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Abstract

Objective: The present study aimed at investigating machine learning methods for automated detection of severe
diabetic neuropathy. Severe diabetic neuropathy represents a significant neurological problem in diabetes as it
requires urgent intervention to reduce the risk of sudden cardiac death. Automated detection provides a tool that can
be applied to clinical data and for identifying comorbidities that can trigger diagnosis and treatment.

Methods: We applied multi scale Allen factor to determine heart rate variability, a marker for diabetic neuropathy
from ECG recordings as features to be used for the machine learning methods and automated detection. The major
innovation of this work is the introduction of a new Graph-Based Machine Learning System (GBMLS). This method
is intended to enhance the effectiveness of the diagnosis of severe diabetic neuropathy. We applied it to the multi
scale Allen factor (MAF) features as a collection of attributes determined from the recorded ECG bio signals. These
attributes can be collected as a result of routine ECG investigation of patients regardless of the presenting medical
problems.

Results: Our experiments compared the sensitivity and specificity of the automated detection produced by
GBMLS with analogous outcomes achieved by various other machine learning approaches. To this end we used a
comprehensive collection of important classifiers and clusterers available in the open source machine learning
software package Scikit-learn. The experiments have demonstrated that the best outcomes were obtained by
GBMLS in combination with MAF, which improved sensitivity to 0.89 and specificity to 0.98 and outperformed
several other classifiers and clusterers including Random Forest with sensitivity of 0.83 and specificity of 0.92.

Conclusion: The novel GBMLS machine learning technique applied to MAF attributes has outperformed other
machine learning methods and achieved excellent sensitivity and specificity. These results are significant and
sufficiently effective to be recommended for practical application of this technique.

Keywords: Automated detection; Classifiers; Heart rate variability;
Graph representation; Machine learning; Multi scale allen factor;
Severe diabetic neuropathy

Introduction
Diabetic neuropathy associated complications, which affects all

major organs of the body, are common in Type 1 and Type 2 diabetes
[1,2]. Cardiac diabetic neuropathy is characterised by damage to
nerves regulating the heart rate and any changes in the capacity of
these nerves to modulate heart rate leads to changes to heart rate
variability (HRV). Its prevalence lies between 20% and 60% in patients
with diabetes, with a mortality that is approximately five times higher
[3,4].

Testing for cardiac autonomic neuropathy (CAN) in people with
diabetes was traditionally based on five Ewing cardiac reflex tests that
constitute the gold standard. Recent research has been investigating the
efficacy of alternative diagnostic tests, using ECG attributes [5-8] to
address shortcomings of the Ewing battery as a number of the Ewing
tests included in the Ewing battery are often counter-indicated for
patients with cardiorespiratory comorbidity, frail or severely obese

patients [9]. Therefore resting supine recordings of ECG that provide
heart rate information may be better suited for this clinical population
and may be more sensitive and accurate. A number of previous studies
have shown the effectiveness of HRV attributes for classifying cardiac
pathology [10-12] for more details and further references). Heart rate
variability is also decreased in diabetes mellitus type 1 and diabetes
type 2. The majority of research has concentrated on investigating the
time and frequency domain attributes with some more recent work
reporting findings for nonlinear HRV attributes [13-19].

