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Abstract
Objectives: According to the cell language theory first proposed in 1997, living cells use a molecular 

language whose structure is similar to (or isomorphic) with the structures of the human language with respect to 
the 10 out of the 13 design features established by linguists.  One of the predictions of the cell language theory 
is that there should exist in the living cell what is referred to as ‘hypermetabolic pathways’ that correspond to 
texts in human language deemed essential for reasoning and computing. A mathematical method known 
as the Planck-Shannon plot is described that can be employed to identify the predicted hypermetabolic 
pathways that underlie human breast cancer and hence can serve as potential anti-cancer drug targets. 
Data and analytic method: The gene expression profile data measured with microarrays were provided by Perez-
Ortin’s group in Valencia, Spain and Perou and his coworkers at Stanford University. The mRNA data were transformed 
into histograms which were then fitted to the Planck Distribution Equation (PDE ( )( ) ( )( )( )5 /   /   / –  1C x By A x B e += + , to 
generate the numerical values for the parameters, A, B and C, that quantitatively characterize the shape of each 
histogram and hence the information contained in the original mRNA data set.  The fitting of mRNA data to PDE 
was performed by the Sovler program available in Excel.

Results: The hypermetabolic pathways, both intra-organismic, and inter-organismic, that are predicted 
by the cell language theory can be identified with the PDE-based analysis of mRNA data. The intra-organismic 
hypermetabolic pathway identified with PDE consists of 3 or more traditional metabolic pathways, while the inter-
organismic hypermetabolic pathway consists of one traditional metabolic pathway whose activity is correlated 
among 3 or more organisms exhibiting a common phenotype, e.g., breast cancer.

Conclusion: Ribonoscopy, defined as the genome-wide study of mRNA levels within an organism or between 
different organisms, when combined with the quantitative method of analysis afforded by the Planck Distribution 
Equation (PDE), can identify a novel class of metabolic structures referred to as “intra-organismic hypermetabolic 
pathways” and “inter-organismic hypermetabolic pathways” that can serve as potential targets of cancer drug 
therapy.

Keywords: Gene expression profiles; Cell-linguistic analysis of gene 
expression profiles; Hypermetabolic pathways; Planckian distribution 
equation; Planckian information; Shannon entropy; Planck-Shannon 
plot

Introduction
Ilya Prigogine (1917-2003) divides all structures in the Universe 

into two classes – the equilibrium and dissipative structures.  The 
former is exemplified by rocks, chairs, nucleotide sequences of DNA in 
a test tube, and 3-dimensional X-ray structures of enzymes and DNA 
molecules, etc. that can exist without using up energy, while the latter 
is exemplified by clouds, tornados, candle flames, action potentials 
across cell membranes, calcium ion gradients in the cytosol, life itself, 
etc. that cannot exist without dissipating free energy into heat [1,2]. For 
convenience, equilibrium and dissipative structures are referred to as 
‘equilibrons’ and ‘dissipatons’, respectively in [3].

Based on the concepts of equilibrium and dissipative structures, 
it is possible to define three distinct approaches to drug discovery 
researches as summarized in Table 1. The Top-Down approach of 
herbal medicine, for example, considers as drug targets equilibrium 
structures such as macroscopically visible disease symptoms of 
various kinds, with an estimated success rate of discovering a drug 
of about 1 in a million.  The Bottom-Up approach of molecular 
pharmacology targets 3-dimensional structures such as enzyme active 
sites determined by X-ray crystallography with the well-known success 
rate of 1 out of 100,000 [4].  The third approach referred to as “the 
hybrid” or “the complementary medical” approach combines both the 

macroscopic top-down and the microscopic bottom-up approaches, 
with the anticipated success rate of about 1 in 1000 [5].  These ideas are 
summarized in Table 1.

The 16th century Swiss physician, alchemist and astrologer, 
Paracelsus (1493/4-1541) is famous for having stated that 

“The dose makes the medicine.”                                                                                     (1)

The dose, when interpreted as the blood level of a substance, is an 
example of the dissipative structure of Prigogine, since the movement 
of a substance, say, X, into and out of the blood compartment entails 
dissipating free energy into heat (Figure 1).  This means that [X], the 
blood concentration of substance, X, at time t, is a dissipative structure 
or a dissipaton [3].

It is evident that there are at least two kinds of dissipative structures 
in blood: 
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The “right” dissipative structures that promote health (e.g., normal 
blood glucose levels) and the “wrong” dissipative structures (e.g., excessive 
blood glucose levels) that are harmful to health.                                              (2)

Thus, we can re-express Paracelsus’ dictum as follows:

“The wrong dissipative structure makes the poison.”                                                        (3)

Since Statement (3) is true, by definition (and experience), its 
opposite statement, (4), must also be true:

“The right dissipative structure makes the medicine.”                                                       (4)

This statement is theoretically isomorphic with the following dictum 
stated by L. Pauling (1901-1994) that underlies orthomolecular medicine:

The functioning of the brain is affected by the molecular 
concentrations of many substances that are normally present in the 
brain. The optimum concentrations of these substances for a person 
may differ greatly from the concentrations provided by his normal 
diet and genetic machinery. Biochemical and genetic arguments 
support the idea that orthomolecular therapy, the provision for 
the individual person of the optimum concentrations of important 
normal constituents of the brain, may be the preferred treatment for 
many mentally ill patients (5).

