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Widespread Occurrence of Aberrant Splicing of Mutant 
Genes that Cause Human Genetic Diseases

Pre-messenger RNA splicing is an essential step in the expression 
of most eukaryotic genes where the expressed regions (exons) [1,2] 
are precisely joined together and the intervening sequences (introns) 
removed to generate mature mRNA transcripts for proteins [3].

Splicing occurs in the spliceosome, where five small nuclear 
ribonucleoproteins [4] (snRNPs U1, U2, U4, U5 and U6) and 
approximately 170 spliceosome-associated factors cooperate to 
accurately recognize the splice sites at the intron-exon boundaries and 
catalyze the splicing reaction in a sequential order [5,6]. Particularly 
important for recognition are the intronic 5’ GT in a consensus of 
AG|GTRAGT and 3’ splice site (branch point consensus CTRAY, 
polypyrimidine tract and 3’ AG in a consensus of NYAG|G) [7]. 
There is also a small percentage of introns that mostly use AT/AC at 
their 5’ and 3’ splice sites, respectively and the corresponding minor 
spliceosome is comprised of U11, U12, U4atac, U5 and U6atac snRNPs 
[8-10].

While some exons tend to be always included (constitutive exons), 
others can be selectively used in a spatially or temporally dependent way 
(alternative exons). Alternative splicing occurs in about 95% of human 
multi-exon protein-coding genes [1,2], with one-third of the resulting 
variant transcripts predicted to be degraded through nonsense-
mediated decay [11]. Particularly the coupled alternative splicing-NMD 
controls the homeostasis of a group of splicing regulatory factors [12-19].

The inclusion level of an alternative exon is generally dependent on 

the balance of the positive and negative effect of cis-acting regulatory 
elements (i.e. exonic splicing enhancers/silencers and intronic 
splicing enhancers/silencers), trans-acting factors and transcriptional/
chromatin control in mammalian cells [20] (Figure 1). Moreover, usage 
of a splice site can be completed by its flanking sites [21,22].

Not surprisingly, disruption of either the cis-acting elements or 
trans-acting factors can alter constitutive or alternative splicing, causing 
aberrant splicing human genetic diseases [23]. The effect of aberrant 
splicing on mRNA include the aberrant inclusion or exclusion of whole 
or partial exonic/intronic sequences (Figure 2), due to mutations of 
splice sites, regulatory elements, core spliceosomal snRNA or factors, 
regulatory splicing factors or microsatellite repeat RNA-induced loss/
gain-of-function of splicing factors. For mechanistic details of these 
splicing defects, readers can find them in recent reviews [24,25].

The first splice mutation was discovered in the beta-globin gene 
of a thalassemia patient in 1981 [26]. In 1992, 15% (101) of all point 
mutations causing human diseases (659 in total) were suggested to 
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Abstract
It is estimated that one-third of disease-causing mutations may induce aberrant splicing of pre-messenger RNA 

transcripts and a partially overlapping third to premature stop codons (PTC) and nonsense-mediated mRNA decay 
(NMD). In some diseases, the estimate even goes up to 50% and >70%, respectively. These highly prevalent effects 
of different mutations on mRNA processing have prompted much effort for the identification of compounds towards 
the therapy of a substantial number of diseases with mutation-specific, personalized medicine. Here I review the 
widespread occurrence of aberrant splicing, NMD and their association in human genetic diseases, and discuss the 
rationales underlying the corresponding therapeutic strategies and challenges.

The ability to sequence and analyze the human genome and transcriptomes of various sources at speeds 
unimaginable more than 20 years ago has had huge impacts on not only basic biological research but also the 
development of novel therapeutic strategies for human genetic diseases. Particularly this ability allows the screening 
of mutations in individuals at a genome/transcriptome scale for the design of different therapeutic strategies for 
mutation-specific, personalized medicine based on how the mutations take their toll.

