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Abstract
This article presents basic notions of Lie theory in the context of matrix groups with goals of minimizing the 

required mathematical background and maximizing accessibility. It is structured with exercises that enhance the text 
and make the notes suitable for (part of) an introductory course at the upper level undergraduate or early graduate 
level. Indeed the notes were originally written as part of an introductory course to geometric control theory.
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Introduction 
Lie theory, the theory of Lie groups, Lie algebras, and their 

applications is a fundamental part of mathematics that touches on 
a broad spectrum of mathematics, including geometry (classical, 
differential, and algebraic), ordinary and partial differential equations, 
group, ring, and algebra theory, complex and harmonic analysis, 
number theory, and physics (classical, quantum, and relativistic). It 
typically relies upon an array of substantial tools such as topology, 
differentiable manifolds and differential geometry, covering spaces, 
advanced linear algebra, measure theory, and group theory to name 
a few. However, we will considerably simplify the approach to Lie 
theory by restricting our attention to the most important class of 
examples, namely those Lie groups that can be concretely realized as 
(multiplicative) groups of matrices.

Lie theory began in the late nineteenth century, primarily 
through the work of the Norwegian mathematician Sophus Lie, who 
called them “continuous groups,” in contrast to the usually finite 
permutation groups that had been principally studied up to that point. 
An early major success of the theory was to provide a viewpoint for a 
systematic understanding of the newer geometries such as hyperbolic, 
elliptic, and projective, that had arisen earlier in the century. This 
led Felix Klein in his Erlanger Programme to propose that geometry 
should be understood as the study of quantities or properties left 
invariant under an appropriate group of geometric transformations. 
In the early twentieth century Lie theory was widely incorporated into 
modern physics, beginning with Einstein's introduction of the Lorentz 
transformations as a basic feature of special relativity. Since these early 
beginnings research in Lie theory has burgeoned and now spans a vast 
literature.

The essential feature of Lie theory is that one may associate with any 
Lie group G a Lie algebra g. The Lie algebra g is a vector space equipped 
with a bilinear non-associative anti-commutative product, called the Lie 
bracket or commutator and usually denoted [∙,∙]. The crucial and rather 
surprising fact is that a Lie group is almost completely determined by 
its Lie algebra g. There is also a basic bridge between the two structures 
given by the exponential map exp : g→G. For many purposes structure 
questions or problems concerning the highly complicated nonlinear 
structure G can be translated and reformulated via the exponential 
map in the Lie algebra g, where they often lend themselves to study via 
the tools of linear algebra (in short, nonlinear problems can often be 
linearized). This procedure is a major source of the power of Lie theory.

The General Linear Group
Let V be a finite dimensional vector space equipped with a complete 

norm || ∙ || over the field , where  =  or  = . (Actually since the 
space V is finite dimensional, the norm must be equivalent to the usual 
euclidean norm, and hence complete.) Let End(V) denote the algebra 
of linear self-maps on V , and let GL(V) denote the general linear group, 
the group (under composition) of invertible self-maps. If V = n, then 
End(V) may be identified with Mn(), the n × n matrices, and GL(V) = 
GLn(), the matrices of nonvanishing determinant.

We endow End(V ) with the usual operator norm, a complete norm 
defined by

|| |||| || sup{|| || : || || 1} sup{ : 0},
|| ||

= = = ≠
AvA Av v v
v

which gives rise to the metric d(A,B) = || B – A || on End(V) and, by 
restriction, on GL(V).

Exercise 2.1: || || || || || ||,|| || | | || ||,≤ =AB A B tA t A  and || || || ||≤n nA A

Exercise 2.2: Show that GL(V) is a dense open subset of End(V). 
(Hint: The determinant function is polynomial, hence continuous, 
and A ‒ (1/n)I converges to A and is singular for at most finitely many 
values, since the spectrum of A is finite.)

Exercise 2.3: The multiplication and inversion on GL(V) 
are analytic, i.e., expressible locally by power series. (Hint: the 
multiplication is actually polynomial and the cofactor expansion shows 
that inversion is rational.)

A group G endowed with a Hausdorff topology is called a topological 
group if the multiplication map m : G × G → G and the inversion map on G 
are continuous. By the preceding exercise GL(V) is a topological group.

The Exponential Map
We define the exponential map on End V by
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0
exp( ) : .

!

∞

=
= ∑

n

n

AA
n

Lemma 1: The exponential map is absolutely convergent, hence 
convergent on all of End(V). Hence it defines an analytic  self-map on 
End(V).

Proof: 
0 0

|| |||| || exp(|| ||).
! !

∞ ∞

= =
≤ =∑ ∑

n n

n n

A A A
n n

Absolute convergence allows us to rearrange terms and to carry 
out various algebraic operations and the process of differentiation 
term wise. We henceforth allow ourselves the freedom to carry out 
such manipulations without the tedium of a rather standard detailed 
verification.

Exercise 3.1: (i) Show that the exponential image of a block 
diagonal matrix with diagonal blocks A1,…,Am is a block diagonal 
matrix with diagonal blocks exp(A1),…,exp(An). In particular, to 
compute the exponential image of a diagonal matrix, simply apply the 
usual exponential map to the diagonal elements.

(ii) Suppose that A is similar to a diagonal matrix, A = PDP-1. Show 
that exp(A) = P exp(D)P-1.

Proposition 2: If A, B ∈ End V and AB = BA, then exp(A + B) = exp 
A exp B = exp B exp A.

Proof: Computing term wise and rearranging we have

0 0 , 0

0

0 0

exp exp
! ! ! !

1 !
! ! !

1 .
!

( )( )

( )

( )

∞ ∞ ∞

= = =

∞

= + =
∞

−

= =

 



=



=



= ∑ ∑ ∑

∑ ∑

= ∑ ∑

n m n m

n m n m

n m

k n m k
k

j k j

k j

A B A BA B
n m n m

k A B
k n m

k
A B

jk

Since A and B commute, the familiar binomial theorem yields

1
( ) ,−

=

 
 
 

+ = ∑
k

k j k j

j

k
A B A B

j

and substituting into the previous expression yields the proposition. 

