii) If \(p > 1\) for all \(k \in N \) so that \(p^k + q^k - 1 \) and \(\sum a_i \) converges for every \(x \in l(p, F) \), then \(\sum |a_i|^p \) is convergent.

Theorem 4.3:
\[A \in \{l(p, F) : \chi(F)\} \text{ if and only if } \sup_k \left(\sum |a_i|^p \right)^{1/p} \leq \infty, \]
where \(P_k > 1 \) for all \(k \in N \) and \(p^k - q^k - 1 \).

Proof: **Sufficiency:** Let \(x = (x_i) \in l(p, F) \) and (1) holds so that \(\sum |a_i|^p \) converges, converging to \(L \). Then by Holder’s inequality, we have
\[
(n! |y_n|)^{1/n} \leq \left(\sum |a_i|^p \right)^{1/p} \left(\sum |x_i|^q \right)^{1/q} \\
\leq \frac{\sup_k \left(\sum |a_i|^p \right)^{1/p} \left(\sum |x_i|^q \right)^{1/q}}{\sup_k \left(\sum |a_i|^p \right)^{1/p} \left(n! \right)^{1/n}} \\
\leq \frac{\sup_k \left(\sum |a_i|^p \right)^{1/p} \left(n! \right)^{1/n}}{\sup_k \left(\sum |a_i|^p \right)^{1/p} \left(n! \right)^{1/n}}.
\]
Hence, by using (1) we get \((n! |y_n|)^{1/n} \to 0 \) as \(n \to \infty \) so that \(y = (Y) \in \chi(F) \).

Necessity: We now suppose that \(A \in \{l(p, F) : \chi(F)\} \). If condition (1) does not hold, then for some \(E > 0 \), there exists subsequences of \(n \), such that
\[
\sup_k \left(\sum |a_i|^p \right)^{1/p} > E
\]
for sufficiently large \(n \).

Since \(y_n = \sum a_i x_i \) is defined for all \(x \in l(p, F) \), from Theorem 2.2 (ii) (above), \(\sum |a_i|^p \) is convergent, so that we have \(|a_i|^p \to 0 \) as \(k \to \infty \) for every fixed \(n \).

Hence we have
\[
\lim_{k \to \infty} (n! |a_i|^p)^{1/n} = 0 \text{ for every fixed } n.
\]

Taking \(x = (x_i) \in l(p, F) \) in \(Y = \sum a_i x_i \), to get \(Y_n = (a_i) \in \chi(F) \),
This gives
\[
(n! |a_i|^p)^{1/n} < \frac{E}{2} \text{ for } n > n_k \text{ and every fixed } k.
\]

Now, we shall construct a sequence \(x \in l(p, F) \) and prove that the corresponding \(y = (y_n) \in \chi(F) \) using (2), (3) and (4). Then that will suffice to prove the necessity of the condition (1).

By (2), first choose \(n_k \) for \(n \) such that
\[
\sup_k \left(n! |a_i|^p \right)^{1/n} > E
\]
Having fixed an \(n_k \), by (3) we can choose \(a|k|_k \) for \(k \) such that
\[
\sup_k \left(n! |a_i|^p \right)^{1/n} < \frac{E}{2}
\]
Hence, from (5) and (6) we get
\[
\sup_k \left(n! |a_i|^p \right)^{1/n} > E
\]
Theorem 4.2:
(ii) If \(P_k > 1 \) for all \(k \in N \) so that \(p^k + q^k - 1 \) and \(\sum a_i \) converges for every \(x \in l(p, F) \), then \(\sum |a_i|^p \) is convergent, so that we have
\[
\sup_k \left(\sum |a_i|^p \right)^{1/p} \leq \infty
\]
This is possible if \(n_k \to \infty \) such that
\[
\left(n! |a_i|^p \right)^{1/n} > E
\]
Next by (2) and (4) choose \(n_k > n_k \) such that
\[
\sup_k \left(n! |a_i|^p \right)^{1/n} > E
\]
And
\[
\sup_k \left(n! |a_i|^p \right)^{1/n} > E
\]
This is possible if \(n_k > max(n_k) \) such that
\[
\sup_k \left(n! |a_i|^p \right)^{1/n} < \frac{E}{2}
\]
Now from (8) and (9) we get
\[
\sup_k \left(n! |a_i|^p \right)^{1/n} > E
\]
Therefore, there exists a \(k_2 > k_1 \) in \(1 \leq k \leq k_{n_k} \), that is in \(k_{n_k} < k \leq k_{n_{k+1}} \) such that
\[
\left(n! |a_i|^p \right)^{1/n} > E
\]
Proceeding like this, by (2), (3) and (4) we can find \(n_{m+1} > n_m \) and \(k_m \) in \(1 \leq k \leq k_{n_m} \) such that
\[
\sup_k \left(n! |a_i|^p \right)^{1/n} < \frac{E}{2}
\]
\[
\sup_k \left(n! |a_i|^p \right)^{1/n} < \frac{E}{2}
\]
\[
\left(n! |a_i|^p \right)^{1/n} > E
\]
\[
X_k = \left\{ a \right\} |a|^{0,1} |k|_{k_1, k_2} = 0 \text{ if } k = k_1, k_2 \text{, so that } x \in l(p, F), \text{ then } n_k ! x_n \text{ gives }
\]
\[\left| \sum_{k=1}^{n} a_{nk} x_k \right| = \left| n! y_n - n! \sum_{k=1}^{\infty} a_{nk} x_k \right| \leq \max \left\{ n! \| y_n \|, n! \sum_{k=1}^{\infty} \| a_{nk} \| x_k \right\}. \] (16)

Now, by using (15) and (7) we have
\[\left| \sum_{k=1}^{n} a_{nk} x_k \right| = n! \| a_{nk} \| x_n < \varepsilon^n \] (17)
\[\left| \sum_{k=1}^{n} a_{nk} x_k \right| < \sup_{k \in \mathbb{N}} \left\{ n! \| a_{nk} \| \right\} \] (18).

Using (17) and (18) in (16), we have
\[\varepsilon^\infty = \max \left\{ n! \| y_n \| \left(\frac{\varepsilon}{2} \right) ^n \right\}. \]

Continuing in this way using (15) and the inequalities (12), (13) and (14), we can show that
\[\left(n! \| y_n \| \right) ^{\frac{1}{n}} \geq \varepsilon. \]

So that \(\left(n! \| y_n \| \right) ^{\frac{1}{n}} \) does not tend to zero as \(n \to \infty \).

Hence, \((y_n) \notin \chi(F) \), which gives a contradiction so that (1) is necessary. Hence the proof is complete.

Acknowledgement
We would like to express our sincere thanks for the reviewer(s) for the kind remarks which improved the presentation of the paper.

References