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Introduction
Mathematical modeling of human motions is a research topic in 

several scientific fields, and subsequently it has been employed across 
a wide range of applications. Nevertheless, from a general point of 
view modeling of human motions remains a challenging problem, due 
to several aspects related to their intrinsic properties. First, human 
movements are inherently random, as a consequence of the stochastic 
nature of processing of the motory commands by the brain [1] (e.g. we 
cannot re-create identical movements or draw perfectly straight lines). 
Second, human motions have a highly nonlinear character, as all other 
processes in the nature. And third, the complex levels of hierarchy in 
the human reasoning are also reflected in the way the brain controls the 
limbs in executing desired motions.

The proposed research aims to exploit the recent progress in the 
field of deep artificial neural networks (NN) for modeling of human 
motions. The motivation stems from the demonstrated potential of deep 
NN architectures to encapsulate highly nonlinear relations among sets 
of observed and latent variables, as well as the capacity to encode data 
features at multiple hierarchical levels of abstraction. These properties 
have been conducive to the development of efficient deep NN algorithms 
that in recent times outperformed other machine learning methods in a 
number of international competitions and applications [2,3]. However, 

this success has been largely based on the use of convolutional NN 
that have proven suitable for dealing with spatial data, such as pixels 
in static images. On the other hand, human motion data possess quite 
a different structure due to the strong temporal correlation among 
the data points, and require different type of NN architectures. One 
such architecture designed for dealing with sequential data is the 
recurrent NN (RNN) [4]. More specifically, RNNs introduce recurrent 
connections between the neuronal activations of the neighboring units 
in sequences. The recurrence property establishes a basis for extracting 
the underlying temporal dependencies in sequential data. Unlike the 
current approaches for human motion modeling, such as Gaussian 
process model [5], hidden Markov models [6], dynamic movement 
primitives [7] or Kalman filters [8], which are based on short-term 
primarily linear approximation of the motion dynamics, recurrent NNs 
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Abstract

Objective: The objective of the proposed research is to develop a methodology for modeling and evaluation of 
human motions, which will potentially benefit patients undertaking a physical rehabilitation therapy (e.g., following a 
stroke or due to other medical conditions). The ultimate aim is to allow patients to perform home-based rehabilitation 
exercises using a sensory system for capturing the motions, where an algorithm will retrieve the trajectories of a 
patient’s exercises, will perform data analysis by comparing the performed motions to a reference model of prescribed 
motions, and will send the analysis results to the patient’s physician with recommendations for improvement.

Methods: The modeling approach employs an artificial neural network, consisting of layers of recurrent neuron 
units and layers of neuron units for estimating a mixture density function over the spatio-temporal dependencies 
within the human motion sequences. Input data are sequences of motions related to a prescribed exercise by a 
physiotherapist to a patient, and recorded with a motion capture system. An autoencoder subnet is employed for 
reducing the dimensionality of captured sequences of human motions, complemented with a mixture density subnet 
for probabilistic modeling of the motion data using a mixture of Gaussian distributions.

Results: The proposed neural network architecture produced a model for sets of human motions represented 
with a mixture of Gaussian density functions. The mean log-likelihood of observed sequences was employed as 
a performance metric in evaluating the consistency of a subject’s performance relative to the reference dataset of 
motions. A publically available dataset of human motions captured with Microsoft Kinect was used for validation of 
the proposed method.

Conclusion: The article presents a novel approach for modeling and evaluation of human motions with a 
potential application in home-based physical therapy and rehabilitation. The described approach employs the recent 
progress in the field of machine learning and neural networks in developing a parametric model of human motions, 
by exploiting the representational power of these algorithms to encode nonlinear input-output dependencies over 
long temporal horizons.
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offer representational power for encoding non-linear motion dynamics 
over longer temporal horizons.

The proposed work employs RNNs for developing a mathematical 
model of human motions, by extracting latent states of the motion 
sequences, related to sub-goals in executing the motion. To tackle the 
stochastic character of human movements, we propose a statistical 
modeling approach, based on the provision of multiple examples 
of a motion performed under similar conditions. The model aims 
to probabilistically encode the performed motion with a mixture of 
Gaussian probability density functions, by exploiting the variability 
across the motion examples. The network architecture consists of an 
autoencoder subnet [9] of LSTM neurons for dimensionality reduction 
of the observed motion data, and a mixture density network (MDN) 
[10] for modeling the conditional density function of the spatial 
coordinates, conditioned on the temporal coordinates of the motion. 
The obtained probabilistic model of the human motions is afterwards 
used for evaluation of newly observed motion sequences.

Related Work
Physical rehabilitation 

Physical rehabilitation therapy is crucial for patients recovering 
from stroke, surgery, or musculoskeletal trauma. A study published 
by Machlin et al. [11] analyzed the Medical Expenditure Panel Survey 
generated by the US federal government, and indicated that in 2007 the 
cost of physical rehabilitation therapy in US was approximately $13.5 
billion. These expenditures were incurred during approximately 88 
million physical therapy episodes by nearly 9 million adults.

The physiotherapist supervised treatments represent only a 
fraction of the total rehabilitation treatment; over 90% of the exercises 
are performed by patients in a home-based setting, also known as 
home exercise programs [12]. In this case, a physiotherapist instructs 
a patient on the type of physical exercises to be performed, and the 
patient is expected to perform the exercises, and continuously record 
their progress in a logbook. The patient will periodically attend follow-
up visits with the physiotherapist, who evaluates their progress, and 
may prescribe a new set of exercises. However, there is a multitude of 
reports in the literature of low adherence rates to prescribed exercises in 
home-based rehabilitation, ranging between 11% and 40% [13,14]. The 
poor compliance delays functional recovery, prolongs the rehabilitation 
period, and increases healthcare cost.

Among the key factors contributing to low adherence to 
physiotherapy in outpatient environment is the lack of supervision, 
evaluation, and motivation for continued treatment [15]. Accordingly, 
the need for tools that support home-based rehabilitation has been 
widely recognized. The recent emergence of low cost non-intrusive 
motion capture sensors, such as Microsoft’s Kinect, stimulated a wave 
of research and proliferation of applications in this domain [16,17]. 
KiReS (Kinect Rehabilitation System) [18] and VERA (Virtual Exercise 
Rehabilitation Assistant) [12] are examples of systems that employ 
a Kinect sensor for tracking a patient’s movements, and provide 
a graphical interface with avatars showing the desired exercise as 
prescribed by the physiotherapist and the current motions of the 
patient. Such visualization tools are conducive toward improved 
adherence to the prescribed physical therapy by allowing review of the 
exercises by the patients and correcting the performance, as well as by 
providing a means for remote review of the patient’s progress by the 
physiotherapist.