Let V,W be finite dimensional normed vector spaces and let f: U → 
W, where U is a nonempty open subset of V. A linear map L: V → W is 
called the (Frechet) derivative of f at x ∈ U if in some neighbourhood 
of x

( ) ( ) ( ) ( ),+ − = +f x h f x L h r h where
0

( )lim 0.
|| ||→

=
h

r h
h

If it exists, the derivative is unique and denoted by df(x) or f '(x).

Lemma 3: The identity map on End(V) is the derivative at 0 of exp : 
End(V ) → End(V ), i.e., d exp(0) = Id.

Proof: For h ∈ End(V), we have
2

2

0 1 2
exp( ) exp(0) 1 Id( ) ,  

! ! !

∞ ∞ ∞ −

= = =
− = − = = +∑ ∑ ∑

n n n
V

n n n

h h hh h h
n n n

where 
2

2
0

0 0 2

( 2)! || || 1lim || lim 0.
|| || !

||
|| ||

( )

∞

∞
=

→ → =

+
≤ =

∑
∑

n

n
h h n

hh
n h

h h n

Applying the Inverse Function Theorem, we have immediately 

from the preceding lemma

Proposition 4: There exist neighbourhoods U of 0 and V of I in End 
V such that exp |U is a diffeomorphism onto V.

For A∈ End V and r > 0, let ( ) { :|| || }.= ∈ − <rB A C V C A r  

Exercise 3.2: Show that exp( (0)) (1 )⊆r s VB B  where s = er-1. In 
particular for r = ln 2, 1exp( (0)) (1 ).⊆r VB B

One-parameter Groups
A one-parameter subgroup of a topological group G is a continuous 

homomorphism α:  → G from the additive group of real numbers into G.

Proposition 5: For V a finite dimensional normed vector space 
and A ∈ End V, the map exp( )t tA  is a one-parameter subgroup of 
GL(V). In particular, (exp(A))-1 = exp(-A).

Proof: Since sA and tA commute for any s, t ∈ , we have from 
Proposition 2 that exp( )t tA is a homomorphism from the additive 
reals to End V under multiplication. It is continuous, indeed analytic, 
since scalar multiplication and exp are. The last assertion follows from 
the homomorphism property and assures the image lies in GL(V). 

Proposition 6: Choose an r < ln 2. Let A∈ Br(0) and let Q = exp A. 
Then P = exp(A/2) is the unique square root of Q contained in B1(1V).

Proof: Since exp(tA) defines a one-parameter subgroup,
2 2(exp( / 2)) exp( / 2)exp( / 2) exp( / 2 / 2) exp( ) .= = = + = =P A A A A A A Q

Also A∈ Br(0) implies A/2 ∈ Br(0), which implies exp(A/2) ∈ B1(1V) 
(Exercise 3.2).

Suppose two elements in B1(1V), say 1+B and 1+C where || B ||, || C || < 1 
satisfy (1 + B)2 = (1 + C)2. Then expanding the squares, cancelling the 
1's, and rearranging gives

2(B - C) = C2 - B2 = C(C - B)) + (C - B)B.

Taking norms yields
2 || || || || || || || || || || (|| || || ||) || || .− ≤ − + − = + −B C C C B C B B C B C B

This implies either ||C|| + ||B|| ≥ 2, which is also false since each 
summand is less than 1, or ||B - C|| = 0, i.e., B = C. We conclude there 
at most one square root in B1(1V).

Lemma 7: Consider the additive group (, +) of real numbers.

(i) If a subgroup contains a sequence of nonzero numbers {an} 
converging to 0, then the subgroup is dense.

(ii) For one-parameter subgroups α, β :  → G, the set {t ∈  : α(t) = β(t)} 
is a closed subgroup.

Proof: (i) Let t ∈  and let ε > 0. Pick an such that |an| < ε. Pick an 
integer k such that |t/an – k| < 1 (for example, pick k to be the floor 
of t/an). Then multiplying by |an| yields |t - kan| < |an| < ε. Since kan must 
be in the subgroup, its density follows.

(ii) Exercise.

Exercise 4.1: Show that any nonzero subgroup of (, +) is either 
dense or cyclic. (Hint: Let H be a subgroup and let r = inf{t ∈ H : t > 0}. 
Consider the two cases r = 0 and r > 0.)

The next theorem is a converse of Proposition 5.

Theorem 8: Every one parameter subgroup α :   → End(V ) is of the 
form α(t) = exp(tA) form some A ∈ End V.
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Proof: Pick r < ln 2 such that exp restricted to Br(0) is a 
diffeomorphism onto an open subset containing 1 = 1V. This is 
possible by Proposition 4. Note that 1exp( (0)) (1).⊆rB B  By continuity 

of α, pick 0 < ε such that α(t) ∈ exp(Br(0)) for all ‒ ε < t < ε. Then 

1(1 / 2 ) exp( (0)) (1)α ∈ ⊆k
rB B  for all 1/2k < ε. 

Pick 1/2n  < ε. Then : (1 / 2 ) exp( (0))α= ∈n
rQ B  implies 

(1 / 2 ) exp( )α= =nQ B  for some B ∈ Br(0). Set A = 2nB. Then 
exp((1 / 2 ) ).= nQ A

Then α(1/2n+1) and exp(B/2) are both square roots of Q contained 
in B1(1), and hence by Proposition 6 are equal. Thus α(1/2n+1) = 
exp((1/2n+1)A). By induction α(1/2n+k) = exp((1/2n+k)A) for all positive 
integers k. By Lemma 7(ii) the two one-parameter subgroups agree on 
a closed subgroup, and by Lemma 7 this subgroup is also dense. Hence 
α(t) and exp(tA) agree everywhere. 

    The preceding theorem establishes that a merely continuous 
one-parameter subgroup must be analytic. This is a very special case 
of Hilbert's fifth problem, which asked whether a locally euclidean 
topological group was actually an analytic manifold with an analytic 
multiplication. This problem was solved positively some fifty years later 
in the 1950's by Gleason, Montgomery, and Zippin.

Exercise 4.2: Show that if exp(tA) = exp(tB) for all t ∈ , then A = 
B. (Hint: Use Proposition 4)

Remark 9: The element A ∈ EndV is called the infinitesimal 
generator of the  one-parameter  group exp( ).t tA We conclude 
from the preceding theorem and exercise that there is a  one-to-
one  correspondence between  one-parameter  subgroups and their 
infinitesimal generators.