It is reasonable to assume that the term “brain” in Statement (5) 
can be replaced by the more general term, “body”, without losing the 
general validity.

Statement (6) below made by Prigogine when I visited him at the 
University of Texas Austin in or round 1984, I think, is also true and 
consistent with both Statements (3), (4) and (5):

“Life is a dissipative structure.”                                                                                      (6)

It appears to me that Statements (3) through (6) are consistent with 
and support the following generalization:

“Dissipative structures can be the targets of drug actions.”                                             (7)

A corollary of Statement (7) would be:

“There exist drugs that target dissipative structures.”                                                       (8)

Statement (8) is supported by the finding that doxorubicin can target 
hypermetabolic pathways.  These loosely related general statements are 
collected in Table 2 to reveal the hidden common threads.

The main objectives of this paper are three-fold – 

(i) To provide indirect evidence based on the analogy between cell 
and human languages that there exists a whole new class of structures 
in biology that underlie biological functions and hence can serve as 
drug targets [6-9].

(ii) To introduce a new mathematical equation, the Planckian 
Distribution Equation, that can identify certain dissipative structures that 
are related to what V. Norris called “hyperstructures” in 1999 [10-13].

(iii) To present the microarray evidence that there are sets of 
metabolic pathways referred to as ‘hypermetabolic pathways’ that are 
associated with drug-responsive breast cancer.

(iv) The bhopalator model of the living cell and the cell language.

Pharmaceutical scientists who are trying to design a drug without a 
theoretical model of the living cell, I suggest, is akin to atomic physicists 
who are trying to explain atomic spectra without a theoretical model of 
the atom such as Bohr’s atom or its more modern versions [14].

Although it had been known since the mid-19th century that the cell 
is the smallest unit of the structure and function of all living systems 
[15], it was apparently not until 1985 that the first comprehensive 
theoretical model of the cell was proposed [16-18].  In that year, a 
theoretical model of the living cell called the Bhopalator (Figure 2 
and Table 3) appeared in which both the energetic and informational 
aspects of the living cell were integrated on an equal footing, based on 
the supposition that life is driven by gnergy, the complementary union 

Approach 
(examples; estimated 

success rates)

Drug Target
Equilibrium Structures 

(also called Equilibrons [3]); 
e.g. macroscopic disease 
symptoms, microscopic 

3_dimensional structures 
of receptors, enzymes, 

DNA, etc.

Dissipative Structures 
(also called Dissipatons 

[3]); 
e.g., action potentials, 
metabolite gradients in 

the cytosol, life, etc.

1.  Top-down  
(e.g., herbal medicine; 1 

out of 106 ?)
- +

2.  Bottom-up
(e.g., molecular 

pharmacology, receptor 
pharmacology; 1 out of 

105 [5])

+ -

3. Hybrid  
(or Complementary 

medical)
(e.g., PDE-based 

ribonoscopy [4, 5]; 1 out 
of 102 ?)

+ +

Table 1: The three main approaches to drug discovery [5].

                                      

                                         Rin                                                                                      Rout                                            

                                 

                                                      d[X]/dt=Rin – Rout                                                  (2) 

 
           [X] 
 
Blood Compartment 

Figure 1:  A simplified diagram (upper panel) is representing the mathematical 
definition (lower panel) of the dose as the balance between the rates of input 
into and output from the blood compartment of a substance, X.  R=the rate of 
the movement of substance X in or out of the blood compartment of the human 
body; i.e., the amount of X moved during a given time period, [ ]  /R d X dt= , 
where d[X] and dt can be infinitesimally small quantities.

Variables Paracelsus 
(1493/4-1541)

Pauling
(1901-1994)

Prigogine 
(1917-2003)

Time 16th century 20th century 20th century

Original dictum The dose makes 
the poison.

Optimum molecular 
concentrations of 

substances normally 
present in the body. 

[43].

Life is a 
dissipative 
structure.

Dictum re-
expressed in 
the language 
of irreversible 

thermodynamics

The wrong 
dissipative 

structure makes 
the poison

The right dissipative 
structure makes the 

medicine.

The right 
dissipative 

structure makes 
the medicine.

Paracelsus-
Pauling-Prigogine 
Paradigm of Drug 
Discovery (or the 

P3 paradigm)

Dissipative structures can be drug targets.

Table 2:  The derivation of the Paracelsus-Pauling-Prigogine (P3) Paradigm of 
Drug Discovery (or the P3 paradigm).
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Note: (Upper panel) The Bhopalator - A molecular model of the living cell.  Adopted from [16-18]. The cell is viewed as the physical system wherein micro-meso 
correlations occur under a wide variety of environmental conditions supported by free energy utilizing enzymes acting as molecular machines [19].  The Bhopalator 
consists of a total of 20 major steps: 1= DNA replication; 2=transcription; 3= translation; 4=protein folding; 5=substrate binding; 6=activation of the enzyme-substrate 
complex; 7=equilibration between the substrate and the product at the transition state; 8=product release contributing to the formation of the intracellular dissipative 
structures (IDSs); 9=recycling of the enzyme; 10=IDS-induced changes in DNA structure; 11 through 18=  feedback interactions mediated by IDSs; 19=input of 
substrate into the cell; and 20=the output of the cell effected by IDSs, which makes cell function and IDSs synonymous. 