A key prerequisite for monitoring and evaluation of patients’ 

progress in home exercise programs is the provision of efficient and 
comprehensive performance evaluation metrics. The existing clinical 
evaluation metrics, such as Fugl-Meyer assessment (FMA), Wolf motor 
function test (WMFT), and the ratio of optimal versus sub-optimal 
motion execution [12,18], were primarily designed for assessment 
performed by a physiotherapist. The development of performance 
evaluation metrics based on sensor captured motions in outpatient 
setting remains an open research topic.

We hold that formalization of efficient evaluation metrics is 
predicated on congruent mathematical models for representation of 
human motions. In this work, we propose an approach for probabilistic 
modeling and evaluation of human motions based on the latest 
advances in artificial neural networks.

NN for motion modeling

The approaches for human motion modeling and representation 
are broadly classified into two categories: a group that uses latent states 
for describing the temporal dynamics of the movements, and another 
category that employs local features for representing the motion. Among 
the methods based on introduced latent states, the most prominent are 
Kalman filters, hidden Markov models [19], and Gaussian mixture 
models [20]. Main shortcomings of these methods originate from 
employing linear models for the transitions among the latent states 
(as in Kalman filters), or from adopted simple internal structure of the 
latent states (typical for hidden Markov models). On the other hand, 
the approaches based on extracting local features within the motion 
data, e.g. key points [21], and temporal pyramids [22], are typically 
based on predefined criteria for feature representation which are often 
task-specific and defined at a single level of task abstraction. These 
attributes limit the ability of the feature class of motion representation 
methods to handle arbitrary spatio-temporal variations across the 
motion sequences in an efficient manner.

The recent development in the field of artificial NNs stirred a 
significant interest in their application for modeling of human motions 
as well. The capacity for motion classification without the need for 
segmentation has been employed in several works. For example, 
Baccouche et al. [23] employed a convolutional NN for feature 
extraction fused with a layer of recurrent units for action recognition, 
and Lefebre et al. [24] implemented bidirectional RNN for gesture 
classification.

Further, the replacement of simple RNN units with LSTM units 
mitigated the problem of vanishing/exploding gradients and provided 
a base for training deep RNNs. Subsequently, a body of work emerged 
that implemented deep NN for modeling of human motions.

For examples, the approach by Du et al. [25] employs a deep RNN 
for hierarchical modeling of human motions, where input sequences 
consisting of skeletal joint positions of the human body are divided into 
five groups, related to the joints of the trunk and of the four body limbs. 
By fusing the input data of the five body groups progressively through 
the layers of neurons, the approach demonstrated high- performance in 
classification of human motions.

Another recent work [26] implements an encoder- decoder network 
with recurrent LSTM units for extracting salient features in human 
motion sequences. The resulting encoded representation is afterwards 
successfully utilized for both motion generation and for body parts 
labeling in videos.

In the work by Zhu et al. [27] the authors investigated the 
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regularization in deep RNNs for human action recognition, and 
proposed 2 techniques for this purpose. One is based on learning co-
occurrence features in the motion data across the layers of neurons, and 
another is a dropout technique applied on the gates within the LSTM 
units. The proposed regularization produces improved performance 
over the state-of-the-art methods.

Jain et al. [28] developed a novel NN architecture that introduces 
spatio-temporal graphs in its structure. More specifically, the factor 
components in the st-graphs are grouped and modeled with RNNs. 
The framework is evaluated for prediction and generation of human 
actions, and for understanding human-object interactions.

The above listed methods are employed for classification of human 
actions, or for predicting future motion patterns in a generative 
fashion, based on encoded joint distribution of the input data and the 
hidden states. The presented approach in this article employs RNNs 
for probabilistic modeling of human motions using density function 
estimation. To the best of our knowledge, such an implementation is 
novel and differs from the previous works on human motion modeling 
within the published literature. Several recent studies have successfully 
applied mixture density networks within an RNN framework to model 
complex datasets. For example, the work in [29] employed MDN and 
RNNs for classification and prediction of biological cell movement in 
different environments based on recorded motion sequences. Similar 
works reported application of MDN in modeling visual attention [30], 
wind speed forecasting [31], and acoustic speech modeling [32].

Problem Formulation
The problem is related to a rehabilitation exercise prescribed by 

a physiotherapist to a patient by demonstrating the required motion 
in front of the patient. The demonstration can be either performed 
by the physiotherapist, or by moving patient’s limbs. It is assumed 
that the physiotherapist will demonstrate the motion multiple times 
(typically between 5 and 10 times), for the patient to understand the 
underlying range of movement of the different body parts. The patient 
is then asked to repeat the motion in a home-based rehabilitation 
environment a specified number of times in a daily session, or during 
multiple daily sessions. The goal of our research is to develop an 
algorithm for modeling the demonstrated motion and for evaluation of 
the performance of the patient during home rehabilitation in order to 
conclude whether the performed motions by the patient correspond to 
the prescribed motions by the physiotherapist.

In practice, the physiotherapist may demonstrate the motion only 
once or twice; since our brains are excellent at pattern recognition, and 
we can easily generalize from only a single example of a task. On the 
other hand, machine learning algorithms are data driven and require 
multiple examples of a task to accurately extract underlying patterns 
in the data. Furthermore, the physiotherapist in reality will support 
the demonstrations by verbal explanations of the movements, and he/
she can also demonstrate several incorrect examples of performing the 
motion. In the considered study, verbal explanations and non-optimal 
demonstrations are ignored, and the focus is on motion learning from 
perceived sensory data. The above scenarios can be considered as 
avenues for future work.