Curves in End V
   In this section we consider basic properties of differentiable 

curves in End V. Let I be an open interval and let A(∙) : I → End V  be 
a curve. We say that A is Cr if each of the coordinate functions Aij(t) is 

Cr on . We define the derivative 0( ) lim (1/ )( ( ) ( )).→= + − hA t h A t h A t  The 

derivative exists iff the derivative ( )

ijA t  of each coordinate function 
exists, and in this case ( )A t is the linear operator with coordinate 

functions  ( ( )).ijA td
dt

Items (1) and (2) in the following list of basic properties for operator 
valued functions are immediate consequences of the preceding 
characterization, and item (5) is a special case of the general chain rule.

(1) ( ( ) ( )) ( ) ( )± = ± 

tD A t B t A t B t

(2) ( ( )) ( ).= 

tD rA t rA t  

(3) ( ( ) ( ) ( ) ( ) ( ) ( )⋅ = ⋅ + ⋅ 

tD A t B t A t B t A t B t  

(Note: Order is important since multiplication is noncommutative.)

(4) 1 1 1( ( )) ( ) ( ) ( ).− − −= − ⋅ ⋅

tD A t A t A t A t  

(5) ( ) ( ), ( ( ( )) ( ) ( ( )).′= =

tIf B t A t then D B f t f t A f t

Exercise 5.1: Establish properties (3) and (4). (Hints: (3) Mimic the 
proof of the product rule in the real case. (4) Note A-1(t) is differentiable 
if A(t) is, since it is the composition with the inversion function, which 
is analytic, hence Cr for all r. Differentiate the equation A(t).A-1(t) = I 

and solve for Dt(A
-1(t)).)

We can also define the integral ( )∫
b
a A t dt  by taking the coordinate 

integrals ( ) .∫
b

ija A t dt The following are basic properties of the integral 

that follow from the real case by working coordinate wise.

(6) If 
0

( ) ( )= ∫
t
tB t A s ds , then ( ) ( ).=B t A t  

(7) If ( ) ( )=B t A t , then ( ) ( ) ( ).= −∫
s
r A t dt B s B r     

We consider curves given by power series: 
0

( ) .
∞

=
= ∑ n

n
n

A t t A  Define 

the nth-partial sum to be
0

( ) .
=

= ∑
n

k
n k

k
S t t A The power series converges for 

some value of t if the partial sums Sn(t) converge in each coordinate 
to some S(t). This happens iff the coordinatewise real power series all 
converge to the coordinates of S(t). 

Since for an operator A, |aij| ≤ || A || for each entry aij (exercise), 

we have that absolute convergence, the convergence of 
1

|| ||| | ,
∞

=
∑ n

n
n

t A

implies the absolute convergence of each of the coordinate series, and 
their uniform convergence over any closed interval in the open interval 

convergence of the real power series 
1

|| || .
∞

=
∑ n

n
n

t A  These observations 

justify term wise differentiation and integration in the interval of 

convergence of 
1

|| ||
∞

=
∑ n

n
n

t A .

Exercise 5.2: (i) Show that the power series

0
exp( )

!

∞

=
= ∑

n
n

n

ttA A
n

is absolutely convergent for all t (note that An = (1/n!)An in this series).

(ii)Use termwise differentiation to show Dt(exp(tA)) = A exp(tA).

(iii)Show that X(t) = exp(tA)X0 satisfies the differential equation on 
End V given by

0( ) ( ), (0) .= =X t AX t X X

(iv) Show that the equation 0( ) ( ), (0)= =x t Ax t x x on V has 
solution x(t) = exp(tA)x0.

The Baker-Campbell-Hausdorff Formalism

It is a useful fact that the derivative of the multiplication map at the 
identity I of End V is the addition map.

Proposition 10: Let m : End(V) × End(V) → End(V) be the 
multiplication map, m(A,B) = AB. Then the derivative at (I,I), dm 

(I,I)
 : 

End(V) × End(V) → End(V) is given by dm(I,I)(U, V ) = U + V.

Proof: Since the multiplication map is polynomial, continuous 
partials of all orders exist, and in particular the multiplication map is 
differentiable. By definition the value of the derivative at (I,I) evaluated 
at some (U,0) ∈ End(V) × End(V) is given by

( , )
0 0

( , ) ( , )( ,0) lim lim .
→ →

+ −
= = =I I

t t

m I tU I m I I tUdm U U
t t

We have seen previously that the exponential function is a 
diffeomorphism from some open neighbourhood B of 0 to some open 
neighbourhood U of I. Thus there exists an analytic inverse to the 
exponential map, which we denote by log : U → B. Indeed if one defines
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1
log( ) ,

∞

=
− = −∑

n

n

AI A
n

then just as for real numbers this series converges absolutely 
for || A || < 1. Further since exp(log A) = A holds in the case of real 
numbers, it holds in the algebra of formal power series, and hence in 
the linear operator or matrix case. Indeed one can conclude that exp 
is 1 - 1 on Bln 2(0), carries it into B1(I), and has inverse given by the 
preceding logarithmic series, all this without appeal to the Inverse 
Function Theorem.

The local diffeomorphic property of the exponential function allows 
one to pull back the multiplication in GL(V) locally to a neighbourhood 
of 0 in End V . One chooses two points A, B in a sufficiently small 
neighbourhood of 0, forms the product exp(A) ∙ exp(B) and takes the 
log of this product:

A ∗ B := log (exp A ⋅ exp B)

This  Baker-Campbell-Hausdorff  multiplication is defined on any 
Br(0) small enough so that exp(Br(0)) ∙ exp(Br(0)) is contained in the 
domain of the log function; such exist by the local diffeomorphism 
property and the continuity of multiplication. Now there is a beautiful 
formula called the  Baker-Campbell-Hausdorff  formula that gives 
A ∗ B as a power series in A and B with the higher powers being 
given by higher order Lie brackets or commutators, where the (first-
order) commutator or Lie bracket is given by [A,B]:= AB − BA. The Baker-
Campbell-  Hausdorff power series is obtained by manipulating the 
power series for log(exp(x) ∙ exp(y)) in two noncommuting variables x, 
y in such a way that it is rewritten so that all powers are commutators 
of some order. To develop this whole formula would take us too far 
afield from our goals, but we do derive the first and second order terms, 
which suffice for many purposes.