The current research investigated the application of HRV attributes
and advanced data mining systems in improving identification of
severe diabetic neuropathy. Previously, high levels of accuracy in the
diagnosis of mild and moderate stages of CAN have been achieved by
classifiers proposed by Kelarev et al. [20-26]. However, these
experiments included the original Ewing test results in their classifiers.
In contrast, the present paper proposes a system for automated
diagnosis of severe diabetic neuropathy on the basis of multi scale
Allan factor attributes that can be easier collected compared to the
routine collection of Ewing test results.
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This is the first article concentrating on automated detection of
severe diabetic neuropathy as defined the battery classification by
Ewing et al. [27,28]. Severe diabetic neuropathy is characterised by
both sympathetic and parasympathetic dysfunction that contributes to
the reported increased risk of arrhythmias and sudden cardiac death.
This makes detection of severe diabetic neuropathy a priority and
requires accurate bio signal analysis and classification algorithms to
improve identification of at risk patients and treatment effectiveness
[3]. The present article applies a novel clustering approach based on
graphs (GBMLS) classifier for the identification of severe diabetic
neuropathy using multi scale Allan factor (MAF). For complete
definition of MAF, we refer to Section 2.5.1 by Teich et al. [29]. Our
experiments carefully compare the results of GBMLS system with
traditional data mining algorithms. We hypothesise that GBMLS
system improves the effectiveness of identifying severe diabetic
neuropathy when combined with MAF obtained from the heart rate
bio signal.

Background information on previous graph-based methods and
further details on the diagnosis of severe diabetic neuropathy,
preliminaries on Graph-Based Machine Learning System (GBMLS)
methodology, CAN pathophysiology, the diabetes health screening
database (DiScRi/DiabHealth) and HRV analysis are given in the next
sections.

Brief review of literature and preliminaries
The Ewing battery is the traditional clinical assessment tool for

CAN and CAN severity [27,28]. From the five Ewing test results, three
measure parasympathetic activity (lying to standing heart rate change,
Valsalva manoeuvre, changes in heart rate with rhythmic breathing)
and two sympathetic activity (lying to standing blood pressure change,
and diastolic blood pressure change with hand grip). For severe
diabetic neuropathy two of the parasympathetic tests and any one of
the sympathetic tests need to be abnormal [28].

Diabetic neuropathy can be investigated by assessing cardiac
rhythm function and cardiac rhythm pathology. Cardiac autonomic
neuropathy (CAN) is a pathology that clusters within the umbrella of
diabetic neuropathy and assessing cardiac rhythm is the most suitable
clinical tool for identification of diabetic neuropathy. This is the first
article concentrating on the identification of severe diabetic
neuropathy. Our experiments investigated two classes: severe diabetic
neuropathy and absence of severe diabetic neuropathy. The class of
severe diabetic neuropathy has not been investigated previously as a
paradigm in machine learning classification. The absence of severe
diabetic neuropathy or complement is a union of three classes
considered previously in the literature: no CAN, early CAN, definite
CAN, see [27,28] for more explanations and details. When we focus on
just one class of severe diabetic neuropathy and combine all other
classes into their union, it is possible to achieve higher effectiveness in
solving the task of identifying only severe diabetic neuropathy and
ignoring differences between other classes, which clinically are less
dangerous to the patients [29].

Cardiac autonomic neuropathy relates to abnormal cardiac rhythm
that increases risk of sudden cardiac death, especially in diabetes
mellitus type 1 and type 2 [30,31]. Although a number of invasive and
non-invasive assessments can be made that identify diabetes such as
blood glucose levels, retinal photography and plantar foot pressure,
these tests do not identify cardiac autonomic neuropathy specifically
[32-35].

Previous work on data mining and HRV analysis concentrated
mainly on standard time and frequency-domain methods and applied
automated machine learning assessment of the original Ewing
categorization of CAN using HRV attributes [35-37]. However, data
mining methods applied to HRV data similar to MAF have been
reported by Cornforth et al. [38,39], who examined the effectiveness of
80 time and frequency-domain attributes for the detection of the early
stages of CAN, concentrating on the applications of genetic algorithms
when searching for a subset of HRV attributes that are optimal for the
detection of early CAN.

The motivation to use HRV data is that it is richer than the results of
the five Ewing tests and more often and easier to obtain in clinical
practice than the Ewing battery tests.

Methodology Applied to Collect Data
In order to investigate the role of HRV attributes and the capability

of multi-level clusterers in improving diagnostic accuracy, a large
database of test results and health-related parameters collected through
the Charles Sturt Diabetes Complications Screening Group (DiScRi/
DiabHealth), containing Ewing battery results and HRV data was
selected [40].

