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Abstract
Objective: Determine if machine learning programs coupled with standard statistical methods can accurately 

predict rates of bark coverage and death of saguaro cactus plants.

Methods: Data of twelve surfaces of 1,149 saguaro cacti with four samplings over 23 years that provided more 
than 55,000 data points were analyzed to predict rates of bark coverage on cactus surfaces and cactus death with 
three machine learning programs, Validate Model, WEKA 3.8 decision trees, and Random Forest.

Results: Saguaro cacti (Carnegiea gigantea) show extensive bark coverage and cacti with extensive bark 
coverage die prematurely. Over the 23-year period of study, bark coverage on all surfaces was relatively constant. 
Decision trees are able to predict cactus death up to 96%. Three machine learning programs used similar surface 
coverages to make similar predictions of future bark coverage and cactus death accurately (approximately 92%), 
for cacti that had overall bark coverage less than 80% on south-facing surfaces. Higher prediction accuracies were 
obtained for cacti with were low bark percentages. While bark coverage rates and cactus death were less accurate 
for cacti with higher bark percentages because cacti can remain with high bark percentages with many years prior to 
death. Cacti with more than 80% coverage on south-facing surfaces were accurately predicted (p<0.05) to be alive 
and dead of the 23-year period with a tracking method.

Conclusions: The combined machine learning programs coupled with standard statistical procedures accurately 
predicted bark coverages and cactus death with greater than 95%.
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Introduction
Saguaro cacti (Carnegiea gigantea), a columnar plant species native 

to the Sonoran Desert, exhibit extensive bark coverage and experience 
premature death [1]. Twenty-three additional columnar cactus species 
show bark coverage in the Americas [2]. Bark coverage is caused by 
a build-up of epicuticular waxes produced by epidermal cells [3,4]. 
During wax accumulation, many stomata become blocked, preventing 
gas exchange [2-4]. Extensive bark coverage results in cactus mortality 
rates of 2.3% per year even though estimates of life expectancies may be 
several hundred years [5-7].

Controlled exposures to UV-B light produce a buildup of 
epicuticular waxes in the same manner that occurs in nature [8]. 
Averaged over the entire year, south-facing surfaces of saguaro cacti in 
Tucson, Arizona (32.2°N) receive four times more sunlight than north-
facing surfaces [9]. Corresponding with these sunlight exposures, 
south-facing surfaces of saguaros show initial bark coverage whereas 
north-facing surfaces are the last surfaces to show bark coverage prior 
to cactus death (Figure 1) [2,3,10].

In previous studies, machine learning programs predicted increases 
in both bark coverages on cactus surfaces and death of saguaro cacti 
[1,6,11]. The most accurate predictions of cactus death involved bark 
coverage on north-facing right troughs (NR). For example, a WEKA 
C4.5 decision tree predicted cactus death with 88.7% accuracy using 
only trough data [6]. Two independent machine learning methods 
using only NR data predicted increased rates of bark coverage (RBC) 
and mortality (84% accuracy) [1]. Most recently, results of logistic curve 
analyses (with all r2 values above 0.95), demonstrated the sequence of 
bark coverage on twelve surfaces around cacti. NR were the last of the 
twelve surfaces to have bark coverage, after an estimated 13-year delay [11].

The current study uses data from four consecutive evaluations, 
including three machine learning programs, to determine the following: 
(1) if saguaro cacti have relatively constant RBC; (2) if bark coverage on 
several cactus surfaces can predict bark coverage on NR; and (3) if bark 
coverage can predict cactus death.

The following were hypothesized: that bark coverage increases at 
constant rates, bark coverage of NR can be predicted with bark coverage 
on other surfaces, mortality rates can be predicted with bark coverage, 
and mortality of Class IV cacti can be predicted with bark coverage.