Definition 11: An open ball Br(0) is called a  Baker-Campbell-
Hausdorff neighbourhood, or  BCH-neighborhood  for short, if r < 1/2 
and exp( (0) exp( (0) (0)⋅ ⊆r r sB B B for some s,r such that exp restricted 
to Bs(0) is a diffeomorphism onto some open neighbourhood of I. By 
the local diffeomorphism property of the exponential map and the 
continuity of multiplication at I,  BCH-neighbourhoods  always exist. 
We define the Baker-Campbell-Hausdorff multiplication on any BCH-
neighbourhood Br(0) by

log(exp exp ).= ⋅A B A B*

Note that A  ∗ B exists for all A, B ∈ Br(0), but we can only say that 
A ∗ B ∈ End V, not necessarily in Br(0).

Proposition 12: Let Br(0) be a BCH-neighbourhood. Define µ : Br(0) 
× Br(0) → End V  by µ(A,B) = A ∗ B. Then

(i) ( , )= + +A B A B R A B* where
, 0

|| ( , ) ||lim 0.
|| || || ||→

=
+A B

R A B
A B

(ii)There exists 0 < s ≤ r such that || || 2(|| || || ||)≤ +A B A B*  for A,B ∈ 
Bs(0).

Proof: (i) We have that (exp exp)logµ ο ο = ×m  so by the chain 
rule, the fact that the derivatives of exp at 0 and log at I are both the 
identity map Id : End V → End V (Lemma 3 and the Inverse Function 
Theorem) and Proposition 10, we conclude that

 (0,0) ( , )( , ) ( )( , ) .µ = × = +I Id U V Id dm Id Id U V U Vº º

By definition of the derivative, we have

(1) (0,0)

( , ) (0,0)

0 0 ( , ) ( , )

|| ( , ) ||( , )  where lim 0.
|| || || ||→

= − = +

= + + =
+U V

U V U V dm U V R U V

R U VU V R U V
U V

* * *

(Note that the second equality is just the definition of the derivative, 
where the norm on End V × End V is the sum norm.) This gives (i).

(ii) Using (i), we obtain the following string:

|| || || || || || || ( , ) || || || || || .≤ − − + + ≤ + +A B A B A B A B R A B A B* *
Now || ( , ) || 0→R A B  as A, B → 0, so the right-hand sum is less than 

or equal 2(|| || || ||)+A B  on some (0) (0).⊆s rB B  

Exercise 6.1: Use the fact that 0 ∗ 0 = 0 and imitate the proof of 
Proposition 10 to show directly that (0,0) ( , ) .= +dm U V U V

    We now derive the linear and second order terms of the Baker-
Campbell-Hausdorff series.  

Theorem 13: Let Br(0) be a BCH-neighbourhood. Then  

2, 0

1 || ( , ) ||[ , ] ( , ) where lim 0.
2 (|| || || ||)→

= + + + =
+A B

S A BA B A B A B S A B
A B*

Proof: Pick (0) (0)s rB B⊆ so that condition (ii) of Proposition 12 is 
satisfied. Setting C = A ∗ B, we have directly from the definition of A∗ B 
that exp C = exp A ∙ exp B. By definition

(2) 
2

3
exp ( ),  where  ( ) .

2 !

∞

=
= + + + = ∑

n

n

C CC I C R C R C
n

For A, B ∈ Bs(0), we have from Proposition 12 that 
|| || || || 2(|| || || ||) 1= ≤ + <C A B A B*  since r < 1/2. Thus we have the 

estimate

(3) 
3

3 3

3 3

|| || || || 1|| ( ) || || || || || .
! ! 2

∞ ∞ −

= =
≤ ≤ ≤∑ ∑

n n

n n

C CR C C C
n n

Recalling the calculations in the proof of Proposition 2, we have

(4) 2 2
2

1exp exp ( 2 ) ( , ),
2

⋅ = + + + + + +A B I A B A AB B R A B

where 2
3 0

1( , ) .
!
( )

∞
−

= =

 
= 

 
∑ ∑

n
k n k

n k

n
R A B A B

kn

We have the estimate

(5)    3
2

3

1 1|| ( , ) || (|| || || ||) (|| || || ||) .
! 2

∞

=
≤ + ≤ +∑ n

n
R A B A B A B

n

If in the equation exp C = exp A ∙ exp B, we replace exp C by the 
right side of equation (2), exp A ∙ exp B by the right side equation (4), 
and solve for C, we obtain

(6) 2 2 2
2

1 ( 2 ) ( , ) ( ).
2

= + + + + − + −C A B A AB B C R A B R C  

Since
2 2 2 2 22 [ , ] ( )

[ , ] ( )( ) ( ) ,
+ + − = + + −

= + + + − + + −
A AB B C A B A B C

A B A B A B C A B C C
 

we obtain alternatively

(7) 1 [ , ] ( , ),
2

= + + +C A B A B S A B

where 2
1( , ) (( )( ) ( ) ) ( , ) ( ).
2

= + + − + + − + −S A B A B A B C A B C C R A B R C
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To complete the proof, it suffices to show that the limit as A, B → 
0 of each of the terms of S(A,B) divided by 2(|| || || ||)+A B  is 0. First we 
have in Bs(0)

 

1 1|| ( )( ) ( ) || (|| || || || || ||) || ||
2 2

1 (|| || || || 2((|| || || ||)) || ( , ) ||
2
3 (|| || || ||) || ( , ) ||,
2

+ + − + + − ≤ + + + −

≤ + + +

= +

A B A B C A B C C A B C A B C

A B A B R A B

A B R A B

 

where the second inequality and last equality follow by applying 
appropriate parts of Proposition 12. Proposition 12 also insures that  

2, 0

3(|| || || ||) || ( , ) ||lim 0.
2(|| || || ||)→

+
=

+A B

A B R A B
A B

 

That 2
2|| || |lim ( , ) / ( )| || || ||

, 0
0

→
+ =R A B

A
A B

B
follows directly from 

equation (5). Finally by equation (3) and Proposition 12(ii)

3 3

2 2 2
|| ( ) || 1 || || 4(|| || || ||)

2(|| || || ||) (|| || || ||) (|| || || ||)
+

≤ ≤
+ + +

R C C A B
A B A B A B

which goes to 0 as A, B → 0.

