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Abstract

In this article, a new algorithm for searching Mann-Whitney minimum spanning tree in a critical path network having fermeatean pentagonal 
fuzzy soft edge length is presented. The proposed algorithm is based on matrix approach to design un-directed fermeatean fuzzy 
weighted connected graph. Also, we provide numerical example to check the validity of the proposed algorithm using score function and 
accuracy function.
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Introduction
A minimum spanning tree is a spanning tree that has the lowest 

possible weight. The MST is a spanning tree T of graph G which has 
the minimum cost among all the spanning tree of graph G. The MST 
problem is a fundamental and well known combinatorial optimization 
problem in the area of graph theory. It is widely applied in 
various fields of science and engineering, e.g., road network 
application, transportation, routing in communication channels 
and scheduling problems. In real life problems, edge costs are used 
to represent the parameter costs, capacities, demands, time, etc. 
Although in classical graph theory, real numbers are used in a 
MST problem to express the arc lengths of a connected 
weighted graph. We generally consider the classical MST problem 
as network optimization problem. In the classical MST problem, we 
assume the arc lengths (time, cost, distance, nature of connectivity 
between nodes, etc.) is certain. However, in real world 
problems, the information about any MST problems is generally 
not exact or precise due to several reasons such as incomplete 
data or insufficient data, less evidence, imperfect statistical [1]. For 
e.g., in a weighted connected graph, the arc length may describe the
traversing time between two nodes. This traveling time depends
on traffic jam, accident, weather etc., each of the criteria differ
from day to day. Therefore, it becomes difficult for the DM to
estimate exactly the edge cost. Several papers have been done
on the uncertainty MST. The work by Itoh and Ishii is first work on
this uncertainty domain and worked a MST problem with fuzzy

costs as a chance constrained programming based on the necessity 
measure. Following that, some methods based on the ranking index 
for arc weights of FMST were proposed by Chang and Lee. Almeida 
et al. described the fuzzy MST problem with uncertainty costs and 
introduced an algorithmic method to solve this FMST. Zadeh 
introduce the idea of fuzzy set. They introduced a genetic algorithm 
founded on uncertainly logic and probability theory to compute the 
FMST with fuzzy weights. In, they described possibility theory 
to describe the minimum of edge of the fuzzy graph and to find 
a spanning tree where the fuzzy arc weights are in fuzzy intervals. Liu 
introduced the credibility theory including pessimistic 
value, credibility measure and expected value as fuzzy ranking 
methods. Senapati. T, R.R.Yager, introduced the concept of 
fermeatean fuzzy set in 2019(a). Soft set theory is discussed, 
based on the credibility theory, Gao and Lu studied the 
fuzzy quadratic minimum spanning tree problem and formulated 
it as expected value model, chance-constrained programming 
and dependent chance programming according to different 
decision criteria. In this paper a new algorithm for searching 
defuzzification approach for validity of minimal spanning tree in a 
network having pentagonal fermeatean fuzzy soft edge length 
is presented. The proposed algorithm is based on a matrix 
approach to design undirected fermeatean fuzzy soft weighted 
connected graph. Also, we provide a numerical example to check 
the validity of the proposed algorithm [2].
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Literature Review

Preliminaries
In this section, the concept of fermeatean fuzzy soft set and 

pentagonal fermeatean fuzzy soft numbers is presented to deal with 
uncertainty data, which can be defined as follows.

Definition: A uncertainty set in characterized by its membership 
function taking value from the domain space or universe of discourse 
mapped into the interval (0,1). A uncertainty set D in the universal set 
X is defined us D={(x,αD(x)/x∈X}. Here αD:D→(0,1) is the grade of 
membership function and αD(x) is the grade value of x ∈ X in the 
fuzzy set D [3].

Example: Let D={a, b, c, d}be a set on X then αD(x) is defined as

D a b c d

αD(x) 0.4 0.1 0.3 0.7

Clearly ‘D’ is an uncertainty set on X.

Definition: Let X be an initial universe. P(X) be the power set of X, 
E be the set of all parameters and D ⊆ E. A soft set (αD(x), E) on the 
universe X is defined by the set of ordered pairs (αD(x),E)={e, (αD(e)) 
|e ∈ E, αD(e) ∈ p(α)}where αD:E—→P(X) such that αD(e)=ϕ if e ∈
D. Here αD is called an approximate of the soft set [4].