Methods
Field and survey conditions

Over a 23-year period, 1,149 saguaro cacti (Carnegiea gigantea) 
were studied. All cacti were within 50 field plots in Tucson Mountain 
Park near Tucson, AZ (32.2°N, 111.14°W) [5]. Cacti were first selected 
in 1993-1994. All selected cacti were taller than 4 m and assumed 
to be more than 80 years old [7,12]. Physical characteristics, nearby 
vegetation, topographical features, and GPS coordinates were used to 
distinguish each cactus plant. All cacti were re-evaluated in 2002, 2010, 
and 2017 to provide a total of four sampling periods [5].
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Evaluation of cacti in field plots

Each saguaro cactus has 20 to 23 rib crests or convex protrusions 
[13]. Troughs are concave surfaces on the sides of each crest [14]. 
Usually, crests have more bark coverage percentages than troughs since 
crests are more exposed to sunlight than troughs. For each evaluation, 
the crest closest to south, east, north, and west azimuths was evaluated 
[3,4,15,16]. Troughs to the right and left of each crest were evaluated 
so that twelve surfaces were assessed for each cactus. An 8 cm vertical 
span, at 1.75 meters from ground level, was evaluated for percent bark 
coverage for each surface [3,4,15,16]. Bark coverage percentages were 
determined visually. Previously, similar estimates of bark coverage 
were obtained with visual and digital methods [6]. Percentages of bark 
coverage on all surfaces were entered into Microsoft Excel. The final 
data file titled Master File had 55,152 data points for the twelve surfaces 
of all 1,149 cacti over the four data collection periods (1993-1994, 2002, 
2010, and 2017).

Classes of cactus plants
Bark coverage varies on cactus surfaces. Each cactus was placed in a 

class depending upon the percentage of bark coverage on south-facing 
crests only [5]:

Class I - Less than 20% bark coverage,

Class II - Between 21 and 49% bark coverage,

Class III - Between 50 and 80% bark coverage,

Class IV - More than 80% bark coverage,

Class V - Cactus was dead.

Estimating constant rates of bark coverage (RBC)

To determine if bark coverage occurs at constant rates, the 
collected data were divided into three time periods (1994-2002, 2002-
2010 and 2010-2017). Rates of bark coverage (RBC) were determined 
to be constant when the rate of bark coverage was similar between 
two successive periods. Thus, the data were placed into six class 
changes with three time periods each. For each cactus, bark coverage 
percentages were converted to arcsine values to linearize the data for 
analysis [17]. The rate of change for each cactus was determined by:

Rate of change=X-Y/Y

where X is the arcsine bark percentage at the end of the period 
and Y is the arcsine bark percentage at the beginning of the period. 
The RBC for all samples in a class change among time periods were 
analyzed using a paired student’s t-test (p=0.05).

Machine learning programs

Three machine learning programs (WEKA 3.8 decision trees, 
Validate Model, and Random Forest) were used to understand bark 
coverage. The WEKA 3.8 program generated decision trees that 
resulted in two distinct outcomes with a corresponding accuracy 
[18,19]. The WEKA 3.8 program implemented the ID3 algorithm to 
generate variables used to make predictions and produce decision trees 
[20]. The decision trees are visualized using the J48 algorithm.

The second machine learning program, Validate Model, was used 
to analyze RBC on cactus surfaces. Validate Model used a 10-fold 
cross-validation technique that used ten randomly selected subsets of 
the entire database, tested to produce a model, and validated the entire 
dataset to produce the final machine learning model. From Validate 
Model, rates of bark coverage (RBC) were classified as Slow, Normal, 
and Fast. Rates were considered Slow if the values were less than two 
times the standard deviation from the mean (Normal). Rates were 
considered Fast if the values were more than two times the standard 
deviation from the mean (Normal).

A third machine learning program, Random Forest, was used 
to confirm the results of the first two machine learning through the 
construction of decision trees [21].