The Trotter and Commutator Formulas
In the following sections we show that one can associate with each 

closed subgroup of GL(V) a Lie subalgebra of End V , that is, a subspace 
closed under Lie bracket. The exponential map carries this Lie algebra 
into the matrix group and using properties of the exponential map, one 
can frequently transfer structural questions about the Lie group to the 
Lie algebra, where they often can be treated using methods of linear 
algebra. In this section we look at some of the basic properties of the 
exponential map that give rise to these strong connections between a 
matrix group and its Lie algebra.

Theorem 14: (Trotter Product Formula) Let A,B ∈ End V and let 
limn nAn = A, limn nBn = B. Then

(i) lim ( * )+ = n
n

nnA B A B ; 

(ii) exp( ) lim (exp exp ) lim (exp( / ) exp( / )) .+ = =n n
n

n
n

n
A B A B A n B n

Proof: (i) Let ε > 0. For large n, n|| An || ≤ || A || + || nAn – A || < || A || 
+ ε, and thus || An || ≤ (1/n)(|| A || + ε). It follows that limn An = 0 and 
similarly limn Bn = 0. By Proposition 12(i) we have

lim ( * ) lim lim lim ( , ) ,= + + = +n n n n n n
n n n n

n A B nA nB nR A B A B

provided that limnnR(An, Bn) = 0. But we have

(|| || || ||) || ( , ) |||| ( , ) || (|| || || ||) 0 as .
|| || || ||
+

= → + ⋅ → ∞
+

n n n n
n n

n n

n A B R A BnR A B A B n
A B  

(ii) The first equality follows directly by applying the exponential 
function to (i):

exp( ) exp(lim ( * )) lim exp( ( * ))

lim(exp( * )) lim(exp( )exp( ))

+ = =

= =

n n n n
n n

n n
n n n n

n n

A B n A B n A B

A B A B

where the last equality follows from the fact that exp is a local 
isomorphism from the BCH-multiplication to operator multiplication, 
and penultimate equality from the fact that exp(nA) = exp(A)n, since 
exp restricted to A is a one-parameter group. The second equality in 
part (ii) of the theorem follows from the first by setting An = A/n, Bn = B/n. 

The exponential image of the Lie bracket of the commutator can be 
calculated from products of group commutators.

Theorem 15: (Commutator Formula) Let A, B ∈ End V and let 
limn nAn = A, limn nBn = B. Then

(i) [A, B] = limn n
2 (An ∗ Bn − Bn ∗ An) = limn n

2(An ∗ Bn ∗ (− An) ∗ 
(− Bn)) ;

(ii) 
21 1exp[ , ] lim(exp( )exp( )(exp ) (exp ) )− −= n

n n n n
n

A B A B A B

21 1lim(exp( / ) exp( / )(exp( / )) (exp( / )) ) .− −= n
n

A n B n A n B n

Proof. (i) From Theorem 13 we have for A, B in a BCH-
neighbourhood:

1 ([ , ] [ , ]) ( , ) ( , )
2

∗ − ∗ = − + −A B B A A B B A S A B S B A

[ , ] ( , ) ( , )= + −A B S A B S B A

since [A, B] = − [B, A]. Therefore
2 2

2 2

lim ( ) lim ([ , ] ( , ) ( , ))

lim[ , ] lim( ( , ) ( , )),

[ , ],

∗ − ∗ = + −

= + −

=

n n n n n n n n n n
n n

n n n n n n
n n

n A B B A n A B S A B S B A

nA nB n S A B n S B A

A B

provided limn n
2S (An,  Bn) =  limn n

2S (Bn, An)) = 0. To see this, we note

2 2 2 2
2

|| |||| || || || | ( , )lim ( , ) lim ( ) ( ) 0 0| || || || ||
|| || || ||( )

= + = + ⋅ =
+
n n

n n n n
n n n n

S A Bn S A B n A B A B
A B

and similarly limn n
2 || S (Bn, An) || = 0

To see second equality in item (i), observe first that on a BCH-
neighbourhood where the exponential map is injective,

1 1exp(( ) ( )) exp( )exp( ) (exp ) (exp )
1 1((exp )(exp )) (exp( )) exp( ),

− −− ∗ − = − − =
− −= = ∗ = − ∗

A B A B A B

B A B A B A

which implies (−A) ∗ (−B) = − ( B ∗ A).  Hence we have by Theorem 
13 that

( ) ( ) ( ) ( ) ( ( )) ( ( ))
1[ , ] ( , ).
2

∗ ∗ − ∗ − − ∗ − ∗ = ∗ ∗ − ∗ − ∗ + − ∗

= ∗ − ∗ + ∗ − ∗

A B A B A B B A A B B A A B B A

A B B A S A B B A

Applying this equality to the given sequences, we obtain
2

2
2

|| ||

|

( ) ( ) (

[ , ] ( , ) .
2

| || || ||

∗ ∗ − ∗ − − ∗ − ∗

≤ ∗ − ∗ + ∗ − ∗

n n n n n n n n

n n n n n n n n

n A B A B A B B A

n A B B A n S A B B A

Now if we show that the two terms in the second expression 
approach 0 as n→∞, then the first expression approaches 0, and thus 
the two limits in (i) will be equal. We observe first that by the Trotter 
Product Formula

lim [ * , * ] lim[ * , * ] [ , ( ] 0− = − = + − + =n A B B A nA B nB A A B B An n n n n n n n
n n

since [C, -C] = - [C, C] = 0  for any C. Thus the first right-hand term 
approaches 0. For the second

2

2 2
2

2

|| ||
|| |||| || || ||

|| || || ||

||

( , )
( , )( )

( )

( ( ) )|| | 0| | 0|

∗ − ∗

∗ − ∗
= ∗ + − ∗

∗ + − ∗

→ + + − + ⋅ =

n n n n

n n n n
n n n n

n n n n

n S A B B A
S A B B An A B B A

A B B A

A B B A
as n → ∞.
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(ii) The proof follows from an application of the exponential 
function to part (i), along the lines of the Trotter Product Formula. 

Exercise 7.1: Give the proof of part (ii) in the preceding theorem.

The Lie Algebra of a Matrix Group
In this section we set up the fundamental machinery of Lie theory, 

namely we show how to assign to each matrix group a (uniquely 
determined) Lie algebra and an exponential map from the Lie algebra 
to the matrix group that connects the two together. We begin by 
defining the notions and giving some examples. 

