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Editorial
Nuclear Magnetic Resonance (NMR) spectroscopy is a non-

destructive, quantitative, reproducible, untargeted and unbiased 
method that requires no or minimal sample preparation, and is one of 
the leading analytical tools for metabolomics research [1-3]. The easy 
quantification and the no need of prior knowledge about compounds 
present in a sample associated with NMR are advantageous over other 
techniques [1,4]. 1H NMR is especially attractive because protons are 
present in virtually all metabolites and its NMR sensitivity is high, 
enabling the simultaneous identification and monitoring of a wide 
range of low molecular weight metabolites. 

However, the resolution of the 1H NMR spectra from intact tissues is 
often poor due to the unwanted line broadenings arising from isotropic 
magnetic susceptibility variations near boundaries of inter- and intra-
cellular structures, residual homo-nuclear proton dipolar coupling and 
residual chemical shift anisotropy interaction. It is well-known that all 
of these line broadenings can be eliminated by the technique of Magic 
Angle Sample Spinning (MAS), where the rotor containing the sample 
is rotating rapidly about an axis that is inclined at an angle of 54.7356° 
with respect to the external main magnetic field [5]. The technique, 
termed as high-resolution MAS (i.e., 1H hr-MAS) [6] using a sample 
spinning rate of several kHz or more, generates a high resolution 1H 
NMR metabolite spectrum of intact biological tissue samples with 
spectral resolution approaching that obtained from standard liquid 
state NMR on cell and tissue extracts. The unique ability of hr-MAS to 
study intact tissue samples, i.e., the elimination of extraction process, is 
a major breakthrough in metabolomics, not only because the extraction 
takes time and also there is always a concern that some metabolites 
might be lost during an extraction process. During the last decade, 
there have been numerous publications in which 1H hr-MAS has been 
successfully used to study a variety of biochemical processes associated 
with disease progression and/or the effects of therapies etc. [7].

Typically about 10-60 mg of tissue samples are used for metabolic 
profiling using the technique of hr-MAS. Recently, a breakthrough has 
been made in miniaturizing the hr-MAS technique using the concept of 
Magic Angle Coil Spinning (MACS) [8,9]. MACS uses wireless inductive 
coupling between the static coil that is used for signal excitation and 
reception, and a tuned micro-coil that is co-rotating with the sample 
container. Because the micro-coil is wound directly on capillary sample 
tube, the sample filling factor is high, resulting in a high sensitivity. 
MACS is capable of metabolic profiling on tissue sample with mass 
as small as 0.2 mg. Despite its remarkable success, MACS has the 
following limitations. (i) A micro-coil (and a fixed capacitor attached to 
the coil) has to be wound on every sample tube that inevitably increases 
the cost of the experiment. (ii) MACS favors extremely small sample 
tube detection by using extremely small diameter of copper wires for 
winding the micro RF coil due to the factor that the eddy current from 
a very small rotating micro RF coil is minimized so that high resolution 
can be obtained. The drawback is that it is not easy to load a tissue 
sample into a, e.g., 400 µm inner diameter sample tube, thus limiting 
the throughput of the experiment. 

Hr-MAS has now been widely accepted as a powerful NMR metabolic 
profiling techniques on intact biological tissues samples, and has made 

indispensable contributions to the success of the rapidly developing 
field of metabolomics. However, despite its success in metabolomics, 
hr-MAS is technically challenging due to the use of a sample spinning 
rate of several kHz or more. These challenges include: (i) Tissue samples 
contain a significant amount of fluids, mostly H2O, accounting for more 
than 90% of the tissue mass. Because quantification is vitally important 
for NMR metabolomics plus the safety concerns arising from HIV and 
other potentially infectious disease, a leakage free sealing system at 
high spinning rate is required for generating quantitative results and 
for protecting both the experimenters and the expensive MAS probe. 
Unfortunately, production of a 100% leakage free sample rotor for hr-
MAS is challenging due to the large centrifugal force associated with 
fast sample spinning, especially when the same sample rotor is used 
repeatedly. (ii) The large centrifugal force associated with fast sample 
spinning of several kHz or more is destructive to the tissue structure 
and even some of the cells [10]. As a result, the same sample cannot be 
used for further analysis by other techniques such as histopathology 
after hr-MAS. (iii) For large sized biological tissues of ∼300 mg or more, 
it is even more difficult to spin the sample to several kHz. Studying a 
single organ from a laboratory animal, or larger sample from surgery 
room can be very important for toxicology assessment and/or disease 
diagnosis. The application of hr-MAS would be difficult in these cases.

To overcome the technical challenges associated with hr-MAS, my 
group has recently developed a new approach, called slow-MAS NMR 
[11-21] that significantly enhances the spectral resolution in excised 
tissues, organs and live small animals. With one of the methods that 
we developed based on an existing solid state NMR method originally 
reported by Antzutkin et al. [22], namely 1H PASS (Phase-Adjusted 
Spinning Sidebands) [11,12], sample spinning rates as low as 40 Hz 
can be employed. The method of 1H PASS facilitates non-destructive 
ex vivo studies of excised intact tissues and organs. 1H PASS requires 
relatively short (from a few minutes to less than an hour) measurement 
times and offers both high sensitivity and high spectral resolution. 
Note that a sample spinning rates up to 600 Hz have been reported safe 
for maintaining the cellular structure of excised prostate tissue [23]. 
Furthermore, it is easy to keep the fluids inside the tissue without fluid 
leakage at slow sample spinning rates. Importantly, we have carefully 
compared the spectral resolution obtained from both the 1H slow-MAS 
at a spinning rate of 80 Hz and 1H hr-MAS at a spin rate of 2 kHz by 
using a sample consisting of an intact left lung lobe from a mouse by 
performing slow-MAS experiment first, followed immediately by hr-
MAS on the same sample. We found [20] that the spectral resolution 
from slow-MAS is significantly higher than that from hr-MAS primarily 
due to the severe redistribution of the tissue mass at high speed, thus 
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the creation of magnetic susceptibility gradient along the magic angle 
axis that cannot be eliminated by MAS. 

We expect that with further development the technology of 
slow-MAS NMR metabolomics will play a vital role in studying the 
biochemistry non-destructively in intact biological tissues with variable 
sample sizes ranging from as small as less than 1 µl to as large as 1 cm3 
or more using a single probe. The small sample volume detection is 
important for sample limited applications where high spatial sampling 
for a single type of cells in tissue is required, or where minimally 
invasive biopsy detection in a laboratory animal or a patient is needed. 
The large sample volume detection on biological samples with size of 
1.0 cm3 or more is useful for investigating an entire intact organ from 
a small laboratory animal or tissues from a surgery room in a clinical 
setting. This will be important for investigating whole organ injury due 
to a variety kind of insults in laboratory animals, or disease diagnosis 
in patients. 
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