For the genetic information-based disease therapy, RNA has also been targeted besides DNA and protein, with 
an accelerating speed of research in recent years. This development has mainly benefited from our understanding 
of different aspects of RNA processing and appreciation of their prevalence, such as the widespread presence of 
alternative pre-mRNA splicing in human transcriptomes, mRNA quality control by nonsense-mediated decay (NMD), 
as well as microRNA, long noncoding RNA and other non-coding RNAs. Their misregulation due to mutations has 
been linked to or associated with the development of human genetic diseases. Here I will discuss the therapeutic 
potential of targeting aberrant splicing and NMD, two widespread and related effects of a large number of genetic 
mutations that cause human diseases.
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result in splicing defects [27]. As experimental studies of mutation 
effects on splicing accumulated, the number increased significantly 
up to about 50% (32/62) for the Mutated-in-Ataxia-telangiectasia 
(ATM) gene [28], as well as the Neurofibromatosis type I (NF1) gene 
[29]. The higher occurrence is contributed by point mutations outside 
of splice sites that cause splicing defects, particularly those in the 
coding regions that used to beconsidered only for amino acid changes 

(missense, nonsense or silent mutations) [30]. Recent computational 
and biochemical studies estimate that in general about 25% of exonic 
disease-causing mutations result in splicing defects [31,32]. Moreover, 
for most genetic disease genes, intronic mutations outside of splice sites 
have not been thoroughly examined. Taken together, the conservative 
estimate is that about one-third of disease-causing mutations may 
result in aberrant splicing [32].

Figure 1: Factors determining the inclusion of an exon. Shown is part of a transcript containing three exons (blocks) and two introns (horizontal lines). The 
positive (Green) or negative (Red) effects of trans-acting (ovals) factors binding to the respective cis-acting pre-mRNA elements on the 3’ or 5’ splice sites (SS) 
or splicing pathways are indicated with curves. Competition between the two 3’ SS are indicated with a brown dashed line between the two splicing pathways.
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Figure 2: Different effects of aberrant splicing on the usage of pre-mRNA sequences due to cis- or trans-acting mutations. The normal splicing pathways are 
in grey and aberrant in red. A: branch points. The effects of mutations include aberrant inclusion/exclusion of the whole or part of an exon or intron as shown. 
The effects of the aberrant splicing on the mRNA or proteins are listed in the text box to the right.
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Widespread Occurrence of NMD of mRNA Transcripts 
of Mutant Genes that Cause Human Genetic Diseases

NMD is the degradation of mRNA transcripts that harbour 
premature termination codons [33] (PTC, Figure 3), which are more 
than 50-55 nt upstream of the last exon-exon junction [34]. The 
presence of PTC induces the assembly of NDM factors hUPF1-3 and 
SMG5-7 together with others onto the exon-exon junction complex 
(EJC) that deposits at about 20-24 nt upstream of the junction during 
splicing [35-38]. The spliced PTC-containing mRNA transcripts are 
marked by the NMD factors and recognized for degradation by the 
endonuclease SMG6 [38].

In cells, NMD plays important roles in mRNA quality control to 
eliminate transcripts with PTCs or maintain the homeostatic levels of 

transcripts. Particularly as mentioned above, it keeps the homoestatic 
levels of a group of splicing regulatory factors through alternative 
splicing-coupled NMD [12-19]. For example, the control of the switch 
between the polypyrimidine tract binding protein 1 and 2 through 
NMD plays a critical role in neuronal differentiation [17,18].

In genetic diseases, it has been estimated that a third of disease-
causing point mutations lead to NMD of the disease gene transcripts 
[39]. These mutations either create a PTC directly, or indirectly by 
frameshift through insertion/deletion or disruption of the splicing of 
one or more exons/introns (Figure 3). In the ATM geneof AT patients, 
the percentage of protein truncation mutations in the first 65 of the 66 
exons, which supposedly contain PTC and result in NMD, is 72% (56 
of 78 unique mutations) [28]. In the NF1 gene, of NF1 patients, the 

Figure 3: Causes of nonsense -mediated decay of mRNA transcripts. A. NMD by the creation of a PTC (Red STOP) by a nonsense mutation (X) in the exon >55nt 
upstream of the last exon-exon junction (EJC), or a non-3n insertion/deletion mutation (Red triangles). The normal STOP codon is in yellow. The PTC leads to the 
marking of the transcript by NMD factors UPF1-3, SMG5-7 and others at the EJC upon splicing and subsequent degradation by SMG6. B. NMD caused by aberrant 
splicing. Aberrant splicing leads to skipping of partial or whole exons or inclusion of intron sequences resulting in frame shift and PTC/NMD/mRNA degradation.
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percentages are also close to or more than 70% (14 of 21; 10 of 14; 24 of 
29) in three studies [40-42]. Moreover, in an exhaustive analysis 54 of 
the 62 mutations (87%) of the NF1 gene cause protein truncation within 
the first 42 of the 46 exons examined [43], due to nonsense, missense, 
insertion, deletion or splice mutations. Overall, these four independent 
NF1 studies point to an average of 77% (±8.3) mutations that cause 
NMD. Thus, the occurrence of NMD is likely far more prevalent than 
just a third of mutations at least some diseases.