Results
Bark coverage percentages increase at constant rates

There were six group comparisons (Class I to Class II, Class I to 
Class III, Class I to Class IV, Class II to Class III, Class II to Class IV, 
Class III to Class IV) made for twelve surfaces and three time periods 
(Table 1). The data show that there were no consistent differences 
in the RBC for any surface for the three of the time periods. Some 
individual differences were present for all trough surfaces. No crests 
showed statistically significant differences. Therefore, we conclude that 
bark coverage rates were relatively constant on all surfaces.

Bark coverage rates of north-facing right troughs can be 
predicted with bark coverage on other surfaces

To predict bark coverage on north-right troughs, three programs 
were utilized. The first step is to remove all dead cacti from Master File. 
The new file is titled No Dead File. The second step is to place the data 
from No Dead File into Validate Model so individual cacti could be 
catalogued as Slow, Normal, and Fast RBC. Three clusters were selected 
as predictor surfaces. Cluster 1 consisted of all surfaces except NR. 
Cluster 2 consisted of north-facing crests (NC) with north-facing left 
troughs (NL). Cluster 3 consisted of NL with west-facing left troughs 
(WL). After Slow, Normal, and Fast groups of cacti were determined, 
data were processed with the WEKA 3.8 program. Within each cluster, 
comparisons were made between Normal and Slow cacti as well as 
between Normal and Fast cacti (Figure 2).

Comparisons of several machine learning models were used to 
predict bark coverage on NR with multiple predictive surfaces. The 
WEKA 3.8 and RF programs predicted bark coverage on NR with 
89.9 to 94.9% accuracies (Table 2). Overall, analyses with Slow cacti 
produced higher accuracies than analyses with Fast cacti. Accuracies of 
the three predictive surfaces (north-facing left troughs (NL) combined 
with west-facing left troughs (WL), NL combined with north-facing 
crests (NC), and all surfaces except the NR) were similar. The numbers 
of Fast and Slow cacti from WEKA 3.8 confusion matrices were within 
96% of cacti from Validate Model.

 
Figure 1: Visual representation of bark coverage on south, east, north, and 
west-facing surfaces on a saguaro cactus (Carnegiea gigantea).
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WEKA Confusion Matrices

Time RF Predicted:  Normal Slow Normal Slow  WEKA VM Class IV Class IV

Interval Accuracy Actual:  Normal Slow Slow Normal Accuracy  n  n Slow %

Surfaces Used: All Surfaces Except NRc

1994-2002 92.5  458  6 33 7 92.1 38 22 48.9

2002-2010 90.6  452  1 38 13 89.9 39 31 79.5

2010-2017 92.9  453  12 26 12 92.5 39 37 94.9

Surfaces Used: NL and WL

1994-2002 92.9  468  2 36 1 92.5 37 26 70.2

2002-2010 91.7  462  5 32 8 92.1 37 33 89.2

2010-2017 89.4  471  0   0 92.7 37 34 1.9

Surfaces Used: NL and NC

1994-2002 91.7  457  10 25 3 94.3 35 24 68.6

2002-2010 93.5  458 11 23 2 94.9 35 32 94.1

2010-2017 94.2  446  18 16 14 93.9 35 34 97.1

a Validate Model, WEKA, and Random Forest are computer algorithms that are used for analysis.
b Slow and Normal refers to groups of cactus plants from Validate Model program. Normal cactus plants that have average rates of bark coverage while Slow cacti have 
rates of bark coverage slower than the average rate.
cNC=north-facing crests, NR=north-facing right troughs, NL=north-facing left troughs, WL=west-facing left troughs. dClass IV cacti had more than 80% bark coverage on 
south-facing crests in 1994.

Table 2: Validate Model (VM), WEKA, and Random Forest (RF)a data to predict bark coverages on north-facing right troughs for Slowb outliers for saguaro cacti 
(Carnegiea gigantea) alive from 1994 to 2017.

Table 1: Changes in bark coverage percentages for saguaro cacti (Carnegiea gigantea) that changed classes for 1994 to 2017.