Example: Let X={x1, x2, x3, x4} be a set of four shirts and E={white
(e1), red (e2), blue (e3)} be a set of parameters. If D={e1, e2} ⊆ E.

Let αD(e1)={x1, x2, x3, x4} and αD(e2)={x1, x2, x3}. Then we write the 
soft (αD,E)={(e1, x1, x2, x3, x4), (e2, x1, x2, x3, x4)} over X which 
describe the “colour of the shirts” which Mr.’Z’ is going to buy.

Definition: An uncertainty set ‘D’ is called normal if there exist an 
element x∈ X whose membership value is 1. (i.e.) αD(x)=1.

Definition: A fuzzy number ‘D’ is a subset of real line R, with 
membership function αD satisfying the following properties

• αD (x) is piecewise continuous in its domain.
• ‘D’ is normal (i.e.) αD(x)=1 for all x ∈X
• ‘D’ is convex (i.e.) C(λx1+(1-λ)x2)=min{αD(x1), αD(x2)},for all x1, x2 

∈ X.
Due to wide application of the fuzzy number, two types of fuzzy

numbers, namely

• Triangular fuzzy number.
• Trapezoidal fuzzy number are introduced in the field of fuzzy

algebra.
Due to error in measuring techniques, instrumental faultiness etc.,

some data in our observation cannot impress or accurently defined.

Let us consider that we measure whether temperatures and 
humidity. Simultaneously the temperature is approximately 35ºC with 
normal humidity [5].

The variation in temperature also affects the percentage of 
humidity. This is phenonmenous happens in general. This concept of 
variation leads to a new type of fuzzy number called the “Pentagonal 
Fuzzy Number” (PFN)

Generally, a pentagonal is a S-tuple subset of a real number ‘R’ 
having five parameters.

A pentagonal fuzzy number ‘D’ is denoted as D={a1, a2, a3, a4, a5} 
where a3 is the middle point and (a1,a2) and (a4,a5) are the left and 
right side points of a3 respectively.

Now we define the mathematical construction of a pentagonal 
fuzzy number.

Definition: A fuzzy number D=(a1, a2, a3, a4, a5) is called 
Pentagonal Fuzzy Number (PFN) where the membership has the 
form (Figure 1).

Figure 1. Pentagonal fuzzy number. 

Remarks
• When w1=w2=D, then the PFN is reduced to TFN.
• When w1=w2=1, then the PFN become a to Trapezodial fuzzy

number.
Definition: Fermeatean fuzzy soft set: Let ‘X’ be a universe  of

discourse A. Fermeatean fuzzy soft set “F” in X is an object having 
the form F={〈x, mF(x), nF(x)〉/x∈ X},

Where mF(x): X→ (0,1) and nF(x): X → (0,1), including the 
condition

0 ≤ (mF(x))3 + (nF(x))3 ≤ 1, for all x ∈ XThe numbers mF(x) signifies 
the level (degree) of membership and nF(x)indicate the non-
membership of the element ‘x’ in the set F.  All  through  this  paper, 

Rani CD, et al. Glob J Tech Optim, Volume 14:1, 2023

Page 2 of 6



we will indicate a fermeatean fuzzy soft set is FFSS [6].

For any FFSS ‘F’ and x∈X,  πF(x)=3√1−(mF(x))2-(nF(X))2 is to find 
out as the degree of indeterminacy of ‘x’ to F. For convenience, 
senapathi and yager called (mF(x), nF(x)) a Fermatean Fuzzy Soft 
Number (FFSN) denoted by F=(mF, nF) (Figure 2).

Figure 2. Fermatean fuzzy membership grade.

We will explain the Membership Grades (MG’s) related 
Fermeatean uncertainty collections as Fermeatean membership 
grades.

Theorem: The collections of FMG’s is higher than the set of 
Pythagorean Membership Grades (PMG’s) and Bi–Fuzzy 
Membership Grades (BMG’s) [7-10].

Proof: This improvement can be evidently approved in the 
following Figure 3.

Figure 3. Improvement of fermatean fuzzy membership grade.