For aberrant splicing-caused NMD, it could be due to mutations of 
either the cis-acting elements or trans-acting splice factors. Particularly 
the latter could result in the NMD of a group of transcripts. For example, 
mutation of the minor spliceosome snRNA U4ATAC gene causes the 
retention of a set of AT/AC introns and decreased mRNA levels in 

patients with microcephalic osteodysplastic primordial dwarfism type 
1 (MOPD 1, or called Taybi-Linder syndrome, TALS) [44,45].

PTCs that cause NMD may also result in aberrant splicing [46], 
likely by disrupting or forming splicing regulatory elements with its 
flanking nucleotides [32]. In a Marfan syndrome patient, a PTC caused 
not only NMD but also skipping of exon 51 due to the disruption of 
a SRSF2 (SC35)-dependent splice enhancer [47]. Knocking down the 
NMD factor Upf2 altered the alternative splicing of about 30% of 
expressed genes in mouse liver or macrophages suggesting that the 
NMD factor also controls the alterantive usage of exons in cells [48].

Taken together, the high prevalence of aberrant splicing and NMD 
among disease gene transcripts and their association with each other 

Figure 4: Potential therapeutic strategies for aberrant splicing or NMD. A. Strategies against aberrant splicing using ASO (1) or small molecules (2). For an ASO, it 
could target a regulatory element (here a silencer in red) or tagged with a chimeric peptide or binding site of a regulatory factor as indicated as a small green block (1). 
It could also block a cryptic splice site (2) to switch the splicing back to the normal pathway. For small molecules (purple), they could target the chromatin/transcriptional 
machinery, splicing regulators (ovals) or a secondary structure (riboswitch) to correct aberrant splicing (here to restore the inclusion of the middle exon, pathway in 
green). B. Strategies against NMD, by compounds that promote the read through of the PTC, like PTC124 (1), or inhibition of the NMD factors (2), thereby increasing 
the level of the disease transcript.
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provide therapeutic targets for a large number of genetic diseases in a 
mutation-specific, personalized way.

Potential Therapeutic Strategies Targeting Aberrant 
Splicing or NMD

For the correction of aberrant splicing or NMD, mainly two 
categories of compounds have been used: oligonucleotide-based and 
small molecules (Figure 4). Each has its advantages and disadvantages.

Oligonucleotide-based compounds targeting aberrant 
splicing

Antisense oligonucleotides (ASO) bind the complementary 
target RNA sequences with relatively high specificity, thereby giving 
hope for mutation/gene-specific therapy at different steps of mRNA 
processing. For enhanced stability and/or affinity of oligos in cells or 
in vivo, various modifications have been made to ASOs, for example, 
morpholino and 2-O-Methyl RNA oligos for nuclease resistance and 
specificity [49], and oligos containing locked nucleic acids (LNA) with 
a methylene bridge between the 2’ oxygen and 4’ carbon atoms of the 
sugar ring for high affinity as well as nuclease resistance [50].

ASOs have been used to directly mask the splicing regulatory 
elements or cryptic splice sites, or conjugated with a chimeric peptide 
or tagged with a binding motif of a splicing regulatory factor to correct 
aberrant splicing [51-53] (Figure 4A). Some of them have been used 
in animal studies demonstrating promising results. For example, 
2-OME or morpholino oligos targeting the intronic ISS-N1 silencer of 
the SMN2 gene corrected the aberrant splicing of exon 7 in SMA mice 
[54,55].

Besides ASOs, siRNA has been used to knockdown the deleterious 
microsatellite repeat transcripts that cause aberrant splicing in 
muscular dystrophy [56].

Although the effects with ASO or siRNA are promising, their 
efficient delivery into cells/tissues, particularly of the nervous system of 
patients, had been probably one of the biggest concerns. In this regard, 
adenovirus-mediated ASO expression [57], or direct injection/infusion 
of the therapeutic ASOs [58], have appeared to be sufficient to achieve 
certain levels of therapy. However, it will have to wait for clinical trial 
results to see the effectiveness and specificity in patients.

Small molecules

Small molecules are another category of compounds that have been 
screened for their cell/tissue permeability, specificity and efficiency on 
aberrant splicing or NMD of disease transcripts.