Participants were recruited as part of the Charles Sturt University
Diab Health screening [41]. Clinical and demographic data as well as
the Ewing battery results and ECG records were obtained during
2011-2014. The university human research ethics committee provided
consent for the study and all participants gave informed consent
following an information session prior to recording any subjects. All
participants had to be free of cardiovascular, respiratory and renal
disease as well as depression, schizophrenia and Parkinson’s disease,
which are known to alter HRV results.

Recordings were obtained with participants in a supine position
following a 20-minute rest period. The same conditions were used for
each participant, including a temperature stable environment, and all
participants were comparable for age, gender, and resting heart rate.
The 20-minute ECGs were recorded with a lead II configuration using
a Mac lab Pro with Chart 7 software (AD Instruments, Sydney). The
sampling rate was set to 400 samples/sec and recordings were pre-
processed according to the methods described by Wessel et al. [42].
The status of CAN was defined using the Ewing battery criteria [28].
For each recording, a 15-minute segment was selected from the middle
in order to remove start up artefacts and movement at the end of the
recording. From this shorter recording, the RR intervals were
extracted. HRV analysis involves determining the inter beat intervals
between successive pulses of the heart. In terms of ECG curve, these
intervals are equal to the intervals between successive QRS complexes
on an ECG or the intervals between the fiducial points of the
successive R waves (RR intervals), cf. [43] and [4] for more
explanations. The RR interval series for each participant was pre-
processed using adaptive pre-processing and the measures used were
determined from these data [42] for more details on adaptive filtering
and pre-processing. The pre-processed data was then utilized to infer
MAF values, as explained by Teich et al. [29].

Graph-based machine learning system
Clustering is an automated process that attempts to assign data to a

number of groups referred to as clusters. The groups are not defined
beforehand, but are obtained as an output of the clustering process.
Here we investigate clustering algorithms for the diagnosis of severe
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diabetic neuropathy, and hence are only concerned with clustering of
k=2 groups or clusters. Every clustering algorithm considered in this
paper, takes the number k of clusters to be produced as an input
parameter, and creates a partition with precisely k groups or clusters.

To obtain a stable and reliable partition, we introduce a new
clustering algorithm – Graph-Based Machine Learning System
(GBMLS). GBMLS uses a novel model involving a new graph
representation. Here we are using standard notation and terms of the
graph theory as, for instance, in the monograph [44] and the article
[45].

Let p be the number of all patients from the Diab Health database
with ECG data used in our experiments. In order to divide these
patients into groups, we used several independent partitions and then
combined their outcomes by applying our new GBMLS procedure. Our
experiments compared the effectiveness of the GBMLS algorithm with
several other methods presented in the next sections. In the remainder
of this section, we discuss the GBMLS algorithm for the case of two
clusters considered in the current experiments.

To begin the operation of GBMLS algorithm, we generated a
collection of 80 independent random initial partitions� = �1,�2, …,�80  (1)

They were generated using the K Means [46] and Mean Shift [47]
clustering algorithms, implemented in the open source machine
learning package Scikit-learn et al. [48,49]. To make sure that the
collection (1) consists of independent random partitions generated
using initial points covering the space optimally, we ran each of these
two clustering algorithms for 40 random values of their input
parameters to obtain 40 different random partitions for each clusterer.
Then we combined all of these partitions into the common collection K
of 80 partitions.

More specifically, the output of the Mean Shift algorithm depends
on the value of the input parameter ‘seeds’, which is used to initialise
the iteration process. We ran Mean Shift with 40 random values of the
‘seeds’ to ensure that it creates 40 different and independent output
partitions. Likewise, the output of K Means algorithm depends on the
selection of initial centroids. It is determined by the input parameters
‘init’ and ‘random_state’. We set the value of ‘init’ equal to the string
‘random’. This option makes K Means start with a set of initial
centroids chosen randomly in the data set. The random selection
process of initial centroids in KMeans depends on the value of the
‘random_state’ parameter, which is used every time as a seed to the
random number generator incorporated in the algorithm. We ran K
Means 40 times with 40 different random values of the ‘random_state’
parameter to make sure that it generated independent random
partitions.