Discussion

Operation on pentagonal fuzzy soft number
In this section, we study some arithmetic operations of pentagonal 

fermeatean fuzzy soft numbers. Let A={a1, a2, a3, a4, a5} and B={b1, 
b2, b3, b4, b5}  be  two  pentagonal  fermeatean  fuzzy  soft  set.  Then

• Addition: A+B={a1+b1,a2+b2, a3+b3,a4+b4,a5+b5}
• Subtraction: A-B={a1-b1, a2-b2, a3-b3, a4-b4, a5-b5}
• Scalar multiplication: αA={αa1, αa2, αa3, αa4, αa5}
• Multiplication: AB={a1b1, a2b2, a3b3, a4b4, a5b5}
• Inverse: A-1={1/a5, 1/a4, 1/a3, 1/a2, 1/a1}
• Division: A/B={a1/b5, a2/b4, a3/b3, a4/b2, a5/b1}

Mann-Whitney’s algorithm of fermeatean pentagonal fuzzy
soft numbers

Input: The weight matrix D=(dij)mxn for which is constructed for 
indirect weight fermeatean soft graph.

Step-1: Input pentagonal fermeatean fuzzy soft adjacency matrix 

Step-2: Construct pentagonal fermeatean fuzzy soft number
matrix inti a score matrix (sij) mxn by the using the score fun.

Step-3: Repeat step-4,step-5 up to time that all non-zero elements 
are marked 0 in alternative saying all (n-1) entries matrix of S are 
either marked or a set to zero.

Step-4: There are two ways to find out the weight matrix D that 
one is column-wise and another one is row-wise in order to 
determine the unmarked minimum entries Sij beside it determines the 
weight of the corresponding edge eij in D.

Step-5: Set Sij=0 else mark Sij provided the corresponding edge eij 
of selected Sij, generate cycle with the proceeding marked entries of 
the score matrix S.

Step-6: Construct the graph T including the only marked entries 
from the score matrix S which shall be desired minimum cost 
spanning tree of G.

Step-7: Stop the iterations.

Defintion: Let B be a pentagonal fermeatean fuzzy soft variable 
denoted as B={(a1, a2, a3, a4, a5),(b1, b2, b3, b4, b5),(c1, c2, c3, c4, 
c5)}.

Hence the score function and the accuracy function of pentagonal 
fermeatean fuzzy soft variables are denoted as below;

Score of (B) or S(B)=1/15 (10+(a1+a2+a3+a4+a5)− (b1+b2+b3+b4
+b5)–(c1+c2+c3+c4+c5)) .....(1)

   Accuracy of (B) or H(B)=1/5 ((a1+a2+a3+a4+a5)−(c1+c2+c3+c4+ 
c5)) .....(2)

Definition: Let B1 and B2 be two pentagonal fermeatean fuzzy soft 
numbers variable defined on the set of real numbers. Hence the 
ranking method is defined as follows [11].

•
•

S (B1)<S(B2), then B1>B2, i.e. B1 is superior to B2.
S (B1)=S(B2), then H(B1)>H(B2), then B1 is superior to B2.
Numerical example: In this section, a numerical example  of

fermeatean pentagonal fuzzy soft numbers minimal spanning tree is 
used to demonstrate of the proposed algorithm. Steps involved in the 
construction of the minimum cost spanning tree are described as 
follows [12,13].

Step-1: The pentagonal fuzzy soft number adjacency matrix 
corresponding to the given Figure 4 (Tables 1 and 2).
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Figure 4. A Fermeatean graph with pentagonal fuzzy soft number 
edge weights.

V1 V2 V3 V4 V5 V6 V7

V1 0 e12 e13 0 0 0 0

V2 e12 0 0 e24 0 0 0

V3 e31 0 0 e34 e35 0 0

A= V4 0 e42 e43 0 0 e46 0

V5 0 0 e53 0 0 e56 e57

V6 0 0 0 e64 e65 0 e67

V7 0 0 0 e75 0 0 e76

Table 1. Pentagonal Fuzzy soft number edge weights.