Small molecules targeting aberrant splicing

Alternative splicing can be controlled by physiological or synthetic 
external factors, which act through intracellular signaling pathways or   
directly bind splicing factors or cis-acting RNA structures [59-61]. A list 
of small molecules with therapeutic potentials can be found in a recent 
review on “Alternative splicing interference by xenobiotics” [62]. Here 
I will discuss several representative ones targeting trans-acting factors, 
pathogenic RNA or cis-acting elements/structures (Figure 4A).

Chromatin remodelling compounds such as sodium butyrate 
and valproic acid (VPA) inhibit deacetylases, which may act on 
histones as well as splicing factors [63-65]. Sodium butyrate enhanced 
the inclusion of the SMN2 exon 7, increased the SMN protein and 

ameliorated the SMA phenotype in a mouse model of SMA [66]. VPA, 
likely by increasing the splicing activator TRA2-β1, also increased the 
SMN protein level, in fibroblast cells from SMA patients [67]. However, 
clinical trials by two groups with VPA failed to see an increase of SMN 
protein or improved strength or function of SMA children. One of the 
[68-70] complications in patients could be the low (~15%) efficiency 
of VPA to cross the blood brain barrier [71], or its side effects on the 
electrical excitability of motor neurons or gain of weight [68,69,72]. 
Thus, more studies are needed before successful application of the 
therapeutic compounds to patients.

Digoxin is a cardiotonic steroid that has been in clinical use for 
decades. In a screen of 1,440 compounds of drugs, enzyme inhibitors 
and ion channel antagonists for splicing regulators using a tau exon 
10 splicing reporter, digoxin and a number of other drugs were found 
to enhance or inhibit exon inclusion [73]. Digoxin also regulates the 
splicing of HIV transcripts [74]. Its closely related form digitoxin 
down-regulates SRSF3 (SRp20) [75,76], as well as TRA2β [76]. 
Interestingly, the suppressive effect of digoxin on SRSF3 increases the 
exon 20-containing wild type transcripts of the IkappaB kinase complex-
associated protein (IKAP) gene in cells from familial dysautonomia 
(FD) patients [74]. If its delivery efficiency through the blood brain 
barrier (BBB) could be enhanced [76], digoxin/digitoxin could bring 
hope for the therapy of the prevailing mutant alleles (more than 98%) 
of this debilitating disease [33].

Spliceostatin A is a natural anti-cancer compound isolated 
from Pseudomonas [78]. It inhibits splicing by binding to the SF3B 
subcomplex of the U2 snRNP [79]. One component SF3b1 and other 
factors of the 3’ splice site are mutated in myelodysplasia [80,81]. 
Recently a screen from another bacterial strain B. thailandensis 
MSMB43 isolated compounds named Thailanstatins A, B and C with 
similar inhibitory activities on splicing and cell proliferation but with 
greater solution stability [66].

Other small compounds that inhibit trans-acting splicing factors 
include the benzothiazole-4,7-dione BN82685, which blocks the second 
trans-esterification reaction preventing the release of intron lariat and 
ligation of exons [82], and the biflavonoid isoginkgetin, which prevents 
the stable recruitment of the tri-snRNP U4/U5/U6 and accumulation 
of complex A [83].

Besides trans-acting factors, cis-acting RNA elements/structures 
could also be targets of small compounds like that in riboswitch. For 
example, the telomerase inhibitor telomestatin binds G quadruples 
[84-86], which are formed by multiples of G tracts that are known to 
control splicing [87-91]. Another chemical LDN-13978 (mitoxantrone) 
was identified from a library of 110,000 compounds and stabilized the 
secondary structure around the junction of the tau exon 10/intron 10, 
giving hope to reduce the exon usage in FTD-17 dementia patients [92-94].

The effect of spliceostatin A and these other small compounds on 
aberrant splicing and their specificity remains to be tested for genetic 
disease transcripts in cells or in vivo.

There are also compounds binding the hairpin structures of the 
pathogenic triplet CUG repeats of DMPK1 transcripts of muscular 
dystrophy (DM1) [95,96], one of a group of microsatellite expansion 
disorders [97]. Particularly interesting is that pentamidine, a drug for 
pneumonia and other infectious diseases, partially rescued the aberrant 
splicing of the Serca1 and Clc-1 transcripts in a mouse model of DM1 [98].
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Small molecules targeting NMD

In experimental systems, NMD can be inhibited by global 
inhibitors of translation elongation such as cycloheximide, puromycin 
or emetine, which means that they also inhibit the protein levels of 
disease genes. Therefore, more specific inhibitors of NMD have been 
sought after for disease therapy (Figure 4B).