Changes in bark coverage (%)
 na SCb SR SL EC ER EL NC NR NL WC WR WL

Classc change
Class I to II

1994/2002 78 17.8  10.2*d 9.89* 12.4  5.95*  8.75* 3.88 2.22  2.22* 11.4 5.76* 3.94* 
2002/2010 51 20 5.15 5.17 11 3.68 5.03 10.24 2.86 1.33 12.3 3.25 2.71
2010/2017 16 20.1 6.25 4.86 12 1.3 3.42 14.2 2.62 1.87 15.4 1.68 2.5

Class I to III
1994/2002 26 50.2 16.7  19.6* 16.7 6.53 13.1 9.3 2.61 6.39 10 9.89* 6.12
2002/2010 28 49.3 12.2 11 21.7 4.26* 10.7* 11.3 2.18 2.82 20.9 7.5  6.0* 
2010/2017 11 47.1 8.52 9.86 29.1 2.65 6.57 14.3 1.73 3.27 24.1 3.13 2.18

Class I to IV
1994/2002 40 84.5  35.9* 36.5* 35.8  15.5*  24.1* 16.4  6.32* 5.59 30.1  18.7* 6.83* 
2002/2010 22 80.5 20.75 20.1 34.9 5.09 10.8 15.6 3 2.86 31.4 5.9 3.57
2010/2017 10 83.3 36.8 30.8 38.4 3.2 17 11.3 2.6 3.1 54.2 26.3 3.6

Class II to III
1994/2002 19 32.8 12.3* 16.7* 26.9 9.9  20.6* 5.2 3.4 4.1 9.2  12.2*  7.3* 
2002/2010 34 32.7 10.9 13 24.7 7.2 10.7 13.9* 2.8 3.7 21.4 9.1 4.2
2010/2017 18 31.9 7.3 14 21.8 1.2 7.7 6.1 2.6 3 18.3 7.2 3.9

Class II to IV
1994/2002 34 61.7 36.1  38.6* 25.6 12.4 25.5 13.9 10 8 25.3 19.6 10.5
2002/2010 45  63.2* 22.3 20.4 33.4 7 13.5 12.5 3.5 2.7 29.4  12.1* 6.1* 
2010/2017 31 60.2 27.6 21.6 34.8 8.3 12.2 16.6 3.6 6.9 22.9 9.6 6.5

Class III to IV
1994/2002 29 31.5 28.6  34.0* 23.4 7.7  21.0* 13.5  8.1* 7.2* 25.5 20.1 6.7* 
2002/2010 48 31.1 26.5 24.5 33.4 12.2 18.9 25.0* 4.8 6.2 42.3 20.2 7.7
2010/2017 49 29.8 25.9 36.4 26.4 16.1 19.9 17 2.3 3.5 24 20 6

an is the number of samples, bSC=south-facing crests, SR=south-facing right troughs, SL=south-facing left troughs, EC=east-facing crests, ER=east-facing right troughs, 
EL=east-facing left troughs, NC=north-facing crests, NR=north-facing right troughs, NL=north-facing left troughs, WC=west-facing crests, WR=west-facing right troughs, 
WL=west-facing left troughs. cClasses of cacti are based upon the percentage of bark coverage on south-facing crests only: Class I – has less than 20% bark coverage; 

Class II - between 21 and 49% bark coverage; Class III - between 50 and 80% bark coverage; Class IV - more than 80% bark coverage. dValues proceeded by an 
asterisk denote that the rate of bark coverage was statistically different between the time period and the next time period.