(Lower panel) Isomorphism between cell and human languages [7-9].   

1Just as verbal sentences (as written) are strings of words arranged linearly in the Euclidean space, so the cell-linguistic (or molecular) sentences are visualized as 
series of gene expression events arranged in space and time leading to dissipative structures or dissipatons [3].

 2Of all the folds of DNA and polypeptides allowed for by the laws of physics and chemistry, only small subsets have been selected by evolution (thereby giving rise to 
biological information) to constitute the genome of a cell. 

 3Sequence-specific conformational strains that carry both free energy (to do work) and genetic information (to control work) [20,21]. Conformons are akin to molecular 
batteries that provide immediate driving force (or serve as the force generators) for all molecular machines catalyzing non-random molecular processes inside the cell. 
Experimental evidence for conformons [3].  

 4Space- and time-specific intracellular gradients of ions, biochemicals, and mechanical stresses (e.g., of the cytoskeletal system) that serve as the immediate driving 
forces for all cell functions on the microscopic level [3].

5Also called “conformational” interactions which involve neither breaking nor forming covalent bonds and depend only on the rotation around, or bending of, covalent 
bonds.  Non-covalent interactions implicate smaller (free) energy changes (typically around 1 to 3 Kcal/mole) than covalent interactions which entail (free) energy 
changes in the range of 30-100 Kcal/mole. 

6Molecular interactions that involve changes in covalent bonds, i.e., changes in valence electronic configurations around nuclei of atoms within a molecule.

 7This row is added to the original table published in [7,8]. The third articulation [22] is a generalization and an extension of second articulation. Intercellular communication 
through chemical concentration gradients is well established in microbiology in the phenomenon of quorum sensing [3,23,24], whereby bacteria express a set of genes 
only if there are enough of them around so that they can combine and coordinate their efforts to accomplish a common task which is beyond the capability of individual 
bacteria.  This phenomenon can be viewed as a form of reasoning and computing on the molecular level and the cell therefore can be viewed as the smallest DNA-
based computational unit [25], which may be referred to as the computon.

Figure 2: The Bhopalator model of the living cell and its molecular language.



Citation: Ji S (2018) Mathematical (Quantitative) and Cell Linguistic (Qualitative) Evidence for Hypermetabolic Pathways as Potential Drug Targets. 
J Mol Genet Med 12: 343 doi:10.4172/1747-0862.1000343

Volume 12 • Issue 2 • 1000343
J Mol Genet Med, an open access journal
ISSN: 1747-0862

Page 4 of 10

of information and energy [3,18,19].  The name Bhopalator reflects 
the fact that the cell model was born as a result of the lectures that 
I presented at the international conference entitled The Seminar on 
the Living State, held in Bhopal, India in 1983, ably organized by Prof. 
R. K. Mishra of the All India Institute of Medical Science, New Delhi. 
The suffix, “-ator” indicates that the model assumes that the cell is a 
self-organizing chemical reaction-diffusion system (i.e., a dissipative 
structure or a dissipaton) [3].

The Bhopalator model of the cell consists of a set of arrows 
(i.e., directed edges) and nodes enclosed within a 3-dimensional 
volume delimited by the cell membrane (Figure 2). The system is 
thermodynamically open so that it can exchange matter and energy 
with its environment [19,20]. The arrows indicate the directional 
flows of information driven by free energy dissipation.  The solid 
arrows indicate the flow of information from DNA to the final 
form of gene expression postulated to be the dissipative structures 
theoretically investigated by Prigogine and his schools [21-27].   
 
It is noteworthy that nothing is new in the Bhopalator model of the 
cell, except the concept of the intracellular “dissipative structures’ 
(IDSs) of Prigogine (Figure 2), which can be viewed as including the 
“hyerstructures’ of Norris et al. [13].  Until now, there has been no 
mathematical method to characterize IDSs, and it is one of the main 
objectives of this paper to present one that is based on the Planckian 
Distribution Equation (IDS) derived from the blackbody radiation 
equation discovered by M. Planck in 1900 that revolutionized physics 
in the 20th century [11]. 

The Cell Language Theory (CLT)
The lower panel of Figure 2 compares the cell and human 

languages at 9 different levels of organizations [7-9].  In contrast, Table 
3 analyzes the cell language based on the principle of matter-form 
complementarity, the top row representing the material aspect and the 
left-most column representing the  formal aspect.   Probably the most 
significant features of Table 3 are: 

(i) The cell language consists of 4 sub-languages (called DNese, 
RNese, proteinese, and chemicalese), and 

(ii) These sub-languages have distinct functions (as indicated in the 
first row), all of which are essential for living cells to communicate with 
one another in space and time, driven by the free energy supplied by 
the chemical reactions that enzymes catalyze. 