eij Edge weight Edge weight Edge weight

e12 (0.2, 0.3, 0.4, 0.6, 0.7) (0.2, 0.3, 0.4, 0.6, 0.8) (0.2, 0.3, 0.5, 0.6, 0.8)

e13 (0.3, 0.5, 0.6, 0.7, 0.8) (0.1, 0.3, 0.4, 0.7, 0.8) (0.3, 0.4, 0.6, 0.8, 0.8)

e24 (0.1, 0.3, 0.4, 0.6, 0.7 (0.2, 0.4, 0.5, 0.6, 0.8) (0.1, 0.3, 0.6, 0.7, 0.7)

e34 (0.2, 0.4, 0.6, 0.6, 0.8) (0.2, 0.3, 0.3, 0.4, 0.6) (0.3, 0.4, 0.4, 0.5, 0.7)

e35 (0.1, 0.3, 0.5, 0.7, 0.8) (0.1, 0.3, 0.4, 0.5, 0.7) (0.2, 0.3, 0.4, 0.6, 0.7)

e46 (0.2, 0.3, 0.4, 0.6, 0.8) (0.2, 0.4, 0.4, 0.5, 0.7) (0.1, 0.3, 0.3, 0.5, 0.7)

e56 (0.2, 0.2, 0.3, 0.4, 0.5) (0.2, 0.3, 0.3, 0.5, 0.6) (0.2, 0.3, 0.3, 0.5, 0.7)

e57 (0.1, 0.3, 0.4, 0.4, 0.5) (0.1, 0.2, 0.4, 0.5, 0.7) (0.1, 0.2, 0.4, 0.5, 0.6)

e67 (0.2, 0.5, 0.5, 0.6, 0.7) (0.2, 0.3, 0.3, 0.5, 0.8) (0.2, 0.3, 0.4, 0.5, 0.7)

Table 2. The values of edges weights.

Step-2: The score matrix (Sij) is obtained by using score function (by equation (1)) (Table 3).
V1 V2 V3 V4 V5 V6 V7

V1 0 0.826 0.513 0 0 0 0

V2 0.826 0 0 0.48 0 0 0

V3 0.513 0 0 0.546 0.546 0 0

A= V4 0 0.48 0. 567 0 0 0 0

V5 0 0 0.546 0 0 0 0.533

V6 0 0 0 0.546 0.52 0 0.533

V7 0 0 0 0 0.52 0 0.533

Table 3. Score matrix.

From the above score matrix, we observe that the minimum value 
0.480 is selected and the corresponding edge e24 (V2 → V4) is 
marked with box (Figure 5 and Table 4). The reduced undirected 
pentagonal   fermeatean   fuzzy    soft    graph   is  the  next  non-zero

minimum entries in step-2 is 0.513 and the corresponding edges e13 
(V1 → V3) the minimum value is (Figure 6).
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Figure 5. Marked pentagonal fermeatean fuzzy soft graph.

V1 V2 V3 V4 V5 V6 V7

V1 0 0.826 0.513 0 0 0 0

V2 0.826 0 0 0.48 0 0 0

V3 0.513 0 0 0.567 0.546 0 0

A= V4 0 0.48 0.567 0 0 0 0

V5 0 0 0.546 0 0 0 0.533

V6 0 0 0 0.546 0.52 0 0.533

V7 0 0 0 0 0.52 0 0.533

Table 4. The reduced undirected pentagonal fermeatean fuzzy edge weights.

Repeat the process until the iteration exists in the given Table 5 
[14]. The next non-zero minimum entries in the given score matrix 
(step-2) is 0.520 and the corresponding edge e35 (V3 → V5) (Table 
5).

Minimum value Edge Node

0.546 e56 V5 →V6

0.553 e67 V6 →V7

Table 5. Repeat the process until the iteration exists.

Hence the pentagonal fermeatean fuzzy soft graph for the 
corresponding minimum entries is an illustration of the marked edge. 
Based on the procedure of matrix approach applied to undirected 
pentagonal fuzzy soft graph (Figures 7 and 8).

Figure 7. Marked minimum path pentagonal fermeatean fuzzy soft 
graph.

The final path of minimum cost of spanning tree is:

Figure 8. Final minimum path of cost of spanning tree G.

Hence the length of the minimal spanning tree of pentagonal 
fermeatean fuzzy soft graph is V1→ V3 →V5 → V6 → V7 and 
whose edge values represented as 0.513 → 0.546 →0.520→0.553 
(Table 6).

Edge Accuracy function

e13 0
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e34 0.02

e56 -0.02

e67 0.08

Therefore the validity of the minimal spanning tree occurs in V6 →
V7. Hence the maximum accuracy function occurs in edge is e67 and 
value is 0.08.

Conclusion
The main purpose of this paper is to propose a fermeatean fuzzy 

soft version of mann whitney’s algorithm based in the 
matrix approach for reaching the cost minimum spanning tree in a 
network having pentagonal fermeatean fuzzy soft edge weighted 
validity of with accuracy function.
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