It is assumed that a sensory system is available for capturing 
the demonstrated motion as prescribed by the physiotherapist. The 
number of demonstrated examples of the motion is denoted M, and 
the measurement by the sensory system for each of the demonstrated 
examples of the motion is denoted Om, where m is used for indexing the 

individual demonstrated examples. The set of observed demonstrations 
comprises { } 1

M
m m=

=O O . Also each perceived motion example Om is a 
temporal sequence of high-dimensional sensory data, and it is denoted 

( ) ( ) ( )( )1 2, ,..., mT
m m m mO = o o o , where ( )1

mo  represents the sensory measurement at 
time, t1 i.e., the superscripts are employed for indexing the temporal 
position of the measurements within each motion sequence, 
and Tm denotes the number of measurements in each observed 
sequence. In general, the demonstrated examples will have different 
lengths, i.e., different number of measurements Tm. Each individual 
measurement is a D-dimensional vector, hence the notation adopted 
is ( ) ( ) ( ) ( ), 1 , 2 , Tk k k k D

m m m mo o o =  o  , where k is the current time step. 

The above notation employs bold font type for representing vectors and 
matrices.

For example, let’s consider a motion that is demonstrated 7 times 
by the physiotherapist. In that case, the set of demonstrated examples 
of the motion is { }7

1m m=
= =O O {O1,O2,O3,O4,O5,O6,O7}. Each motion is a 

time series representing a sequence of measurements by the sensory 
system. For instance, if an optical tracker collected the measurements 
at a rate of 100 measurements per second, and if the duration of the 
third motions was 4.2 seconds, then the sequence O3 will consist of 
420 measurements, and it will be represented as ( ) ( ) ( )( )1 2 420

3 3 3 3, ,...,= o o oO , 
with t1=0.01s, t2=0.02s and t420=4.2s. Furthermore, if the sensory system 
used 10 optical sensors for capturing the motions, and the outputs are 
3-dimensional spatial coordinates of the optical sensors, each individual 
measurement will represent 30-dimensional data signal. In that case, 
the measurement ( )2

3o  of the third motion example at time step 2 will be 

the 30-dimensional vector ( ) ( ) ( ) ( )2 2,1 2,2 2,30
3 3 3 3

T
o o o =  o  .

Next, it is assumed that the same sensory system for motion 
perception is used to capture the motions of the patient during the 
rehabilitation exercises. Let’s denote the observation of the patient’s 
performed motion with R. Similar to the above notation, the motion 
sequence R will consist of TR D-dimensional measurements r(k), i.e., 

( ) ( ) ( )( )1 2, , ..., RT= r r rR .

The patient will attempt to reproduce the motion as demonstrated 
by the physiotherapist. Due to pain or other conditions, the patient may 
not be able to achieve the range of the motion as requested, or he/she 
may perform the motion in a wrong way due to a variety of reasons. 
The objective of the presented research is to evaluate the performance 
of the patient with regards to the physiotherapist demonstrated 
examples of the motion. Or, in other words, the objective is to evaluate 
how consistent patient’s motion R is with the reference motion set 

{ } 1

M
m m=

=O O .

The problem was approached on the grounds of the fact that human 
motions are intrinsically stochastic. We cannot reproduce a motion in 
identical manner, due to the stochastic character of the motor actions 
as directed by the neural networks in the human brain. The variance 
within the human movements can be exploited to probabilistically 
model the motions. Using the observed set of examples of the motion 
provided by the physiotherapist O, a probabilistic model of the motion 
will be derived described with a set of parameters λ. The parameters 
will be estimated by maximizing the probability of the observed 
data, argOmax P (λ|O). The probabilistic model will then be used for 
estimating the probability that the patient’s motion belongs to the 
distribution parametrically defined with λ, i.e., P (R|O). 

The considered problem is an unsupervised learning problem, 
where the goal is to develop a probabilistic model of the observed 
data by determining the density estimation within a projected space 
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with reduced dimensionality. The obtained model will be used to 
probabilistically evaluate new observations. 

Network Architecture 
The proposed network architecture is shown in Figure 1. Input to 

the network is a sequence of vectors related to the sensory perception of 
the motion O. A recurrent layer of LSTM units encodes input sequences 
Om into low-dimensional sequences Zm. The sequences Zm are decoded 
by another recurrent layer of LSTM units to the input context Om. The 
obtained low-dimensional sequences Zm are processed through another 
recurrent layer of neuron units, and the resulting sequences Ym are 
probabilistically encapsulated by a mixture of Gaussian probability 
distributions, parameterized with a set of means µ, standard deviations 
σ, and mixing coefficients π. The theoretical background behind the 
network architecture is presented next.

Recurrent neural networks

RNNs [4] are a subclass of neural networks that introduce recurrent 
connections between the neuron units. This type of NN has been 
designed for processing sequential data, such as time series, textual data, 
or DNA protein sequences. The recurrent connections between the 
neuron units enable capturing sequential (or temporal) dependencies 
across the input data (Figure 1). 

For an input sequence ( ) ( ) ( )( )1 2, ,..., mT
m m m mO = o o o with length Tm 

consisting of an array of vectors ( )k
mo , where k denotes the position 

of the vector within the sequence Om, RNNs introduce a sequence of 
hidden states ( ) ( ) ( )( )1 2, , ..., HT= h h hH  that establish a mapping between 
the input and output data of the network. In temporally ordered 
sequences k would correspond to the time index tk of the input values. 
An RNN is graphically represented in Figure 2. The network structure 
is shown at the sequence level in Figure 2(a), as well as unfolded along 
the time steps 1,2,….,k-1, k, k+1,.. in Figure 2(b). The connections 
between the consecutive neuron units h(k), represented with the colored 
nodes in the Figure 2, enable information about the input data to be 
shared with the neighboring neuron units. The recurrence furnishes 
the network with a memory capability, i.e., past observations can be 

employed for understanding the current observation, or for predicting 
future observations in a sequence. 

The outputs of the hidden unit vectors h(k) in the RNN network 
presented in Figure 2 are calculated as,

( ) ( ) ( )( )1k k k
oh m hh hf −= + +h W o W h b                     (1)

where Woh denotes the matrix of connection weights from the input 

vectors ( )k
mo  to the hidden layer units h(k), Whh denotes the matrix of 

recurrent connection weights between the hidden layer units, bh 
denotes the vector of bias values, and f is an activation function. The 
hidden layer H will further be connected to an output sequence, or to 
another hidden layer in the network structure. The weight and bias 
parameters in RNNs are learned with the back-propagation through 
time (BPTT) algorithm [33], by minimizing a loss function over the set 
of training sequences { } 1

M
m m=

=O O . 