This means that for each value of = 1, 2, …, 80, each particular
partition is made up of two groups or clusters:                                              �� = ��1,��2  (2)

which partition the set of patients so that the whole set is a disjoint
union of these clusters� = ��1 ∪ ��2 (3)

GBMLS procedure takes the collection of 80 partitions as input and
produces a new common partition

                                                � = �1,�2  (4)

which also divides the whole set of patients                                                � = �1 ∪ �2 (5)

and at the same time achieves the best agreement with all the given
partitions .

GBMLS procedure uses a graph � = �,  � with the set V of
vertices and the set E of edges. The collection of vertices of the graph is
a union of three subsets � =   � ∪ �. The number of vertices in the
first subset Y is equal to the number p of patients, so that� = �1,�2, …,�� . For = 1, 2,…, p, the vertex corresponds to the
patient . The number of vertices in the second subset is equal to 2 x 80
= 160, the number of groups or clusters in all partitions , , …, . This
means that � = ��+ 1,��+ 2, …,��+ 160 , with vertices
representing the respective groups or clusters. The collection of edges
of the graph is in turn a union of three subsets: � =  D ∪ � ∪ �. The
set D contains all edges of the form (��1,��2), for all positive integers�1, �2 satisfying inequalities 1 ≤ �1 < �2 ≤ �. The weight of this edge
is set equal to the number of clusters where the patients belong
together. The set F comprises of all edges of the form(��+ 2 �1 + �1,��+ 2 �2 + �2), for all nonnegative integers�1, �2, �1, �2 satisfying inequalities   0 ≤ �1 < �2 ≤ 79 an D1 ≤ �1, �2 ≤ 2. This edge represents the following pair of clusters: the
cluster � �1 + 1 �1 of the partition � �1 + 1  and the cluster � �1 + 1
of the partition � �2 + 1 . The weight of this edge is set equal to the

well-known Jaccard similarity index � � �1 + 1 �1,� �2 + 1 �2 ,

which measures the similarity of the clusters � �1 + 1 �1 and� �2 + 1 �2. Finally, the set contains all edges (��,��+ 2 � + �), for all

nonnegative integers , , satisfying inequalities 1 ≤ � ≤ �, 0 ≤ � ≤ 79,1 ≤ � ≤ 2 where the patient corresponding to the vertex �� belongs to
the group ��� of the partition ��. To partition the graph into two
clusters we used freeware METIS library for partitioning of graphs
described by Karypis et al. [50]. The final outcome of GBMLS is then
given by the way METIS partitions all vertices of the set corresponding
to the patients. Note that the graph � = �,  � is neither complete nor
bipartite.

Other machine learning systems
Our experiments compared the performance of GBMLS with the

following machine learning systems available in open source package
by Scikit-learn et al. [49]: K Means [46], Mean Shift [47], Birch [50,51],
DBSCAN [52] and Ward hierarchical clustering [53] for the diagnosis
of severe diabetic neuropathy.

Furthermore, in addition to the comparisons mentioned above we
have also studied the effectiveness of the GBMLS algorithm in
comparison to the Hybrid Bipartite Graph Formulation (HBGF) and
Cluster-Based Graph Formulation (CBGF) defined by Fern et al. [54].
These algorithms rely on different and substantially smaller graphs.
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The number of edges and vertices in these graphs and their
architecture are different from the graph utilized in GBMLS. Let us
refer to [55] for previous work in other research domains using HBGF
and CBGF algorithms and more detailed bibliography. Moreover, our
experiments compared the outcomes obtained by GBMLS with the
results produced by numerous other clusterers and classifiers available
in the open source machine learning package Scikit-learn et al. [48,49].
This section presents classifiers and clusterers being compared with
GBMLS.