(iii) To the best of my knowledge, Table 4 provides for the first time 
the principle-based rationale for the existence of the 4 molecular sub-
languages in the living cell that are mediated by DNA, RNA, proteins, 
and biochemicals, the four material components that constitute the 
Bhopalator. 

(iv) There are many empty boxes in Table 4 yet to be filled.   The 
most well-established sub-language may be the protein language 
consisting of well-established concepts of “domains” which are thought 
to correspond to letters, “proteins” to words, “metabolic pathways” to 
sentences, and finally “hypermetabolic pathways” to texts, for the last 
of which experimental evidence will be presented below.  Thus, the 
protein language may provide a valuable guide for inferring the content 
of the empty or uncertain boxes in other sub-languages.

Variables Human Language (Humanese) Cell Language (Cellese)
1. Alphabet (L) Letters 4 Nucleotides (or 20 Amino acids)
2. Lexicon (W) Words Genes (or Polypeptides)

3. Sentences (S) Strings of words Sets of genes (or polypeptides) expressed (or synthesized) coordinately in space and 
time dictated by DNA folds1 (cell states).

4. Grammar (G) Rules of sentence formation The physical laws and biological rules mapping DNA sequences to folding patterns of 
DNA (polypeptides) under biological conditions2.

5. Phonetics (P)
Physiological structures and processes 

underlying phonation, audition, and 
interpretation, etc.

Concentration and mechanical waves responsible for information and energy transfer 
and transduction driven by conformons3 and intracellular dissipative structures (IDSs)4.

6.  Semantics (M) Meaning of words and  
sentences Codes mapping molecular signs to gene-directed cell processes

7.  First Articulation Formation of sentences from words

Organization of gene expression events in space and time through non-covalent 
interactions5 between DNA and proteins (or Space- and time-dependent non-covalent 

interactions among proteins, DNA, and RNA molecules). Thus, macromolecular 
complexes can be viewed as molecular analogs of sentences.

8. Second Articulation Formation of words from letters Organization of nucleotides (or amino acids) into genes (or polypeptides) through 
covalent interactions6.

9. Third Articulation Formation of texts from sentences Organization of chemical concentration gradients in space and time called dissipative 
structures [3,27,28] or dissipatons in order to ‘reason’ and ‘compute’7. 

Table 3: A formal comparison between human and cell languages [7,8,9].

                                     Material Aspect
                                              (Function)
Formal Aspect 
(Function)

DNA Language  
(DNese; 

Information transmission in time)

RNA Language 
(RNese;

Information transmission 
in space, from DNA to 

proteins)

Protein Language
(Proteinese; 

Energy transduction
from chemical to mechanical; i.e., 

conformon production)

Chemical Language 
(Chemicalese;  Source of free 

energy)

Letters (Basic building blocks) 4n nucleotides 
n = 1, 2, 3, 4, . . .Exons (?) Protein domains Partial chemical reactions

Words (To denote) Genes Proteins Full chemical reactions
Sentences (To decide) cis-Genes (?)* Metabolic pathways Chemical gradients

Texts (To reason) trans-Genes (?)* ‘Hypermetabolic pathways’ Chemical waves (?)
Note: *cis-Genes are here defined as those genes covalently linked to each other and hence being in the same chromosome, whereas trans-genes are defined as those 
genes that are located in different chromosomes and yet can interact with one another through non-covalent interactions.

Table 4: The formal and material aspects of the cell language (Cellese).
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(v) It is generally assumed in the current biochemistry and 
molecular biology text books that there is only one genetic alphabet 
consisting of 4 nucleotides whose bases are adenine (A), cytosine (C), 
guanine (G) and thymine in DNA (or uracil in RNA).  In stark contrast, 
Table 4 assumes that there is n (with n=1 ~ 10^3?) genetic alphabets 
(named the nth-order alphabet), each containing  4n letters  and each 
letter in turn consisting of n nucleotides (Table 5).   In this view, the 
64 codons are the so-called 3rd-order letters, not words as widely 
assumed.  There are evidences that each of the multiple genetic 
alphabets postulated here may have distinct biological functions, some 
of which have been discovered by Trifonov [28-31]. If this interpretion 
is correct, what Trifonov refers to as “multiple codes” would be related 
to what is here called the “multiple genetic alphabets”.

What is the Planckian Distribution Equation (PDE)?
The Planckian Distribution Equation (PDE) can be viewed as 

a generalization of the blackbody radiation equation discovered by 
Planck (1858-1947) in 1900 that led to the development of quantum 
mechanics around 1925, revolutionizing physics in the 20th century.