Two significant shortcomings of conventional RNNs presented in 
equation (1), are the inability to capture long-term dependencies in the 
data, and the problem of vanishing/exploding gradients in learning the 
network parameters [34]. These are overcome by introducing special 
forms of recurrent neuron units, among which the most common 
are the LSTM units, which stands for long short-term memory [35]. 
A graphical representation of an LSTM unit is given in Figure 3. The 
information processing in LSTM is characterized with the use of several 
gates which control the amount of information that is passing through 
the hidden units. Hence, each LSTM unit has an input gate, forget gate, 
and output gate. The gates are used for controlling the internal state of 
the LSTM unit stored in a memory cell. The memory cell accumulates 
information and carries it from the past to the future temporal states in 
the layer, thus enabling establishment of long term dependencies across 
the data sequence. 

Computations within the kth LSTM unit are as follows:
( ) ( ) ( )( )1k k k

oi m hi iσ −= + +i W o W h b                          (2)

( ) ( ) ( )( )1k k k
of m hf fσ −= + +f W o W h b                         (3)

( ) ( ) ( )( )1k k k
oq m hq qσ −= + +q W o W h b                       (4)

( ) ( ) ( ) ( ) ( ) ( )( )1 1k k k k k k
oc m hc cσ− −= + + +c f c i W o W h b                      (5)

h(k)=q(k)tanh(c(k))                       (6)

where W’s denote the matrices of weight values, b’s denote the vectors 
of bias values, and σ and tanh denote a sigmoid and hyperbolic tangent 
functions, respectively. Similar to Figure 2, the notation ( )k

mo and h(k) 
is related to the observed input vector and the output vector from the 
layer of hidden units at time tk, whereas i(k), f(k), q(k), and c(k) denote the 

Figure 1: The proposed network architecture, where the arrows denote the 
flow of data in the network.

Figure 2: Graphical representation of an RNN. (a) A sequence of input data 
Om is connected to a sequence of hidden units H with recurrent connections 
between the hidden units. (b) The unfolded sequence Om consists of 

observation vectors ( )k
mo  represented with white nodes, and the sequence H 

consists of hidden state vectors h(k)
  represented with colored nodes.

(a) (b)

mO ( )k
mo( )1k

m
−o ( )1k

m
+o( )1

mo ( )2
mo

( )2h( )1h ( )1k−h ( )1k+h( )khH
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corresponding activations of the input gate, forget gate, output gate, and 
the memory cell, respectively. 

At each time step k, the forget gate regulates the amount of 
the information in the memory cell that is discarded, the input gate 
determines how much new information to store in the memory cell 
and pass it to the next units, and the output gate controls the fraction 
of the information in the memory cell to be output by the hidden unit. 
Furnished with the ability to retain and selectively pass information 
through the gates of an LSTM unit, the network can learn long-term 
temporal correlations within the data sequences (Figure 3). 

Autoencoder neural networks

Autoencoders refer to an NN architecture designed to learn a 
different representation of a set of input data, through a process of data 
reconstruction [9,36]. The intent is to extract useful attributes within 
the data, achieved by setting the network output to be equal to the 
original input. The step of transforming the input data to a different 
representation is called encoding, and analogously, the operation of 
reconstructing the data from its approximation is called decoding.

A graphical representation of an autoencoder network is depicted 
in Figure 4. As shown in the figure, the network consists of an 
encoder portion which maps the input data { } 1

M
m m=

=O O  into a code 
representation { } 1

M
m m=

=Z Z , and a decoder portion which reprojects 
the code Ζ into the input O. If the mapping function of the encoder is 
denoted φ: O→ Ζ, and the moping function of the approximation by the 
decoder is denoted ψ: Ζ→ Ô, the connection weights in the autoencoder 
network are learned by minimizing the reconstruction error formalized 
as ( )( )

2

,
ˆarg min

ϕ ψ
ψ ϕ−O O :

The majority of autoencoders employ a code representation with 
lower dimensionality in comparison to the input data. This forces the 
network to learn a sparse representation of the input data, and with that 
to extract the most salient attributes within the data to produce minimal 
reconstruction error. Due to these properties, typical application tasks 
of autoencoder NNs are dimensionality reduction, feature extraction, 
and data denoising. 

In this study on modeling of human motions, an autoencoder is 
employed to reduce the dimensionality of the observed sequences, 
since the dimensionality of the data in motion capture systems is 
typically in the range of 40 to 60 measurements per time step. On the 
other hand, not all of the body parts are usually involved in performing 
a motion, and in addition, the movements of the individual body parts 

are highly correlated. Hence, projection of the measurement data to 
a lower dimensional space is helpful in extracting high-level features 
within the human motions, and facilitates the tasks of modeling and 
analysis of the motions.

Regarding the dimensionality reduction using autoencoders, if the 
connection weights between the input and the hidden layers are linear, 
and mean squared error is used as a loss function, the network learns 
the principal components of the input data, and in this sense it operates 
as a PCA (principal component analysis) processor. The provision of 
nonlinear functions for neuron activations in autoencoders allows 
extracting richer data representations for dimensionality reduction. 
Furthermore, by stacking several consecutive encoding and decoding 
layers of hidden neurons, deep autoencoder networks are created, 
which can additionally increase the representational power capacity 
(Figure 4). 

Mixture density networks

MDNs are a network architecture that employs a mixture of 
probability density functions in modeling dependencies in the input 
data [10]. Let’s assume input sequences ( ) ( ) ( )( )1 2, ,..., mT

m m m m=X x x x and 
( ) ( ) ( )( )1 2, ,..., mT

m m m m=Y y y y with length Tm consisting of d-dimensional 
vectors ( )k

mx  and ( )k
my , respectively, which in general do not have to 

be ordered sequences. MDNs estimate the conditional probability 
density function ( ) k k

m my xP for k=1,2,…,Tm , as a mixture of probability 
distributions.

If Gaussian probability distributions are adopted as the mixture 
components, then the conditional probability density function is 
expressed as 

( ) ( )( ) ( )( ) ( ) ( )( ) ( )( )( )2

1
   ,

=

= π∑
L

k k k k k k
m m l m m l m l m

l
y x x y x xP N µ σ , for k=1,2,…,Tm  (7)

In the equation, L is the number of Gaussian mixture components, 
πl denote the vector of mixing coefficient of the Gaussian component l, 
and N(y|µ,σ2) denotes a multivariate Gaussian probability distribution 
with a mean μ and variance σ2. Note in equation (7) that the mixture 
parameters are dependent on the input vectors k

mx .

The parameters in MDNs are estimated by minimizing a loss 
function defined by the negative log-likelihood of the input and output 
data. 