Decision Tree (DT) is a decision tree classifier using an optimised
version of the Classification and Regression Trees (CART) algorithm.
CART is similar to C4.5 classifier. However, it is capable of handling
both classification and regression, and unlike C4.5 algorithm, it does
not compute rule sets.

Three versions of the Naive Bayes algorithm were also applied from
the Scikit-learn package being Gaussian Naive Bayes (GNB),
Multinomial Naive Bayes (MNB), and Bernoulli Naive Bayes (BNB).

Nearest Centroid (NC) [48,49] is a classifier using classes
determined by centroids similar to the clusters of the classical k-means
clusterer.

Further, we have investigated Support Vector Machines (SVM).
Scikit-learn includes two versions of SVM: named SVM and NuSVM.
They can operate with the following kernels: ‘linear’, ‘poly’, ‘rbf ’,
‘sigmoid’. To indicate the kernel being invoked we use the following
notation: SVM(linear), SVM(poly), SVM (rbf), SVM(sigmoid),
NuSVM (linear), NuSVM (poly), NuSVMC (rbf), NuSVM (sigmoid).

There are also two versions of the nearest neighbour classifier in
Scikit-learn [49]: K Neighbors (KN) and Radius Neighbors (RN). KN
applies nearest neighbours. RN applies all neighbours contained in a
sphere of radius indicated by the user as a parameter. For DiScRi data,
RN algorithm produced substantially worse outcomes than KN, and so
we did not include RN in the diagrams below.

Random Forest (RF) is an efficient ensemble classifier. It operates
using one of two criteria measuring the quality of split of data: Gini
Impurity or Information Gain. In our experiments Gini Impurity
produced better outcomes, and so we include only RF with Gini
Impurity in the diagrams. In the diagrams representing the results of
our experiments these versions of RF are denoted by RFG and RFE,
respectively. Furthermore, the number of trees in the forest can also be
specified as the n_estimators parameter. In the diagrams representing
the results of our experiments RF with the number of trees equal to t is
denoted by RF (t).

For theoretical prerequisites and more detailed information on these
classifiers the readers are referred to [49] and [56].

Experimental Results and Discussion
We applied our new clustering approach GBMLS and compared it

with HBGF, CBGF and with other classification and clusterers
available in the machine learning package Scikit-learn et al. [48,49]. In
testing the effectiveness of algorithms during our experiments, for each
classifier we determined the sensitivity and specificity [56] for
explanations of these notions. These measures are often used in
medical studies to evaluate the effectiveness of classifiers. Sensitivity is
the proportion of positives (patients with severe diabetic neuropathy)
that are identified correctly. It is also called the True Positive Rate
(TPR). Specificity is defined as the proportion of people without severe

diabetic neuropathy who have a negative test result. It is also called the
True Negative Rate (TNR). The values of sensitivity and specificity
belong to the interval from 0 to 1, where the best value is 1 in terms of
all of these metrics.

Diab Health is the largest known database with CAN information. It
is the only database available for the authors of this paper. We selected
a subset with 21 patients with severe diabetic neuropathy and 232
number of instances. All these instances contained complete HRV
attributes in the Diab Health database. We recorded all available
demographic and clinical parameters for these patients in a csv file. To
prepare data for the experiments we added MAF values.