Blackbody radiation refers to the emission of photons by material 
objects that completely absorb photons impinging on them.  An 
example of the radiation from a heated object is given in Figure 3(a) 
which shows emission of different color (i.e., different wavelength 
light) as a function of temperature which varies on the surface of the 
lava. When the light intensity of a blackbody is measured at a fixed 
temperature, the so-called “blackbody radiation spectrum” is obtained 
as shown in Figure 3(b).  Max Planck (1858-1947) succeeded in deriving 
the mathematical equation given in Figure 3(c) Equations (8.1) that 
quantitatively accounted for the blackbody radiation spectra [32-
34].  The key to his success in deriving the so-called Planck Radiation 
Equation (PRE) was his assumption that light is emitted or absorbed by 
matter in discrete quantities called “quanta of action”.  When Planck 
discovered PRE-in 1900, he probably could not have imagined that his 
equation one day might be extended beyond physics to biology and 
related fields implicating temperatures far lower than those required 
for blackbody radiation.  However, since 2008 (reviewed in [3]), 
Planck’s radiation equation, Eq. (8.1) in Figure 3, when generalized 
in the form of what has been variously referred to as the blackbody 
radiation-like equation (BRE), the generalized Planck equation (GPE), 
or the Planckian Distribution Equation (PDE) (see Eqs. (8.2) and (8.3) 
in Figure 3), has been found to fit not only the long-tailed histograms 
generated from atomic physics (i.e., the blackbody radiation spectra) 
but also those generated from or associated with (i) protein folding,  
(ii) single-molecule enzyme catalysis, (iii) genome-wide RNA levels 
measured in yeast, (iv) genome-wide RNA levels measured in human 
breast tissues,  (v) human T-cell receptor gene sequence diversity, (vi) 

7-mer frequency distribution in Pyrocccus abyssi;  (vii) the codon profile 
in the human genome;  (viii) protein length frequency distribution in 
Haemophilus influenzae; (ix) brain neuroarchitectural changes induced 
by stress in rats; (x) electrocorticographic responses of the olfactory 
cortex to impulses; (xi) functional magnetic resonance imaging (fMRI) 
signals from the human brain before and after the infusion of the 
hallucinogen, psyilocybin;  (xii) sentence-length frequency distribution 
in private letters; (xiii) word-length frequency distribution in English 
texts; (xiv) word-length frequency distribution in John Kerry’s speech 
in 2004; (xv) The F0 histogram of the reading sound of a book;  (xvi) 
the decision-time histogram; (xvii) the 1996 US annual income 
distribution; (xviii) the 2013 US annual income distribution; and the 
polarized cosmic microwave background radiation (Eq. 8.6).

It is suggested that the Planckian distribution equation (PDE), 
either the 4- or 3-parameter version, i.e., Eqs. (8.2) or (8.3) in Figure 
3(d), respectively, is a new distribution law, comparable to the 
Gaussian distribution equation (GDE), that applies to a wide range 
of experimental data as does GDE. One plausible explanation for 
this seeming universality of PDE may be that, underlying all the so-
called Planckian processes (defined as the physicochemical processes 
generating data that fit PDE [37]), there are common physical 
processes mediated by ‘standing waves’ (electromagnetic, gravitational, 
mechanical, and concentration) as represented by the first term in the 
Planckian distribution law (Figure 3(e).  The number of standing waves 
present within a system is determined by the volume and topology of 
the system being heated, as schematically represented in Figure 4.

The Wave-Particle Duality in Biology and Medicine 
Since the blackbody radiation equation (BRE) consists of two 

components – the first term related to the number of standing waves 
and the second term related to the average energy of the standing waves 
[33] and since the Planck Distribution Equation (PDE) has the same 
mathematical form as BRE, it is assumed that the same interpretation 
of the two terms of BRE applies to those of PDE, as indicated in 
Figure 3(d).  If this postulate is valid, it may be inferred  that the 
wave aspect (which is related to the global information of the system 
under consideration) of the wave-particle duality would play a role as 
important in biomedical sciences as the particle aspect which is related 
to local energy production from individual enzymes inside living cells.

All dissipative structures may be viewed as “wave packets”, 
involving (i) electromagnetic waves, (ii) mechanical waves (e.g., 
sounds, conformational waves in DNA, RNA, and proteins), (iii) 
chemical waves (e.g., calcium waves in muscle cells, action potentials), 
and/or gravitational waves.  Since the frequency and the shape of 
standing waves are well known to be determined by the mass and 

Human 
Language

Cell Language
Structure of molecular alphabets Function

Alphabets

 

1st-order 41 = 4 singlets (A, C, G, T) Encoding 1-nucleotide frame shift?
2nd-order 42 = 16 doublets (AC, AG, AT, CA, CG, CT, GA, etc.) Encoding 2-nucleotide frame shift? DNA shape code [31], chromatin code [31]
3rd-order 43 = 64 triplets (AAA, AAC, AAG, AAT, ACA, etc.) Encoding amino acids, stop, and start codons
4th-order 44 = 256 tetrads (AAAA, AAAC, AAAG, AAAT, etc.) Translation frame code? [31]?

5th-order 45 =   1024 pentads (AAAAA, AAAAC, AAAAG, 
AAAAT, etc.) Translation frame code? [31]?