Citation: Evans LS, Johnson CR (2018) Machine Learning Programs Predict Saguaro Cactus Death. J Comput Sci Syst Biol 12: 1-8. doi:10.4172/
jcsb.1000292

Volume 12(1) 1-8 (2018) - 4 
J Comput Sci Syst Biol, an open access journal  
ISSN: 0974-7231

Class IV cacti comprised 48 to 54%, 75 to 76.8%, and 88.6 to 93.6% 
for 1994-2002, 2002-2010, and 2010-2017 respectively, of all Fast cacti 
from WEKA 3.8 decision trees. In a similar manner, Class IV cacti 
comprised 48 to 72%, 79 to 94%, and 91 to 97% for 1994-2002, 2002-
2010, and 2010-2017 respectively, of all Slow cacti from WEKA 3.8 
decision trees. Overall, most outliers in these analyses were Class IV 
cacti.

Mortality rates can be predicted with bark coverage data

The Master File was used to predict cactus death. For the periods 
(1994-2002, 2002- 2010, 2010-2017), each cactus was placed in its class 
accordingly. Considering each class individually, WEKA 3.8 decision 
trees were used to determine whether a cactus was alive or dead by the 
end of the period.

The WEKA 3.8 program was used to predict cactus death with data 
of several cactus classes. WEKA 3.8 decision trees predicted death of 
Class I cacti with accuracies of 89.2%, 83.5%, and 97.1% from 1994-
2002, 2002-2010, and 2010-2017, respectively (Table 3; Figure 3).

Decision trees predicted death of Class II cacti with accuracies 
between 64.9 and 95.2% (Figure 4). Decision trees predicted death of 
Class III cacti with accuracies between 57.1 and 92.5%. Decision trees 
predicted death of Class IV cacti with relatively low accuracies between 
68.9 and 77.4%.

Mortality of Class IV cacti can be predicted with bark 
coverage data

Within the Master File, 1994’s Class IV cacti were removed and 
saved. The next step was to remove data of cacti that died in 2002 and 
2010. The resultant file was called Class IV Selection. The last step was 
to separate data from Class IV Selection into cacti that remained alive 
in 2017, and those that died by 2017 (after 2010). Cacti living in 2017 
were labelled Class IV Alive, and cacti that died by 2017 were labelled 
Class IV Dead. A series of t-test comparisons were made between the 
two files for bark coverage percentages on all surfaces for 1994, 2002, 
and 2010. Class IV Dead had higher bark coverage than Class IV Alive 
for all surfaces, except for (1) south crests in 2002 and 2010; (2) NR in 
1994; (3) west-facing crests for 2010; and (4) WL for 1994 and 2002 
(Table 4). Although Validate Model and the WEKA 3.8 program were 
not accurate for predicting death of Class IV cacti accurately, death of 
Class IV cacti can be predicted based upon bark coverages from 1994 
through 2017.

Discussion
Saguaro cacti can live several hundred years [7,12]. Bark coverage 

on saguaro cacti did not occur, or was rare, prior to the 1950’s [10]. 
Thus, bark coverage on saguaros is a relatively recent phenomenon. 
The purpose of this study was to closely examine bark coverage and 
cactus death within a population of saguaro cacti. Turner showed 
that 158, of a total of 208, cacti were taller than 4.2 m in 1962. In the 
same plot of 1988, only 27 of 168 cacti were taller than 4.2 m [22]. By 
subtraction, a minimum of 131 saguaros, taller than 4.2 m, died over 
the 27-year period. In addition, Turner and Funicelli demonstrated that 
16% of the saguaro cacti in their study plots died between 1990-2000 
[23]. O’Brien et al. demonstrated that the oldest of 20,372 saguaros in 
Saguaro National Park was less than 110 years old [24]. The above data 
and the data of the current study are coincident with high mortality 
rates [5]. These increases in morbidity and mortality are inconsistent 
with the lifespan noted above [7].