In order to compare the performance of GBMLS with other systems
available in the Scikit-learn et al. [49], we had to determine the best
kernels to be used for SVM and Nu SVM, and the best values of input
parameters for several other systems for diagnosing severe diabetic
neuropathy. In Scikit-learn, SVM and Nu SVM are available with four
kernels: linear kernel, polynomial kernel, rbf kernel and sigmoid
kernel. This means that each algorithm SVM and Nu SVM can be
executed invoking any of the four kernels. We refer to [49] for more
information on the formulas used in these kernels and denote these
versions of SVM and Nu SVM by SVM(linear), SVM(poly), SVM
(rbf), SVM(sigmoid), Nu SVM(linear), Nu SVM(poly), Nu SVM (rbf),
and Nu SVM(sigmoid), respectively. First, we conducted tests to
determine the performance of SVM and Nu SVM with the various
available kernels. Sensitivity and specificity obtained during this first
set of experiments are presented in Figure 1.

Figure 1 shows that in the diagnoses of severe diabetic neuropathy
the best sensitivity and specificity were achieved by SVM with
polynomial kernel. This outcome will be used to compare to the
outcomes obtained by other systems below.

Figure 1: Sensitivity and specificity of the diagnosis of severe
diabetic neuropathy by SVM and NuSVM with various kernels.

The KN algorithm has an input parameter c, which is an integer
specifying a fixed number of nearest neighbours to be used in the
algorithm. We used the notation KN(c) to indicate the value c as a
parameter in the diagrams representing the results of our experiments.
Figure 2 presents sensitivity and specificity of the diagnosis of severe
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diabetic neuropathy obtained by KN(c) for various values of the
parameter c based on KD Tree with uniform weights.

The best sensitivity and specificity were obtained by KN with k=4
(Figure 2). This result is included as the performance of KN in the
combined diagram below.

Figure 2: Sensitivity and specificity of the diagnosis of severe
diabetic neuropathy by KN.

Next, we evaluated the performance of RF for various options of the
input parameter – the number of random trees. The values of
sensitivity and specificity obtained are presented in Figure 3.

Figure 3 shows that the best values of sensitivity and specificity were
achieved by RF using six random trees. Therefore this option is the one
indicated for RF in the combined diagram below.

Finally, the results of comparing GBMLS to other clusterers CBGF,
HBGF and classifiers available in the machine learning package Scikit-
learn et al. [49] are depicted in Figure 4. In this diagram we included
the best available options determined above for the SVM, KN and RF
algorithms.

The results of all experiments show that the best sensitivity 0.98 and
specificity 0.89 was obtained by the GBMLS algorithm. Note that the
ensemble classifier RF implemented in the open source machine
learning package Scikit-learn achieved the best performance among all
classifiers and clusterers. It can therefore be recommended for clinical
assessment and the diagnosis of severe diabetic neuropathy. Results of
single HRV attributes do not have sufficient accuracy for classifying
severe cardiac neuropathy and an algorithm is required that combines
time and frequency domain as well as nonlinear HRV attributes for
diagnosis [57]. GBMLS is a novel data mining algorithm that improved
the accuracy for classification of severe cardiac autonomic neuropathy
based on HRV attributes and make it useful in clinical practice. The
algorithm combines results from time and frequency domain, and
nonlinear HRV attributes to identify severe cardiac autonomic
neuropathy.

Future work will be investigating several data reduction algorithms
combined with GBMLS to further delineate subcategories of diabetic
neuropathy into early, definite and severe CAN and provide a better
basis for treatment decisions in clinical practice.

Figure 3: Sensitivity and specificity of the diagnosis of severe
diabetic neuropathy by RF using various numbers of random trees.

Figure 4: Sensitivity and specificity of the diagnosis of severe
diabetic neuropathy by GBMLS and other machine learning
systems.

Conclusion
This is the first paper concentrating on the diagnosis of severe

diabetic neuropathy. It advances a new algorithm (GBMLS) for the
automated detection of severe diabetic neuropathy. Our experiments
compared the sensitivity and specificity of the results obtained by
GBMLS to the outcomes produced by other machine learning
algorithms. The results demonstrate that our new procedure
outperformed other techniques and obtained the best outcomes. The
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diagnosis of severe diabetic neuropathy by GBMLS achieved the best
performance level with sensitivity of 0.98 and specificity of 0.89.
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