( )( ) ( ) ( )( ) ( )( )( )2

1 1 1
ln ,

mTM L
k k k k

l m m l m l m
m k l= = =

 = −  
 

∑∑ ∑π x y μ x σ x              (8)

With regards to the requirement for the mixing coefficients πl 

Figure 3: Graphical representation of the data flow within an LSTM unit. Figure 4: Graphical representation of an autoencoder NN.
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≥ 0 and 
1

1
L

l
l
π

=

=∑ , the connections in MDN leading to the mixing 

coefficients are defined as soft max functions of the corresponding 
network output activations  al,m, i.e.,

( )( ) ( )
( )

,

,
1

exp

exp

lk
l m L

l
l

a

a

π

π
=

=

∑
xπ                  (9)

For the standard deviations, the requirement 2
l ≥ 0σ is satisfied by 

employing exponential functions of the network activations as follow
( )( ) ( ),expk

l m la σ=xσ                       (10)

Lastly, the means are connected directly to the network activation 
by a linear projection layer

( )( ) ,
k

l m aµ σ=xµ                (11)

The output parameters of the network can be used for estimating 
the conditional average of a data sequence Yn given a sequence Xn as

( )( ) ( )( )
1

nT
k k

n n l n l n
k=

  =  ∑Y X x x π µ                 (12)

as well as the expected variance of the conditional density function as

( )( ) ( )( ) ( )( ) ( )( ) ( )( )

2

2
2

1 1
 

n

n n n n

T L
k k k k k

l n l n l n l n l n
k l= =

 −   =   
 

+ −  
 

∑ ∑

Y Y X X

x x x x x

 

π σ µ π µ
              (13) 

Experiments
Motion perception 

The work assumes that a Microsoft Kinect sensor will be used for 
capturing the motions for rehabilitation exercises. With a price tag 
of around $150, its use for home-based rehabilitation is much more 
feasible, when compared to the optical trackers or other similar motion 
capture systems that cost tens of thousands of dollars. The Kinect 
sensor includes a color camera and an infrared camera for acquiring 
image (RBG) and range data simultaneously. The software development 
kit (SDK) for Kinect by Microsoft provides libraries for access to the 

raw RGB and depth streams, skeletal tracking, noise suppression, etc. 
The capability for skeletal tracking has been widely used for capturing 
human motions. The skeleton consists of 20 points corresponding 
to the joints in the human body. During the skeleton tracking, the 
3-dimensional position for each of the 20 joints is output at a rate of 30 
frames per second.

Dataset

For proof of concept we used the publicly available dataset of human 
motions UTD-MHAD (University of Texas at Dallas-Multimodal 
Human Action Dataset) [37].

The UTD-MHAD dataset consists of 27 actions performed 4 times 
by 8 subjects. The data are collected with a Kinect sensor and a wearable 
inertial sensor, and is available in 4 different formats: RBG video, depth 
sequences, skeleton joint positions, and inertial sensor signals. Sample 
image for three of the actions: wave, bowling and draw circle, are shown 
in Figure 5. 

Human motion modeling

The motion related to the swipe left action from the UTD-MHAD 
dataset is initially considered. The training set consists of 21 recorded 
sequences, performed 3 times by 7 of the subjects, i.e. O={O1,O2,…, 
O21} and the testing set consists of 7 sequences performed once by 
7 of the subjects Q={Q1, Q1,…., Q7}, where the sets and are disjoint, 
i.e., O∩Q=∅. The length of the training sequences varied between 48 
and 72 time frames. Each measurement includes the x, y, and z spatial 
positions of the 20 skeletal joints, i.e., the dimensionality of the vectors

( )k
mo is D=60. In a preprocessing step the spatial joint positions were 

normalized to zero mean sequences, and to facilitate density estimation 
with a mixture of Gaussians, the sequences were temporally scaled 
and aligned to a constant length of 48 frames by using the dynamic 
temporal warping (DTW) algorithm [38].

The network architecture shown in Figure 1 is employed for 
processing the input data O. The code was implemented using the open-
source Python libraries Theano [39] and Keras [40]. An autoencoder 
with recurrent layers of LSTM units is used for sequence-to-sequence 

Figure 5: Sample images and skeletal representations for (a) Wave; (b) Bowling; and (c) Draw circle actions in the UTD-MHAD dataset.
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processing. The code sequences are denoted Ζ={Ζ1,Ζ2,…,Ζ21}, as also 
shown in Figure 4. The encoder reduces the dimension of the input 
sequences Om equal to D=60 to dimension of the context Ζm equal 
to d=3. The autoencoder is trained in a mini-batch input mode to 
minimize the reconstruction error ( )( )

2

,
ˆarg min

ϕ ψ
ψ ϕ−   by using 

the AdaDelta gradient descent method [41] for updating the network 
parameters, whereas the gradients of the cost function are calculated 
with the BPTT algorithm [42]. 

The trained network is afterwards used for reconstructing the testing 
set of data. Examples of two testing sequences mQ , the corresponding 
encoded sequences Q

mZ , and the decoded sequences ˆ
mQ , for m∈{2,4}, 

are shown in Figure 6. One can note that the sequences for the swipe 
left action include only movement of the right hand of the subject, and 
most of the other body parts are almost stationary during the motion. 
Therefore, many of the 60-dimensional joint positions have values close 
to zero, and only several of the skeleton joints have varying position 
values during the motion. The encoded representation for the training 
sequences Ζ={Ζ1,Ζ2,…,Ζ21} is shown superimposed on Figure 7.

The sequences are afterwards processed with an MDN network, 
depicted in Figure 1. As described in Section 5.3 the network is 
designed to learn mixture parameters encoding a conditional density 
function of the target data for given input data. The number or neurons 
in the layer connecting the output of the autoencoder network and the 
MDN output is set of 100. The layer has fully connected nodes to the set 
of sequences. Further, the number of Gaussian mixture components in 

the network is set to L=4. The independent component of the input Xm 
is related to the temporal ordering of the sequences, and the dependent 
component, or the target, Ym, is related to the spatial position of the Ζm 
sequences. More specifically, the inputs to the MDN comprise arrays 
of time steps Xm=(1,2,….,48) for all X sequences, and the targets are

( ) ( ) ( )( )1 2 48, ,...,m m m m= z z zY for all Y sequences, i.e., for m=1,2,….,21. The 

network estimates the parameters of Gaussian mixture components 
by maximizing the likelihood of the input data, which is commonly 
performed by minimizing the cumulative negative log-likelihood 
P(Ym|Xm) for m=1,2,….,21. Contours of the negative log-likelihood for 
the three dimensional position sequences are shown in Figure 8. The 
obtained mixture parameters are dependent on the input, that is, for 
each input value k a conditional probability distribution of the target 

( )k
mz  is obtained given the value of the input k. 