As stated previously, saguaros have extensive bark coverage prior 
to experiencing premature death [1]. Bark coverage on south-facing 
surfaces first occurs on south-facing surfaces while north-facing 
surfaces are the last surfaces to have bark coverage before cactus death 
[2,3,10]. For example, south crests of Class I cacti had an 80% increase 
in bark coverage, while east and west crests increased between 35 
and 50%. Concurrently, NC increased 11 to 15%, while NR and NL 
increased only 2.6 and 3.1% respectively. Similar large differences 
occurred for Class II cacti that moved to Class IV. South crests 
increased 60%, east and west crests changed between 25 and 35%, while 
north crests changed 12 and 16%, and NR and NL changed only 3.6 and 
6.9% respectively. The current data are incomplete in accordance with 
previous data from 1994, 2002, and 2010 that demonstrate the delay in 
bark coverage from south-facing surfaces to north-facing surfaces [11].

Saguaro cacti younger than 80 years old have little bark coverage. 
Bark coverage begins slowly on a surface but eventually increases 
rapidly. Surfaces above 90% bark coverage increase slowly thereafter. 

 
Figure 2: Image of the print out of data from Validate Model. The print out 
shows the distribution of rates of bark coverage (RBC) on a surface. Normal 
rates are defined as rates within two standard deviations of 0% error. Cacti 
with Fast rates are values that are more than two standard deviation units 
above 0. Cacti with Slow rates are values that are less than two standard 
deviation rates below 0.

 
Figure 3: WEKA decision tree predicting death among Class I cacti from 
1994-2002.
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Classa predicted Predicted Accuracies (%)
Confusion matrices 

Accuracies (%)
Predicted alive Predicted dead 

 I 1994 – 2002 n=231 NRb 3, SC 7, NC 3, WR 3, ER 2
actual alive 203 22

89.2
actual dead 3 3

I 2002-2010 n=231 NRb 3, SC 7, NC 3, WR 3, ER 2
actual alive 71 11

83.5
actual dead 0 3

I 2010-2017 n=35 no tree
actual alive 34 1

97.1
actual dead 0 0

II 1994-2002 n=111 NC 35, NC 95, EL 10
actual alive 94 12

84.7
actual dead 0 5

II 2002-2010 n=37 SC 35
actual alive 23 9

64.9
actual dead 0 4

II 2010-2017 n=84 no tree
actual alive 80 4

95.2
actual dead 0 0

III 1994-2002 n=81 no tree 
actual alive 70 11

86.4
actual dead 0 0

III 2002-2010 n=14 SR 10, EC 40
actual alive 8 3

57.1
actual dead 0 3

III 2010-2017 n=107 NR 22, SL 40
actual alive 99 4

94.5
actual dead 0 4

IV 1994-2002 n=463 WL 75, NR 55, EL 95, SL 99, NL 35
actual alive 284 113

68.9
actual dead 35 31

IV 2002-2010 n=447 NL 50, SR 80, WC 96, ER 95, NC 55, NR 30
actual alive 272 67

77.4
actual dead 74 34

IV 2010-2017 n=425 SL 95, NL 45, NC 85, WL 45, NC 65
actual alive 279 70

72.6
actual dead 37 49

a Cactus plants were placed into bark coverage classes based upon the percentage of bark coverage on south-facing crests only. Class I - less than 20% bark coverage; 
Class II - between 21 and 49% bark coverage; Class III - between 50 and 80% bark coverage; Class IV - more than 80% bark coverage.
b Cactus surfaces: SC=south-facing crests, SR=south-facing right troughs, SL=south-facing left troughs, EC=east-facing crests, ER=east-facing right troughs, EL=east-
facing left troughs, NC=north-facing crests, NR=north-facing right troughs, NL=north-facing left troughs, WC=west-facing crests, WR=west-facing right troughs, WL=west-
facing left troughs. 
c SC 7 refers to the limits for the decision trees. For example, SC 7, the decision divided cactus plants based 7% on south crests.

Table 3: Using WEKA to predict death of saguaro cacti (Carnegiea gigantea) with various predictive surfaces over each time interval. For simplicity, only the first 5 steps 
of the decision trees are shown for the predictor surfaces.