One of the prominent small compounds for the inhibition of NMD 
is PTC124 (brand-named Atluren), which was identified from more 
than ~800,000 small compounds for its effective read through of the 
premature stop codons (most effectively TGA), but not the normal 
termination codons [99]. PTC124 was used to inhibit the NMD of the 
DMD transcripts caused by a PTC UAA in the exon 23 of the Dmd 

gene in the mdx mice or a PTC UGA in the exon 28 of the DMD gene 
in a DMD patient [99]. In both cases, the dystrophin protein was 
significantly increased in myotubes, and in mdx mice muscle strength 
was enhanced [99]. Although the clinical trial result for PTC124 in 
DMD patients did not bring significant improvements for patients 
[100], its clinical trial for cystic fibrosis has shown increased chloride 
transport of the CFTR protein and improved pulmonary function with 
generally good tolerability [101,102].

The molecular basis of PTC124 inhibition of NMD remains 
unclear. However, since it does not change the NMD-reduced mRNA 
level [99], combining its effect with other compounds that increase the 
transcript level would significantly enhance its therapeutic efficiency.
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Besides read through of PTCs, targeting NMD factors has also been 
attempted, for example, by siRNA knockdown of UPF1 or SMG1 to 
rescue the collagen VI phenotype in Ullrich’s disease [103,104]. A safe 
and efficient small compound as an inhibitor of NMD factors remains 
to be identified.

Therapeutic Strategies Targeting both Aberrant 
Splicing and NMD
Correction of aberrant splicing that leads to NMD

In addition to the therapeutic strategies targeting either aberrant 
splicing or NMD, one can also target the aberrant splicing that cause 
NMD to eventually inhibit the NMD of disease transcripts using ASOs 
or small molecules as discussed above (Figure 5A). For examples, the 
NF1 and NF2 genes with deep intronic mutations cause PTCs and NMD 
[105,106]. Antisense morpholino oligos blocking the cryptic splice sites 
increased the wild type transcripts and the NF1 protein in primary 
fibroblasts from patients [106]. Similar effect was also demonstrated by 
the same group for the NF2 mutations [105]. It’ll be interesting to see 
the in vivo effect in animals or patients in the future.

Inhibition of NMD to increase the splicing regulators that are 
subject to the homeostatic control by NMD

Besides the inhibition of NMD through the control of splicing, 
the regulation of a group of alternative splicing factors by NMD as 
mentioned above is also a promising target for therapy (Figure 5B). 
For example, several of the splice variants of SRSF1 in the control of 
SMN2 exon 7 are controlled by NMD for its homeostatic maintenance 
[19]. This NMD is through the splicing of a normally retained intron 
within the 3’ UTR creating an additional last EJC [19], thus converting 
the upstream normal stop codon in the major transcript to a PTC in 
the variant transcript. At least two of the NMD-targeted variants still 
produce full-length SRSF1 proteins.

Application of small compounds that inhibit NMD to increase the 
SRSF1 variant mRNA and protein level could potentially enhance the 
SMN2 exon 7 for SMA therapy (Feng and Xie, unpublished data). For 
this purpose, the PTC read through compound PTC124 or protein 
synthesis inhibitors do not fit; instead, novel compounds inhibiting the 
NMD factors UPF1-3 or SMG5-6 without inhibiting protein synthesis 
need to be identified.

Besides SRSF1, the many other splicing factors that are controlled 
by NMD could also be enhanced through inhibiting NMD factors, 
thereby exploited for the correction of aberrant splicing. Since they act 
in trans on splicing, increasing their protein level by safe compounds 
that inhibit the NMD factors but not protein synthesis will have even 
wider impact on the correction of aberrant splicing of a large number 
of disease genes.

Concluding Remarks

The highly prevalent occurrences of aberrant splicing and nonsense-mediated 
decay among the mutant transcripts of human genetic disease genes make them 
prominent therapeutic targets for mutation-specific, personalized medicine for a 
large number of patients. Recent advances in the development of therapeutic 
compounds have shown promising results in patient cells, animal models of 
diseases or even some clinical trials. Improved compounds for higher delivery/
treatment efficiency and specificity but less side effect and toxicity will bring hope 
for the personalized therapy of genetic diseases whose mutations are linked to the 
misregulated steps of RNA processing.
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