The expected average and one standard deviation of the conditional 
density function for one of the target spatial dimensions is shown in 
Figure 9 for the case of 4 and 8 mixture components. 

The Gaussian mixture parameters provide a probabilistic description 
of the average values and the underlying variability of the motion, as a 
function of its temporal evolution. The resulting parameterized density 
function is employed as a spatio-temporal model for evaluation of other 
motions.

Evaluation

Based on the learned model of a motion presented in the previous 

Figure 6: From top to bottom: (a) Testing sequence 2Q  , encoded representation 2
QZ  , and reconstructed sequence 2Q̂ ; (b) Testing sequence 4Q  , encoded 

representation 4
QZ  , and reconstructed sequence 4Q̂  
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section, the next step is to evaluate a new motion sequence, presumably 
performed by a patient during a home-based rehabilitation therapy 
Figure 9. The sequence is denoted ( ) ( ) ( )( )1 2, , ..., RT= r r rR .

One possible metric for evaluation of the sequence R with regards 
to the probabilistic model described with the MDN parameters 

( ) 1
, , L

l l l l==λ π µ σ  is the mean log-likelihood of the sequence given the 
model parameters LR=(R|λ), calculated as

( )( ) ( ) ( )( ) ( )( )( )3
, 2

1 1 1

1 ln ,
RT L

k k d k k
R l l l

d k lRT = = =

 =  
 

∑∑ ∑ t r t tπ µ σ                    (14)

where t(k) is the sequence of time step indices of the spatial positions of 
the sequence R. 

The mean log-likelihood for the 21 training sequences is shown with 
the blue line in Figure 10. The mean log-likelihood was also calculated 
for observed sequences corresponding to other motions in the dataset, 
such as swipe right, waving, and clapping, and is shown with red lines 
in Figure 10. As expected, the sequences that are not produced by the 
swipe left motion are less probable to fit within the density probability 
function described with the parameters.

Since the UTD-MHAD dataset does not provide examples of sub-
optimal motions, such examples are synthetically generated here by 
adding random noise to the training data, for a proof of concept. Thus, 
several levels of uniformly distributed noise are added to the training 

Figure 7: Encoded representation for all 21 training sequences.

Figure 8: Contours of the conditional density functions for the three spatial 
coordinates of the target sequences, shown with green scattered markers. 

Figure 9: Expected average and one standard deviation of the density 
function for 4 mixture components (upper figure) and 8 mixture components 
(lower figure).

Figure 10: Mean log-likelihood for sequences from 4 different actions. The 
results related to the action swipe left used for training are shown with the 
blue line, and the results related to other actions are shown with the red lines.
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sequences, and afterwards, the mean log-likelihood is evaluated. The 
result is presented in Figure 11. The levels of noise added are: 0.01, 0.1, 
0.2, 0.4 and 1. The original sequences without added noise are shown 
with the blue line in the figure. As more noise is added to the motion 
sequences, the log-likelihood decreases. For the noise of 0.01 shown 
with the red line in the figure, the difference with the original sequence 
is very small, since that level of noise is similar to the measurement 
noise within the sensory data. As expected, the sequences with added 
noise deviate from the original sequences that were used to develop the 
motion model, and their likelihood to belong to the probability density 
function is smaller.

In a similar manner, motion sequences performed by a patient 
can be compared to a model of the motion as demonstrated by 
the physiotherapist. The mean log-likelihood can be used to assess 
the performance of the patient. As the patient continues with the 
rehabilitation therapy, the metric can be used to indicate whether 
there is a progress toward the prescribed motion. Figure 11. Mean log-
likelihood for the swipe left action. The original sequences are shown 
with the blue line, and the sequences with added noise are shown with 
different line colors.

Summary

The article presents an approach for modeling and evaluating human motions 
using artificial neural networks. The network architecture consists of two subnets: 
an autoencoder and a mixture density subnet. The autoencoder employs layers 
of recurrent neuron units for dimensionality reduction and extraction of low-level 
features within the motion sequences, thus transforming noisy, high-dimensional 
datasets with strong correlations into a lower-dimensional dataset with low noise. 
The MDN portion of the network is used for density function representation of the 
motions with a mixture of Gaussian probability distributions. The output of the 
network is a probabilistic model of the human motions represented with a set of 
mixture parameters and a set of network connection weights.

The model is intended to be employed for evaluation of a patient performance 
in a home-based physical rehabilitation therapy. The probabilistic character of the 
proposed model allows employing statistical metrics for evaluation of patient’s 
performance. In this study, the probability, calculated as the mean log-likelihood of 
the motions performed by the patient, that the motions are drawn from the density 
function of the reference model, is adopted as a performance evaluation metric. For 
proof of concept, motion sequences from the available dataset have been distorted 

by adding random noise, and afterwards the mean log-likelihood is evaluated using 
the model parameters, and compared to the training set of motions.

Acknowledgement

This work was supported by the Center for Modeling Complex Interactions 
through NIH Award #P20GM104420 with additional support from the University 
of Idaho.

References

1. Clamann HP (1969) Statistical analysis of motor unit firing patterns in a human 
skeletal muscle. Biophysics J 9: 1223-1251.

2. Schmidhuber J (2014) Deep learning in neural networks: An overview. Neural 
Networks 61: 85-117. 

3. Goodfellow I, Bengio Y, Courville A (2016) Deep Learning. MIT Press, 
Cambridge, USA. 

4. Rumelhart D, Hinton G, Williams R (1986) Learning representations by back-
propagating errors. Nature 323: 533-536.

5. Rasmussen CE (2004) Gaussian Processes in Machine Learning. Adv Lectures 
Machine Learning 3176: 63-71.

6. Rabiner L (1989) A tutorial on hidden Markov models and selected applications 
in speech recognition. Proc IEEE 77: 257-286.

7. Ijspeert AJ, Nakanishi J, Schaal S (2003) Learning attractor landscapes for 
learning motor primitives. Advances in Neural Information Processing Systems 
1547-1554.