By a matrix group we mean a closed subgroup of GL(V ), where V 
is a finite dimensional vector space.

Examples 8.1: The following are standard and basic examples.

(1) The general linear group GL(V ). If V = n, then we write the 
group of n × n invertible matrices as GLn().

(2) The special linear group {g∈GL(V ) : det(g) = 1}.

(3) Let V be a real (resp. complex) Hilbert space equipped with 
an inner product 〈⋅ , ⋅〉. The orthogonal group (resp. unitary group) 
consists of all transformations preserving the inner product, i.e.,

O(V )( resp. U(V )) = {g ∈ GL(V ) : ∀x, y ∈ V, 〈gx, gy〉 = 〈x, y〉}

If V = n (resp. n) equipped with the usual inner product, then the 
orthogonal group On (resp. unitary group Un) consists of all g ∈ GL(V ) 
such that gt = g-1 (resp. g* = g-1 ).

(4) Let V = n ⊕ n equipped with the sympletic form

1 2
1 2 1 2

1 2
, : , , .( )   

= 〈 〉 − 〈 〉   
   

x x
Q x y y x

y y

The real sympletic group is the subgroup of GL(V ) preserving Q:

2Sp( ) SP ( ) : { ( ) : , , ( , ) ( , )}.= = ∈ ∀ ∈ =nV M GL V x y V Q Mx My Q x y

(5) Let 0 < m, n and consider the group of block upper triangular 
real matrices 

, ,( ) : ( ), ( ), ( ) .
0

{ }+
 

= ∈ ∈ ∈ ∈ 
 

   m n m n m m n n
A B

U GL A GL B M D GL
D

This is the subgroup of GL ( )+ m n  that carries the subspace 

{0}⊕

m  of ⊕ 

m n  into itself.

Exercise 8.1. (i) Verify that the subgroups in (2)-(5) are closed.

(ii) Verify the alternative characterizations of elements of the 
subgroup in items (3) and (5).

Exercise 8.2. Establish the following equivalence:

2SP ( );∈ nM

M* JM = J where 20
End( );

0
 

= ∈ − 


nI
J

I

If M has block matrix form 
 
 
 

A B
C D (where all submatrices are 

n ×  n), then

A* C, B* D are symmetric, and A* D − C* B=I

Definition 16. A real Lie algebra g is a real vector space equipped 
with a binary operation

[⋅ , ⋅ ] : g × g → g

satisfying the identities

(i) (Bilinearity) For all ,λ µ ∈  and , , ,∈X Y Z g

[ , ] [ , ] [ , ]λ µ λ µ+ = +X Y Z X Z Y Z

[ , ] [ , ] [ , ].λ µ λ µ+ = +X Y Z X Y X Z

(ii) (Skew symmetry) For all X, Y ∈ g

[ , ] [ , ];= −X Y Y X

(iii) (Jacobi identity) For all X, Y, Z ∈ g, 

[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0.

Exercise 8.3. Verify that End V equipped with the Lie bracket or 
commutator operation [A, B] = AB − BA is a Lie algebra.

It follows directly from the preceding exercise that any subspace of 
End V that is closed with respect to the Lie bracket operation is a Lie 
subalgebra.

We define a matrix semigroup S to be a closed multiplicative sub- 
semigroup of GL(V ) that contains the identity element. We define the 
tangent set of S by

( ) { End : exp( )  for all 0}.= ∈ ∈ ≥L S A V tA S t

We define a wedge in End V to be a closed subset containing {0} 
that is closed under addition and scalar multiplication by nonnegative 
scalars.

Proposition 17. If S is a matrix semigroup, then L(S) is a wedge. 

Proof. Since I = exp(t.0) for all t ≥ 0 and I ∈ S, we conclude that 0 
∈ L(S). If A ∈ L(S), then exp(tA) ∈ S for all t ≥ 0, and thus exp(rtA) ∈ S 
for all r, t ≥ 0  It follows that rA ∈ L(S) for r ≥ 0. Finally by the Trotter 
Product Formula if A, B ∈ L(S), then

exp( ( )) lim(exp( / )exp( / ))  for 0+ = ∈ ≥n
n

t A B tA n tB n S t

since S is a closed subsemigroup of GL(V ). Thus A + B ∈ L(S). 

Theorem 18. For a matrix group G  ⊆ GL(V ), the set

{ End : exp( )  for all }.= ∈ ∈ ∈A V tA G tg

is a Lie algebra, called the Lie algebra of G.

Proof. As in the proof of Proposition 17, g is closed under addition 
and scalar multiplication, i.e., a subspace of End V. By the Commutator 
Formula for A, B ∈g,

2
exp([ , ]) lim((exp / )(exp / )(exp( / )(exp( / )= − − ∈n

n
A B A n B n A n B n G

since G is a closed subgroup of GL(V ). Replacing A by tA, which again 
is in g, we have exp(t[A, B]) = exp([tA, B]) ∈ G for all t ∈ . Thus [A, 
B] ∈ g. 

Exercise 8.4. Show for a matrix group G (which is a matrix semi- 
group, in particular) that g = L(G).

Lemma 19. Suppose that G is a matrix group, {An} is a sequence in 
End V such that An → 0 and exp(An) ∈ G for all n. If snAn has a cluster 
point for some sequence of real numbers sn, then the cluster point belongs 
to g.

Proof. Let B be a cluster point of snAn. By passing to an appropriate 
subsequence, we may assume without loss of generality that 
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snAn converges to B. Let t ∈  and for each n pick an integer mn such 
that | mn− tsn | < 1. Then        

 

= ( ) ( ) ||
| | | |

| | 0

− − + −
≤ − + −
≤ + − →

n n n n n n n

n n n n n

n n n

m A tB m ts A t s A B
m ts A t s A B
A t s A B

  

   

     

which implies mnAn → tB. Since exp(mnAn) = (exp An)
mn  ∈ G for each n 

and G is closed, we conclude that the limit of this sequence exp(tB) is in 
G. Since t was arbitrary, we see that B ∈ g. 

     We come now to a crucial and central result.

Theorem 20. Let G ⊆ GL(V ) be a matrix group. Then all sufficiently 
small open neighborhoods of 0 in g map homeomorphically onto open 
neighborhoods of I in G.