Words Genes Encoding the primary structure of proteins (e.g., insulin)
Sentences Gene systems Encoding systems of enzymes catalyzing metabolic pathways (e.g., glycolysis) 

Texts Systems of gene systems Encoding systems of metabolic pathways working as functional units (e.g., 
chemotaxis)

Table 5:  The multiple genetic alphabet (MGA) hypothesis. The structure and function of the cell language inferred on the basis of the postulated isomorphism between 
human and cell languages and the role of vibrational resonances in genetic structures [7-9,29,30].
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     λ =Wavelength

     c =Speed of light

     k =Boltzman constant

     h =Planck’s constant

     e =2.71828182

     [T]=  Kelvin (Temperature)

     [λ]= Meters

     h =6.626.1034 J.s

     c =2.998.108 m/s

     k =1.381.10-23 J/K
        

                 a                     1 

  y=                    •                                       

           (Ax + B)5       eb/(Ax + B) - 1

               A                    1

  y=                  •                               

            (x + B)5       eC/(x + B) – 1

         A=a/A5                                   (8.4)

         B=B/A                                    (8.5)

         C=b/A                                    (8.6)

     λ =Wavelength

     c =Speed of light

(a) (c)

(8.1)

(a) 

(b)

(c)

(8.1)

(d) (e)

(8.2) (8.3)

Number of modes 
vibrations per unit
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     k =Boltzman constant

     h =Planck’s constant

     e =2.71828182

     [T]=  Kelvin (Temperature)

     [λ]= Meters

     h =6.626.1034 J.s

     c =2.998.108 m/s

     k =1.381.10-23 J/K
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               A                    1
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Figure 3:  Reproduced from [9].  (a)   Blackbody radiation.  (b) The blackbody radiation spectra.  (c) The Planck radiation equation.  Reproduced from [33]. (d) The 
blackbody radiation-like equation or BRE [3], also called the generalized Planck equation (GPE) or the Planckian Distribution equation (PDE). The interpretation of the 
two terms were reproduced from http://hyperphysics.phy-astr.gsu.edu/hbase/mod6.html. (e) The 3-parameter (colored red) version of BRE/GPE/PDE.  The relations 
between the 4- and 3-parameter versions of BRE/GPE/PDE are given in Figure 3 Eqs. (8.4), (8.5), and (8.6).  



Citation: Ji S (2018) Mathematical (Quantitative) and Cell Linguistic (Qualitative) Evidence for Hypermetabolic Pathways as Potential Drug Targets. 
J Mol Genet Med 12: 343 doi:10.4172/1747-0862.1000343

Volume 12 • Issue 2 • 1000343
J Mol Genet Med, an open access journal
ISSN: 1747-0862

Page 7 of 10

embodied in PDE (Figure 3).  Thus, one possible way to account for 
the universality of the Planckian distribution equation (PDE) in nature 
is to postulate that the wave-particle duality first discovered in atomic 
physics operates at all scales of material systems, from atoms to the 
Universe [32] as schematically depicted in Figure 4.

Planckian Information of the Second Kind (IPS)
One mechanism of generating PDE from Gaussian distribution is 

what I call the "Rutgers University Admissions Mechanism" (RUAM).  
If RAUM does not take  into account the students' heights in their 
admissions process, the height distribution of the RU students would 
be most likely  Gaussian.   However, if RUAM favors short  students 
over tall  ones, the RU students' height distribution  will be skewed 
from the normal curve thus producing a long-tailed histogram that 
will most likely fits PDE.   The degree of skewness of PDE from its 
Gaussian counterpart (with an equal area under the curve) can be 
used as a measure of the information used by RAUM in selecting RU 
students.  The information derived from PDE based on its skewness 
will be referred to as the Planckian information of the second kind, IPS, 
defined by (Eq. 9) to be distinguished from the Planckian information 
defined previously (Eqn 10), i.e., Planckian information of the first 
kind, IPF.

( )( )2  –  /PSI log µ mode σ= −                                                            (9)

where µ and σ are the mean and the standard deviation of the long-
tailed histogram under consideration.  

We have   found that some  experimental data (e.g., 
digitized water wave patterns produced by the sonified Raman spectral 
bands measured from single cells) that fit PDE are better modeled with 
IPF and some others (e.g., the mRNA levels measured from yeast cell 
ensembles) are better modeled with IPS.

These observations indicate that: 

(a) There can be more than one kind of information that can be 
defined based on the same empirically derived mathematical equation, 
probably depending on underlying physical mechanisms.

(b) The reasoning in (a) suggests that the mathematically defined 
"information" is  arbitrary  in the sense of Saussure’s arbitrariness of 
signs [37-39].

(c)  The mathematically defined "information" can be viewed as a 
sign in the Peircean sense [40-44] and hence is irreducibly triadic as 
depicted in Figure 5.

Data and Analysis 
The experimental data analyzed in this paper were published by M. 