8. Kalman RE (1960) A new approach to linear filtering and prediction problems. 
J Basic Engineering 82: 35-45.

9. LeCun Y (1987) PhD thesis: Modeles connexionnistes de l’apprentissage 
(connectionist learning models). Université de Paris VI.

10. Bishop CM (1994) Mixture Density Networks. Aston University, Neural 
Computing Research Group Report.

11. Machlin SR, Chevan J, Yu WW, Zodet MW (2011) Determinants of utilization 
and expenditures for episodes of ambulatory physical therapy among adults. 
Phys Ther 91: 1018-1029.

12. Komatireddy R, Chokshi A, Basnett J, Casale M, Goble D, et al. (2014) Quality 
and quantity of rehabilitation exercises delivered by a 3-D motion controlled 
camera: a pilot study. Int J Phys Med Rehabil 2: 1-14.

13. Bassett SF, Prapavessis H (2007) Home-based physical therapy intervention 
with adherence-enhancing strategies versus clinic-based management for 
patients with ankle sprains. Phys Ther 87: 1132-1143.

14. Jack K, McLean SM, Moffett JK, Gardiner E (2010) Barriers to treatment 
adherence in physiotherapy outpatient clinics: a systematic review. Man Ther 
15: 220-228. 

15. Miller KK, Porter RE, DeBaun-Sprague E, Puymbroeck MV, Schmid AA (2016) 
Exercise after stroke: patient adherence and beliefs after discharge from 
rehabilitation. Top Stroke Rehabil 23:1-7.

16. Ar I, Akgul YS (2012) A monitoring system for home-based physiotherapy 
exercises. Comp Infor Sci III PP: 487-494.

17. Hondori HM, Khademi M (2014) A review on technical and clinical impact of 
Microsoft Kinect on physical therapy and rehabilitation. J Med Eng PP: 1-16. 

18. Anton D, Goni A, Illarramendi A, Torres-Unda JJ, Seco J (2013) KiReS: a Kinect 
based telerehabilitation system. Int Conf e-Health Networking PP: 456-460.

19. Yang J, Xu Y, Chen CS (1997) Human action learning via hidden Markov 
model. IEEE Trans Syst Man Cybern B Cybern 27: 34-44.

20. Calinon S, Guenter F, Billard A (2007) On learning, representing and 
generalizing a task in a humanoid robot. IEEE Trans Syst Man Cybern B 
Cybern 37: 286-298.

21. Vakanski A, Mantegh I, Irish A, Janabi-Sharifi F (2012) Trajectory learning for 
robot programming by demonstration using hidden Markov model and dynamic 
time warping. IEEE Trans Syst Man Cybern B Cybern 44: 1039-1052.

22. Vemulapalli R, Arrate F, Chellappa R (2014) Human action recognition by 
representing 3D skeletons as points in a Lie group. IEEE Conf Comp Vis 
Pattern Recog PP: 588–595.

Figure 11: Mean log-likelihood for the swipe left action. The original 
sequences are shown with the blue line, and the sequences with added noise 
are shown with different line colors.

https://dx.doi.org/10.1016%2FS0006-3495(69)86448-9
https://dx.doi.org/10.1016%2FS0006-3495(69)86448-9
https://arxiv.org/ct?url=http%3A%2F%2Fdx.doi.org%2F10%252E1016%2Fj%252Eneunet%252E2014%252E09%252E003&v=17200576
https://arxiv.org/ct?url=http%3A%2F%2Fdx.doi.org%2F10%252E1016%2Fj%252Eneunet%252E2014%252E09%252E003&v=17200576
http://www.deeplearningbook.org/front_matter.pdf
http://www.deeplearningbook.org/front_matter.pdf
https://dx.doi.org/10.1038/323533a0
https://dx.doi.org/10.1038/323533a0
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorial on hmm and applications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorial on hmm and applications.pdf
https://www.cs.unc.edu/~welch/kalman/media/pdf/Kalman1960.pdf
https://www.cs.unc.edu/~welch/kalman/media/pdf/Kalman1960.pdf
http://eprints.aston.ac.uk/373/1/NCRG_94_004.pdf
http://eprints.aston.ac.uk/373/1/NCRG_94_004.pdf
https://dx.doi.org/10.2522/ptj.20100343
https://dx.doi.org/10.2522/ptj.20100343
https://dx.doi.org/10.2522/ptj.20100343
https://dx.doi.org/10.4172/2329-9096.1000214
https://dx.doi.org/10.4172/2329-9096.1000214
https://dx.doi.org/10.4172/2329-9096.1000214
https://dx.doi.org/10.2522/ptj.20060260
https://dx.doi.org/10.2522/ptj.20060260
https://dx.doi.org/10.2522/ptj.20060260
https://dx.doi.org/10.1016%2Fj.math.2009.12.004
https://dx.doi.org/10.1016%2Fj.math.2009.12.004
https://dx.doi.org/10.1016%2Fj.math.2009.12.004
https://dx.doi.org/10.1080/10749357.2016.1200292
https://dx.doi.org/10.1080/10749357.2016.1200292
https://dx.doi.org/10.1080/10749357.2016.1200292
http://vision.gyte.edu.tr/publications/2012/iar_ysa_ISCIS_12.pdf
http://vision.gyte.edu.tr/publications/2012/iar_ysa_ISCIS_12.pdf
http://dx.doi.org/10.1155/2014/846514
http://dx.doi.org/10.1155/2014/846514
http://institutobiomedicina.unileon.es/kires.pdf
http://institutobiomedicina.unileon.es/kires.pdf
http://www.cs.utexas.edu/users/sniekum/classes/RLFD-F15/papers/Calinon07.pdf
http://www.cs.utexas.edu/users/sniekum/classes/RLFD-F15/papers/Calinon07.pdf
http://www.cs.utexas.edu/users/sniekum/classes/RLFD-F15/papers/Calinon07.pdf
https://dx.doi.org/10.1109/TSMCB.2012.2185694
https://dx.doi.org/10.1109/TSMCB.2012.2185694
https://dx.doi.org/10.1109/TSMCB.2012.2185694
https://pdfs.semanticscholar.org/8387/f38770e3c661c4ef466a8d9733aab58c068a.pdf
https://pdfs.semanticscholar.org/8387/f38770e3c661c4ef466a8d9733aab58c068a.pdf
https://pdfs.semanticscholar.org/8387/f38770e3c661c4ef466a8d9733aab58c068a.pdf


Citation: Vakanski A, Ferguson JM, Lee S (2016) Mathematical Modeling and Evaluation of Human Motions in Physical Therapy Using Mixture 
Density Neural Networks. Physiother Rehabil 1: 118. doi: 10.4172/2573-0312.1000118

Page 10 of 10

Physiother Rehabil, an open access journal
ISSN: 2573-0312

Volume 1 • Issue 4 • 1000118

23. Baccouche M, Mamalet F, Wolf C, Garcia C, Baskurt A (2011) Sequential deep 
learning for human action recognition. HBU pp: 29-39.