2017   

Time Status  SCb  SR  SL EC ER EL NC NR NL WC  WR  WL

1994
Alive 95.8**  47.2** 49.3** 71.7*  30.7* 50.1** 41.4** 10.4 18.4 57.2**  34.7* 14.4

Dead  98.4**  67.5** 65.5**  82.0* 42.0*  68.2**  57.0** 15.4 26.2  70.0**  47.2* 16.8

2002
Alive 98.3  68.5** 70.7**  82.0**  42.0**  67.2**  55.6** 19.1*  27.1** 74.9*  55.9* 30.1

Dead 98.6  83.9**  86.2** 91.8**  68.7**  83.4**  73.9** 27.4* 41.4**  85.2*  66.8* 37.2

2010
Alive 99.1  81.4**  85.4* 89.4** 62.7** 79.4** 75.0** 33.3** 38.5** 92  71.8** 54.1*

Dead 98.6  92.9** 92.7* 96.9**  78.6** 90.9**  91.2** 49.7** 56.7** 94.4  84.7**  63.8* 

a Classes of cacti are based upon the percentage of bark coverage on south-facing crests only: Class IV - more than 80% bark coverage.
b SC=south-facing crests, SR=south-facing right troughs, SL=south-facing left troughs, EC=east-facing crests, ER=east-facing right troughs, EL=east-facing left troughs, 
NC=north-facing crests, NR=north-facing right troughs, NL=north-facing left troughs, WC=west-facing crests, WR=west-facing right troughs, WL=west-facing left troughs. 

Table 4: Mean data of saguaro cacti (Carnegiea gigantea) that began as Class IVa in 1994 and either remained alive into 2017 or reached mortality in 2017. A t-Test 
was performed on raw data values of cacti that remained alive in 2017 and cacti that died in 2017 for each evaluation period. Black values proceeded by no asterisk 
are statistically similar. Values proceeded by one asterisk were significantly different by a t-Test value between .01 and .05. Values proceeded by two asterisks were 
significantly different by a t-Test value of less than .01.
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So, the increase in bark coverage reflects a logistics curve [11]. Data of 
Class I cacti that moved to Classes II, III, and IV may reflect a logistics 
curve (Figure 5). The low slope for south crests may be projected to the 
lower portion of a logistics curve. The higher slopes of east and west 
crests may be projected to the initial increase in the logistics curve. The 
south crest’s slope may be projected to the upper part of the logistics 
curve.

All three machine learning models provided very similar results. 
The WEKA 3.8 program and Random Forest accuracies from all 
samples were within 4.2% (Table 2). Moreover, data of Fast and 
Slow cactus groups from Validate Model were within 2.9% of WEKA 
3.8 decision tree values. The greatest error between the results of the 
machine learning models occur because of outliers. The majority (88%) 
of outliers were Class IV cacti. Therefore, most of the Normal cacti were 
from Classes I, II, and III.

Over the past several decades, many new and innovative decision 
tree programs have been developed. Decision trees have been used 
for a large number of purposes in making predictions. For example, 
field guides that are used to assist in the identification of wild bird and 
plant species serve as a form of decision tree [20,25]. Machine learning 
decision trees enable conclusions with large data sets in a wide range 
of topics such as board games, astronomy, petrochemistry, cancer 
research, phylogenetics and among many others [26-30].

Decision trees that are used to address large databases have no 
appeal to a conceptual model. Therefore, decision trees may serve to 
validate models and concepts held by researchers, based upon current 
knowledge. For example, a previous WEKA 3.8 decision tree analysis of 
saguaro cactus data, from the 1994 and 2002 sampling periods, selected 
north-facing surfaces as the first indicator surfaces [6]. Data from the 
2010 survey revealed that if NL had more than 70% bark coverage, 
and NR had more than 65% bark coverage, WEKA 3.8 decision trees 
predicted with 85% accuracy that a cactus would die within eight years.