Proof. Let Br(0) be a  BCH-neighborhood  around 0 in End V, 
which maps homeomorphically under exp to an open neighborhood 
exp(Br(0)) of I in GL(V ) with inverse log. Assume that exp(Br(0) ∩ g) 
does not contain a neighborhood of I in G. Then there exists a sequence 
gn contained in G but missing exp(Br(0) ∩ g) that converges to I. Since 
exp(Br(0)) is an open neighborhood of I, we may assume without loss 
of generality that the sequence is contained in this open set. Hence An = 
log gn is defined for each n, and An → 0. Note that An ∈ Br (0), but An ∉ g, 
for each n, since otherwise exp(An) = gn ∈ exp(g ∩ Br(0)).

Let W be a complementary subspace to g in End V and consider the 
restriction of the BCH-multiplication µ (A, B) = A ∗ B to (g ∩ Br(0)) × 
(W ∩ Br(0)). By the proof of Proposition 12, the derivative dµ(0,0) of µ 
at (0, 0) is addition, and so the derivative of the restriction of µ to (g ∩ 
Br(0)) × (W ∩ Br(0)) is the addition map + : g × W → End V. Since g and 
W are complementary subspaces, this map is an isomorphism of vector 
spaces. Thus by the Inverse Function Theorem there exists an open ball 
Bs(0), 0 < s ≤ r, such that µ restricted to (g ∩ Bs(0)) × (W ∩ Bs(0)) is a 
diffeomorphism onto an open neighborhood Q of 0 in End V . Since 
An ∈ Q for large n, we have An = Bn ∗ Cn (uniquely) for Bn ∈ (g ∩ Bs(0)) 
and Cn ∈ (W ∩ Bs(0)). Since the restriction of µ is a homeomorphism 
and 0 ∗ 0 = 0, we have (Bn,  Cn) → (0, 0), i.e., Bn → 0 and Cn → 0.

By compactness of the unit sphere in End V, we have that Cn/||Cn|| 
clusters to some C ∈ W with ||C || = 1. Furthermore,

gn = exp(An) = exp(Bn ∗  Cn) = exp(Bn) exp(Cn)

so that exp(Cn) = (exp Bn)
-1 gn ∈ G. It follows from Lemma 19 that C ∈ 

g. But this is impossible since g ∩ W = {0}and C ≠ 0. We conclude that 
exp(Br(0) ∩ g) does contain some neighborhood N of I in G.

Pick any open neighborhood U = (Br(0) ∩ g) of 0 in g such that 
exp(U) ⊆ N. Then exp U is open in exp(Br(0) ∩ g) (since exp restricted 
to Br(0) is a homeomorphism), hence is open in N, and thus is open in 
G, being an open subset of an open set. 

We sketch here how that theory of matrix groups develops from 
what we have already done in that direction. Recall that a manifold is 
a topological space M, which we will assume to be metrizable, that has 
a covering of open sets each of which is homeomorphic to an open 
subset of euclidean space. Any family of such homeomorphisms from 
any open cover of M is called an atlas, and the members of the atlas are 
called charts. The preceding theorem allows us to introduce charts on 
a matrix group G in a very natural way. Let U be an open set around 
0 in g contained in a BCH-neighborhood such that W = exp U is an 
open neighborhood of I in G. Let  λg: G → G be the left translation map, 

i.e.,  λg (h) = gh. We define an atlas of charts on G by taking all open 
sets g-1N, where N is an open subset of G such that I ∈ N ⊆ W and 
defining the chart to be log λg: g

-1N → g (to view these as euclidean 
charts, we identify g with some  n via identifying some basis of g with 
the standard basis of  n). One can check directly using the fact that 
multiplication of matrices is polynomial that for two such charts and 
φ and ψ, the composition φ ο ψ -1, where defined, is smooth, indeed 
analytic. This gives rise to a differentiable structure on G, making it 
a smooth (analytic) manifold. The multiplication and inversion on G, 
when appropriately composed with charts are analytic functions, and 
thus one obtains an analytic group, a group on an analytic manifold 
with analytic group operations. This is the unique analytic structure on 
the group making it a smooth manifold so that the exponential map is 
also smooth.

The Lie Algebra Functor
We consider the category of matrix groups to be the category 

with objects matrix groups and morphisms continuous (group) 
homomorphisms and the category of Lie algebras with objects 
subalgebras of some End V and morphisms linear maps that preserve 
the Lie bracket., The next result shows that the assignment to a matrix 
group of its Lie algebra is functorial.

Proposition 21. Let α : G → H be a continuous homomorphism 
between matrix groups. Then there exists a unique Lie algebra 
homomorphism

dα : g → h such that the following diagram commutes:

G   →    H 

exp↑         ↑ exp 

g   →  h.  dα

α

Proof. Let A ∈ g. Then the map β (t) := α(exp(tA)) is a one-parameter 
subgroup of H. Hence it has a unique infinitesimal generator Ã ∈ h 
Define dα (A) =Ã. We show that dα is a Lie algebra homomorphism. 

For r ∈ ,

α (exp(trA)) = exp(trÃ),

so the infinitesimal generator for the  left-hand  side is rÃ. This 
shows that dα (rA) = rÃ = rdα (A), so dα is homogeneous.

Let A, B ∈ G. Then

( exp)( ( )) = ( exp)( ) = ( (exp( / ) exp( / )) )lim

= ( (exp( / )) (exp( / )))lim

= (exp( / ) exp( / ))lim

= exp( ) = exp( ( )).

α α α

α α

+ +

+ +

 

 

  

n

n
n

n

n

n

t A B tA tB tA n tB n

tA n tB n

tA n tB n

tA tB t A B

This shows that dα (A + B) = Ã + B  = dα (A) + dα (B), and thus dα 
is linear. In an analogous way using the commutator, one shows that dα 
preserves the commutator.

If dα (A) = Ã, then by definition for all t, α (exp(tA)) = exp(tÃ).
For t = 1, α (exp A) = exp(Ã) = exp(dα (A)). Thus α ο exp = dα ο 

exp. This shows the square commutes. If  γ : g → h is another Lie algebra 
homomorphism that also makes the square commute, then for A ∈ g 
and all t ∈ ,
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exp(tdα (A)) = exp(dα (tA)) = α (exp(tA)) = exp(γ(tA)) = exp(tγ(A)).