24. Lefebvre G, Berlemont S, Mamalet F, Garcia C (2013) BLSTM-RNN based 3D
gesture classification. Artif Neu Networks Mach Lear 8131: 381-388.

25. Du Y, Wang W, Wang L (2015) Hierarchical recurrent neural network for skeleton 
based action recognition. IEEE Conf  Computer Vision Pattern Recognition PP: 
1110-1118. 

26. Fragkiadaki K, Levine S, Felsen P, Malik J (2015) Recurrent network models
for human dynamics.

27. Zhu W, Lan C, Xing J, Zeng W, Li Y, et al. (2016) Co-occurrence feature learning 
for skeleton based action recognition using regularized deep LSTM networks.

28. Jain A, Zamir AR, Savarese S, Saxena A (2016) Structural-RNN: Deep learning 
on spatio-temporal graphs.

29. Rieke J (2016) Applying LSTM neural networks to biological cell movement:
Project Report. Friedrich Alexander Universität, Germany.

30. Bazzani L, Larochelle H, Torresani L (2016) Recurrent mixture density network 
for spatio-temporal visual attention.

31. Men Z, Yee E, Lien FS, Wen D, Chen Y (2016) Short-term wind speed and
power forecasting using an ensemble of mixture density neural networks.
Renewable Energy 87: 203-211. 

32. Wang W, Xu S, Xu B (2016) Gating recurrent mixture density networks for

acoustic modeling in statistical parametric speech synthesis. IEEE Conf Comp 
Vis Pattern Recog pp: 5520-5524.

33. Graves A (2012) Supervised sequence labelling with recurrent neural networks. 
Studies Computational Intel.

34. Hochreiter S, Bengio Y, Frasconi P, Schmidhuber J (2001) Gradient flow in 
recurrent nets: the difficulty of learning long-term dependencies. A field guide to 
dynamical recurrent neural networks. IEEE Press.

35. Hochreiter S, Schmidhuber J (1997) Long Short-Term Memory. Neural
Computations 9: 1735-1780.

36. Bourlard H, Kamp Y (1988) Auto-association by multilayer perceptrons and
singular value decomposition. Biol Cybern 59: 291-294.

37. Chen C, Jafari  R, Kehtarnavaz  N (2016) University of Texas at Dallas-
Multimodal Human Action Dataset.

38. Sakoe H, Chiba S (1978) Dynamic programming algorithm optimization for
spoken word recognition. IEEE Trans Acoustics Speech Signal Proces 26: 43-49.

39. Theano Development Team (2016) Theano: A Python framework for fast
computation of mathematical expressions.

40. Keras: Deep Learning Library for Theano and TensorFlow.

41. Zeiler MD (2012) ADADELTA: An adaptive learning rate method.

42. Mozer MC (1989) A focused backpropagation algorithm for temporal pattern
recognition. Complex Sys 3: 349-381.

http://liris.cnrs.fr/Documents/Liris-5228.pdf
http://liris.cnrs.fr/Documents/Liris-5228.pdf
https://people.eecs.berkeley.edu/~katef/papers/ICCV2015_humandynamics.pdf
https://people.eecs.berkeley.edu/~katef/papers/ICCV2015_humandynamics.pdf
https://arxiv.org/pdf/1603.07772.pdf
https://arxiv.org/pdf/1603.07772.pdf
http://cvgl.stanford.edu/papers/jain_cvpr16.pdf
http://cvgl.stanford.edu/papers/jain_cvpr16.pdf
https://pdfs.semanticscholar.org/9229/d6cd7db6e740db4daf7831630c913627a79f.pdf
https://pdfs.semanticscholar.org/9229/d6cd7db6e740db4daf7831630c913627a79f.pdf
https://dx.doi.org/10.1016/j.renene.2015.10.014
https://dx.doi.org/10.1016/j.renene.2015.10.014
https://dx.doi.org/10.1016/j.renene.2015.10.014
http://www.mirlab.org/conference_papers/International_Conference/ICASSP 2016/pdfs/0005520.pdf
http://www.mirlab.org/conference_papers/International_Conference/ICASSP 2016/pdfs/0005520.pdf
http://www.mirlab.org/conference_papers/International_Conference/ICASSP 2016/pdfs/0005520.pdf
ftp://ftp.idsia.ch/pub/juergen/gradientflow.pdf
ftp://ftp.idsia.ch/pub/juergen/gradientflow.pdf
ftp://ftp.idsia.ch/pub/juergen/gradientflow.pdf
http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf
http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf
https://dx.doi.org/10.1007/BF00332918
https://dx.doi.org/10.1007/BF00332918
http://www.utdallas.edu/~kehtar/UTD-MHAD.html
http://www.utdallas.edu/~kehtar/UTD-MHAD.html
https://www.irit.fr/~Julien.Pinquier/Docs/TP_MABS/res/dtw-sakoe-chiba78.pdf
https://www.irit.fr/~Julien.Pinquier/Docs/TP_MABS/res/dtw-sakoe-chiba78.pdf
https://ai.icymi.email/kerasdeep-learning-library-for-theano-amp-tensorflow-tutorial-datascience-machinelearning/
https://arxiv.org/abs/1212.5701
http://www.complex-systems.com/pdf/03-4-4.pdf
http://www.complex-systems.com/pdf/03-4-4.pdf

	Title
	Corresponding author
	Abstract
	Introduction
	Related Work
	Physical rehabilitation 
	NN for motion modeling

	Problem Formulation
	Network Architecture 
	Recurrent neural networks
	Autoencoder neural networks
	Mixture density networks

	Experiments
	Motion perception 
	Dataset
	Human motion modeling
	Evaluation

	Summary
	Acknowledgement
	Figure 1
	Figure 2
	Figure 2
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	References