Perou and his coworkers who measured variation in gene expression 
patterns in a set of 65 surgical specimens of human breast tumors 
from 42 different individuals, using complementary DNA microarrays 
representing 8,102 human genes [40].  Twenty of the tumors were 
sampled twice, before and after 16-week doxorubicin chemotherapy.  
We analyzed the latter data by first transforming them into histograms 
(using Excel program) which were then fitted into PDE utilizing the 
Solver program available in Excel.  The key steps involved in analyzing 
mRNA data based on PDE are summarized in Figure 6. Once a set of 
mRNA data is transformed into a long-tailed histogram that can be 
fitted into PDE (Figure 7), two numbers can be obtained – (i) Planckian 
information of the second kind, IPS (see Step 3), and (ii) Shannon 
entropy, H (see Step 4).  These numbers can be represented as a point 
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                                 System of Oscillators
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Figure 4: The possible common mechanism underlying the Planckian processes, 
i.e., those processes that generate numerical data that fit PDE. The material 
system embodying the Planckian processes is represented as a system of 
oscillators (i.e., atoms, biopolymers, enzymes, cells, tissues, brains, cosmos) that 
generate standing waves powered by the input energy. Depending on shapes of 
the standing waves and their average energies, different observables  are thought 
to be outputted: 1=Blackbody radiation; 2=Protein folding; 3=Enzyme catalysis; 
4=RNA levels in cells; 5=RNA levels in cancer tissues; 6=T-cell receptor variable 
region gene diversity; 7=fMRI signal histograms; 8=Decision-time histograms; 
9=Polarized cosmic microwave background. Adopted from [9,32].

                                                   f                                      g                

                           Referent ----------> Information  -----------> Understanding 

                             (Object)                       (Sign)                           (Interpretant) 

                               |                                                                             ^ 

                                   |                                                                              | 

                                   |                                                                              | 
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                                   |_______________________________________| 

                                                                            h 

Figure 5: The arbitrariness of the term information. That is, the term ‘information’ 
(viewed as a Peircean sign) can mean (i.e., can refer to) anything as long as it is 
understood by the interpreter of the sign. f=sign production; g=sign interpretations; 
h=correlation, grounding, or information flow [9] (Figure 6.1). The terms in blue letters 
are those of semiotics (the study of signs) developed by the American chemist, 
logician and philosopher, Charles Sanders Peirce (1839-1914).

                            1                           2                        3 

    mRNA Data -----> Histograms -----> A, B & C------> IPS   -------| 

                                         |                                                              |    5 

                                    4   |                                                              |------> Planck-Shannon Plot 

                                         |                                                              | 

                                         |-----------------------------------> H ------| 

Figure 6: The 5-step analysis of mRNA data based on PDE. 1=Histogram software 
in Excel; 2=Fitting of mRNA data to PDE (Planckian Distribution Equation), (8.3) 
in Figure 3, implemented by the Solver program in Excel; 3=computed based on 
Eq. (12); 4=Computed based on Eqs. (9) and (10); 5=Scatter plot in Excel. A, B 
and C=the parameters of PDE; IPS=Planck information of the second kind, Eq. 
(11); H=Shannon entropy, Eqs. (11) and (12).

geometry of the oscillator [35,36], many of the numerical regularities 
revealed by the nucleotide sequence structures and the atomic numbers 
of DNA (viewed as an organized system of oscillators obeying the 
Fourier theorem) that Petoukhov [29] and others have uncovered  may 
find natural explanations in the language of the wave-particle duality 
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in the so-called Planck-Shannon plot (Figure 6 and Table 2] [38].  In 
short, the Planck-Shannon plot reduces a set of 40~50 numbers (each 
representing a mRNA level) or a given metabolic pathway to a point in 
the Planck-Shannon graph or space.

Several sets of about 10 metabolic pathways selected randomly were 
analyzed following the scheme in Figure 6, each pathway having 40 or 
more ORFs (Open Reading Frames).  In most cases, the mRNA levels 
of each of these pathways produced a distinct long-tailed histogram 
whose shape fitted PDE thus generating three numbers corresponding 
to the three parameters of PDE, Eq. (8.3) in Figure 3.

The Planck-Shannon Space as the Semantic or Functional 
Space of Cell Language 

As already indicated above, once a long-tailed histogram is 
fitted into PDE, two numbers can be calculated – (i) the Planckian 
information of the second kind, IPS, Eq. (11), and (ii) the Shannon 
entropy (H) that can be calculated based on Eqs. (12) and (13):

2         i iH p log p= −Σ                                                                                               (10) 

where pi is the probability of observing the ith event or entity 
calculated as 

 / i i ip y y= Σ                                                                                                          (11) 

where yi is the frequency of the ith event of entity and the index 
I runs from 1 to n, the total number of events or entities. Thus, the 
information encoded in a long-tailed histogram can be visualized as a 
point in the Planck-Shannon space (Figure 7).

When a group of 10 metabolic pathways (each having a varying 
number of open reading frames as shown in the Figure 7) is chosen 
from the budding yeast transcriptome (measured over the 850 minute 
period of glucose-galactose shift experiments) [40,41], their mRNA 
levels were transformed into histograms, and the histograms fitted into 
PDE, 10 pairs of numbers can be generated, each pair corresponding 
to the Shannon entropy and Planckian information of the second kind 
as discussed above.  When these 10 pairs of numbers are plotted on 
the Planckian-Shannon space, a reasonably good liner correlation was 
found (Figure 7(a). However, when a similar set of 10 groups of mRNA 
levels are chose that have no known metabolic functions, although 
each of them too generated a long-tailed histogram that fitted PDE, the 
resulting 10 pairs of numbers did not produce any correlation when 
plotted in the Planck-Shannon space (Figure 7(b) and Table 6).