The uniqueness of the infinitesimal generator implies dα (A) = γ (A), 
and hence dα = γ.

Exercise 9.1. Show that dα preserves the commutator.

Exercise 9.2. Let α : G → H be a continuous homomorphism of 
matrix groups. Then the kernel K of α is a matrix group with Lie algebra 
the kernel of dα .

10. Computing Lie Algebras

     In this section we consider some tools for computing the Lie 
algebra of a matrix group, or more generally a closed subsemigroup of 
a matrix group. We begin with a general technique.

Proposition 22. Let β (⋅ , ⋅) be a continuous bilinear form on V and set

G = {g ∈ GL(V ) : ∀x, y ∈ V, β (gx, gy) = β (x, y)}.

Then

g = {A ∈ End V : ∀x, y ∈V, β (Ax, y) + β (x, Ay) = 0}.

Proof. If A ∈ g, then β (exp(tA)x, exp(tA)y) = β (x, y) for all x, y ∈ 
V . Differentiating the equation with respect to t by the product rule 
(which always holds for continuous bilinear forms), we obtain

β (A exp(tA)x, exp(tA)y) + β (exp(tA)x, A exp(tA)y) = 0. 

Evaluating at t = 0 yields β (Ax, y) + β (x, Ay) = 0.

Conversely suppose for all x, y ∈ V, β (Ax, y) + β (x, Ay) = 0. Then 
from the computation of the preceding paragraph the derivative of

f(t) := β (exp(tA)x, exp(tA)y)

is f ′ (t) = 0. Thus f is a constant function with the value β (x, y) at 0. It 
follows that exp(tA) ∈ G for all t, i.e., A ∈  g.

Exercise 10.1. Apply the preceding proposition to show that the Lie 
algebra of the orthogonal group On() (resp. the unitary group Un()) 
is the Lie algebra of n × n skew symmetric (skew hermetian) matrices.

Exercise 10.2. (i) Use the Jordan decomposition to show for any A 
∈ Mn(), exp(tr A) = det(exp A).

(ii) Use (i) and Exercise 9.2 to show that the Lie algebra of the 
group SLn() of complex matrices of determinant one is the Lie algebra 
of matrices of trace 0. (Hint: the determinant mapping is a continuous 
homomorphism from GLn() to the multiplicative group of  non-
zero complex numbers.)

(iii) Observe that L(G ∩ H) = L(G) ∩ L(H). What is the Lie algebra 
of SUn(), the group of unitary matrices of determinant one?

Exercise 10.3. Let V =  n ⊕   n  equipped with the canonical 
sympletic form

1 2
1 2 1 2

1 2
, : , , .( )   

= 〈 〉 − 〈 〉   
   

x x
Q x y y x

y y

The Lie algebra of Sp(V ) is given by 

sp(V)=( ) .
* * *: , ,=

   =− = =  
   

V

A B
D A B B C C

C D
sp

(Hint: If (exp tA)* J(exp tA) = J for all t, differentiate and evaluate 

at t = 0 to obtain A* J + JA = 0. Multiply this out to get the preceding 

conditions. Conversely any block matrix satisfying the conditions can 
be written as

*
0 0 0 0

.
0 0 00

      
= + +      

−       

AA B B
C D CA

Show directly that each of the summands is in sp(V) and use the 
fact that sp(V) is a subspace.)

We introduce another general technique, this time one that applies 
to semigroups and groups.

Proposition 23. Let W be a closed convex cone in the vector space 
End V that is also closed under multiplication. Then S := (I + W) ∩ GL(V) is 
a closed subsemigroup of GL(V ) and L(S) = W.

Proof. Let X, Y ∈ W. Then (I +X) (I +Y) = I +X +Y +XY ∈ I +W since 
W is closed under multiplication and addition. Thus I + W is a closed 
subsemigroup, and thus its intersection with GL(V) is a subsemigroup 
closed in GL(V).

Let A ∈ W. Then for 
1

0,exp( ) / !
∞

=
≥ = + ∑ n n

n
t tA I t A n  has all finite 

partial sums in I + W since W is closed under multiplication, addition, 
and scalar multiplication. Since the whole sum is the limit, it follows 
that exp(tA) is in the closed set I+W, and since the exponential image is 
invertible, it is in S. Thus A ∈ L(S).

Conversely assume that exp(tA) ∈ S for all t ≥ 0. Then

0
0

exp( )| exp( ) lim ,
+=

→

−
= = ∈t

t

d tA IA tA W
dt t

where the last assertion follows from the fact that exp(tA) ∈ I + W for 
t > 0, and hence exp(tA) ‒ I and therefore (1 ⁄ t)(exp(tA) ‒ I) are in W. 
Since W is closed the limit is also in W. 

Exercise 10.4. Use Proposition 23 to show the following in GLn() 
or GLn().

i. The group of unipotent (diagonal entries all 1) upper 
triangular matrices has Lie algebra the set of strictly upper triangular 
matrices.  

ii. The group of invertible upper triangular matrices has Lie 
algebra the set of all upper triangular matrices.

iii. The group of stochastic matrices (invertible matrices with all 
row sums 1) has Lie algebra the set of matrices with all row sums 0.

iv. The semigroup S of all invertible matrices with all entries 
non-negative has as its Lie wedge the set of matrices whose nondiagonal 
entries are nonnegative.

Suggestions for Further Reading
The author is indebted to two sources in particular that have greatly 

influenced these notes [1-6]. The first is Roger Howe's “Very Basic Lie 
Theory" [6]. Comparison with that source will show our indebtedness 
to that source, particularly in treatment of matters connected with 
the Baker-Campbell-Hausdorff formula. A second important source 
is what arose as the class notes on introductory Lie theory by Karl 
Hofmann, much of which was has been incorporated in Chapter 5 of the 
book “The Structure of Compact Groups” [5]. The idea of introducing 
Lie theory via matrix Lie theory also has been worked out by Morton 
Curtis [1]. A novel feature of these notes is the inclusion toward the 
end of the fairly recent notion of a Lie semigroup. More on this topic 
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can be found in the literature [2,3].  For a comprehensive treatment of 
Lie theory, one somewhat in the spirit of these notes, especially in its 
earlier parts, the author recommends the recent volume of Hilgert and 
Neeb [4].
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