The above predictions, from three time periods (1994, 2002, and 
2010), are supported by the data herein that include a survey from 
2017. Summation data for all three north-facing surfaces of Class IV 
Alive cacti were 71 to 74% of Class IV Dead for 1994, 2002, and 2010. 
In addition, summation data of east troughs, north troughs, and west 
troughs of Class IV Alive cacti were 72 to 79% of Class IV Dead for the 

same three time periods (Table 5). The 70 to 79% lower percentages 
on troughs may represent the lag time of bark coverage on troughs 
compared to crests. In addition, a sum of all twelve surfaces was created 
for Class IV Alive and Class IV Dead. Class IV Dead cacti had a sum of 
656 in 1994 (23 years prior to 2017), and Class IV Alive cacti had a sum 
of 691 in 2002. Do these data suggest that Class IV Alive cacti will die 
within 23 years prior to 2025?

Many WEKA 3.8 decision trees were generated for this research; 
however, machine learning programs have some limitations. Although 
Random Forest produced confusion matrices and had high accuracies, 
the program does not produce decision trees. Machine learning 
models used by WEKA 3.8 generate decision trees using a ten-fold, 
cross-validation technique. This technique uses 90% of the dataset 
for training and utilizes the remaining 10% of cacti to generate trees, 
confusion matrices, and accuracies. If a dataset has few cacti, the 
WEKA 3.8 program may not have enough information to provide high 
accuracies. For example, Class I cacti from 20102017 had only 35 cacti 
available for examination. Only one cactus died, while 34 remained 
alive. For this case, the proportion of alive to dead cacti was inadequate 
to train the WEKA 3.8 program to produce an accurate decision tree.

Predicting death of Class IV cacti from 1994-2017 using the 
WEKA 3.8 procedures may prove to be more successful than doing so 
from 1994-2002, 2002-2010, and 2010-2017. Attempts to predict the 
fate of Class IV cacti from 1994-2017 using the WEKA 3.8 program 
gave low accuracies. The low accuracies most likely resulted from the 
slow increases in bark coverage exhibited by already unhealthy Class 
IV cacti. As shown in this study, the tracking of bark coverage from 
period to period (1994-2002, 2002-2010, and 2010-2017), provided 
an accurate way to differentiate between alive and dead cacti in 2017. 
Differentiation between alive and dead cacti of Class IV began in 1994. 
To our knowledge, this is the first publication that predicts cactus 
health with three independent machine learning models. Therefore, 
machine learning models provide powerful tools to address complex 
issues with large data bases.
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Year Bark Coverage all 
surfaces

Coverage differences 
alive/dead (%)

Bark Coverage north 
surfaces only (%)

Coverage differences 
alive/dead (%)

Bark Coverage trough 
east north west

Coverage differences 
alive/dead (%)

Class IV Alive

1994 521 79.4 70.2 71.2 165 73.3

2002 691 81.9 102 71.3 241 72.6

2010 862 87.1 147 74.2 343 79.6

Class IV Dead

1994 656  98.6  226  

2002 845  143  332  

2010 991  198  431  

a Classes of cacti are based upon the percentage of bark coverage on south-facing crests only: Class IV - more than 80% bark coverage.

Table 5: Summations and percentages of bark coverages for Class IVa Alive and Class IV Dead cacti of saguaro cacti (Carnegiea gigantea).
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Figure 4: WEKA decision tree predicting death among Class II cacti from 
1994-2002.

Figure 5: Relationships between changes in bark coverages for crests of 
Class I cacti that changed to Classes II, III, and IV. All slopes had r2 values 
above 0.96 and the slopes were 30.1, 14.5, 11.5, and 3.5 for south crests 
(green circles), west crests (orange circles), east crests (purple circles), 
and north crests (blue circles), respectively. Note the black solid arrows that 
indicate the possible location of these data with a logistics curve.
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