Therefore, the linear correlation among the 10 points seems 
to occur only when they are functionally related.  We tested this 
hypothesis with 8 other pairs of 10 groups of mRNA levels of known 
and unknown metabolic functions and found that 6 out of the 8 set 
of metabolic pathways showed liner correlations with correlation 
coefficients ranging from 0.60 to 0.75 while the 8 sets of mRNA levels 
with no known function showed no correlations, their correlation 
coefficients being less than 0.2. These observations support the 
following hypothesis:

“Each point on the Planck-Shannon space represents a metabolic 
pathway and a linear correlation among 3 or more such points represent 
what is here referred to as the ’hypermetabolic pathway’ that may 
underlie a cell function”                                                                                (12)

The ten points forming a correlated line indicates that the Planck-
Shannon space can recognize the third level of metabolic organizations 
as predicted in the last row of Tables 3 and 4 and Row 9 in Figure 2.   
In other words, the Planck-Shannon space can distinguish molecular 
sentences (or metabolic pathways) as individual points, regardless of 
whether correlated with one another or not, and molecular texts as 
linearly correlated points three or more in number.   

Applications of Ribonoscopy, the Cell Language Theory, 
and Planck-Shannon plots in Drug Discovery Research

Just as the study of electrons in atoms (i.e., atomic spectroscopy) 
revolutionized physics and information technology in the last century, 
so it may be predicted that the study of RNA molecules in living cells 
(called ‘ribonoscopy’, from ‘looking at RNA molecules’ using the 
microarray technique and its equivalent [3, Chapter 18 and 19) may 
revolutionize biology and medicine in the 21st century.  Quantum 
mechanics that developed in physics between 1900 and 1925 provided 
the theoretical foundation for the study of electrons in atoms.  Similarly, 
I suggest that the cell language theory whose beginning may be traced 
at least to Chargaff’s discovery of his parity rules in the middle of the 
20th century [42-44] may provide the theoretical foundation for the 
study of RNA molecules in living cells.  

The practical applications of the cell language theory, especially 
the concept of molecular text, as implemented by the PDE-based 
analysis of microarray data are illustrated in Figures 7(c) through f.  
If we define molecular texts as a functionally related set of 3 or more 
metabolic pathways  within a patient (to be referred to as the intra-

10 Transcription 175 

  

  

a
a b 

c d 

Figure 7: The 10 metabolic pathways analyzed. (Graphs) a and b=the functionally 
related (a) and unrelated (b) sets of mRNA data. c and d=the Planck-Shannon 
plots of 5 or 6 sets of mRNA levels encoding hypothetical protein measured from 
breast cancer tissues of short (5 patients) and long (6 patients) survivors before 
(BE) and after (AF) treating with doxorubicin for 16 weeks.  Data from Perou et 
al. [40].

Pathway # Biological Process Number of Open Reading Frames
1 Cell cycle 72
2 Cell wall biogenesis 53
3 Chromatic structure 44
4 Cytoskeleton 71
5 DNA repair 32
6 rRNA processing 37

7 Nuclear protein 
targeting 43

8 Protein synthesis 156
9 Transport 129

10 Transcription 175

Table 6: Biological process with number of open reading frames.
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organismic hypermetabolic pathways) or an identical pathway, e.g., 
the hypothetical protein pathway in Figure 7(c) through f,  distributed 
among 3 or more patients (to be referred to as the inter-organismic 
hypermetabolic pathways), we can study the effect of drugs on the 
latter kind of molecular texts using the Planck-Shannon plots, just as 
we can study the effect of drugs on ligand-receptor interactions using 
the Scatchard plot in biochemistry and pharmacology.

Since doxorubicin treatment induces the correlation of the 
hypothetical protein pathway among 5 long survivors (Figures 7(c) and 
7(d), it seems logical to conclude that the activation of this metabolic 
pathway (i.e., inter-organismic hypermetabolic pathway) is beneficial 
for breast cancer tissues and hence the hypothetical protein pathway 
can serve as a biomarker for anti-breast cancer drug discovery. That 
is, whenever a drug candidate induces the activation of this particular 
metabolic pathway in long surviving breast cancer patients (or in their 
breast cancer cell cultures), that drug candidate can be identified as an 
anti-breast cancer drug.

If one examines other metabolic pathways in the human genome 
using the Planck-Shannon plots, it may be possible to discover breast-
cancer biomarkers other than the hypothetical protein pathways.  To 
discover potential anti-breast cancer drugs, it would be necessary to 
test them on the transcriptional profiles of the cultured cells biopsied 
from short and long survived breast cancer patients.

Conclusion
The microarray technique or its equivalent, when used in 

combination with Planckian Distribution Equation, will enable 
biomedical scientists to discover a novel class of metabolic structures 
here called “hypermetabolic pathways” that can serve as biomarkers for 
anti-cancer drug development without knowing detailed underlying 
molecular mechanisms.
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