
Volume 2 • Issue 5 • 1000129J Pulmon Resp Med
ISSN: 2161-105X JPRM, an open access journal

Williams et al., J Pulmon Resp Med 2012, 2:5 
DOI: 10.4172/2161-105X.1000129

Research article Open Access

Lung Function and Inflammation in Adult Sickle Cell Disease in a West 
Indian Sickle Cell Cohort
Kibileri Williams1, Maria Rios1, Nicole Dottin1, Shani Hughes1, Danielle Strachan1, Gershwin Davis2, Kenneth S Charles2 and Terence AR 
Seemungal1*

Abstract
Background: The commonest cause of mortality in sickle cell disease (SCD) is an acute condition called the 

acute chest syndrome. Little is known of the long term effects of this condition or of its effect on lung function. 

Objective: To determine lung function in sickle cell disease (SCD) adults and its relation to acute chest syndrome, 
baseline haemoglobin and systemic inflammation as estimated by serum C-reactive protein. 

Methods: The lung function in sickle cell disease (SCD) outpatients was compared to that in asymptomatic age 
and sex matched controls. Stable haemoglobin and serum C-reactive protein (CRP) were measured. 

Results: 74 controls of mean age 31 years and 154 sickle cell disease (SCD) outpatients with mean age 31 with 
44% males were recruited. Controls and sickle cell disease (SCD) patients did not differ in age or sex. 18% sickle cell 
disease (SCD) patients had at least one episode of acute chest syndrome and 7% had two or more episodes. Forced 
vital capacity was lower in sickle cell disease (SCD) patients than controls and 47% of sickle cell disease (SCD) 
patients had a restrictive ventilatory defect. A further 19% had obstruction but the presence of this abnormality was 
not related to smoking habit. Patients with a history of two or more acute chest syndrome episodes were more likely 
to have poor lung function. Haemoglobin was positively correlated with forced vital capacity and inversely correlated 
C-reactive protein. Multivariate analysis showed that haemoglobin in sickle cell disease (SCD) patients was lower if 
patients also had a low forced vital capacity, high serum C-reactive protein, low body mass index, older age or male 
gender. 

Conclusions: Abnormal lung function is common in sickle cell disease (SCD) adults. In sickle cell disease (SCD), 
adult’s low haemoglobin is related to a restrictive ventilatory defect and systemic inflammation. Severity of stable 
disease in sickle cell patients is related to poor lung function and systemic inflammation. 
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Introduction
Sickle Cell Disease (SCD) is the most common inherited disorder 

affecting African and Caribbean populations [1]. Sickle Cell Disease 
(SCD) represents a spectrum of inherited haemoglobin disorders which 
include a number of genotypes namely homozygous sickle cell disease 
(haemoglobin SS disease), doubly heterozygous sickle haemoglobin 
C disease (haemoglobin SC disease) and the sickle ß-thalassemias 
[2]. These genotypes are associated with a wide range of phenotypes 
characterized by chronic haemolysis, tissue infarction, and painful 
episodes [3]. 

Acute Chest Syndrome (ACS) is a multifactorial process with the 
likely final common pathway being in situ microvascular thrombosis 
[4]. It is a life threatening condition and a frequent cause of death 
among sickle-cell patients being one of the more common causes of 
their morbidity and hospitalizations [5,6]. The prevalence of acute chest 
syndrome among sickle cell disease (SCD) patients in the Trinidadian 
population is currently unknown. A 6-month study conducted at the 
Port-of-Spain General Hospital, Trinidad and Tobago, showed that of 
82 admissions for painful crises in sicklers, 13% were due to the acute 
chest syndrome [6]. It has also been shown that although acute chest 
syndrome is often a self-limiting illness, its effects on lung function may 
be quite significant, leading to life-threatening respiratory insufficiency 
and some have speculated that it may lead to development of chronic 
lung disease [7]. Anecdotal reports from our chest clinic suggested that 
our sickle cell patients may have a restrictive ventilatory defect. 

Apart from lung function, blood markers have also been shown 
to be related to clinical episodes in patients with sickle cell disease. 

Lower baseline haemoglobin levels are associated with an increased 
rate of painful episodes and morbidity in sickle cell disease [8]. Acute 
phase reactants such as C-reactive protein (CRP) have been found to be 
significantly elevated in sickle cell patients, particularly in those with 
homozygous disease [9]. 

We compared lung function in a group of sickle cell disease (SCD) 
patients and controls and hypothesized that our sickle cell outpatients 
have a restrictive ventilatory defect. We also explored relationships 
between the severity of the anaemia in sickle cell disease patients and 
lung function variables and serum CRP in this study. 

Methodology
A patient was taken as having the acute chest syndrome (ACS), if 

this was stated as the medical diagnosis in the hospital discharge notes. 

Sample population and inclusion and exclusion criteria

Sickle cell disease patients: A total of 361 sickle cell disease patients 
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were registered at the Haematology Clinic, Port of Spain General 
Hospital. 154 patients (HbSS=143; HbSC=7; HbS beta-thal=4) were 
actually recruited. There was no difference in mean age or gender of 
sickle cell patients sampled and those not sampled. Twenty-seven of the 
154 recruited patients had a history of at least one episode of acute chest 
syndrome. A history of acute chest syndrome was obtained by direct 
communication via a questionnaire and confirmed by examination 
of the patient file for a specific and documented diagnosis of the 
syndrome. Patients were recruited only if they did not have any existing 
pulmonary disorders [10], or any medical conditions that may have led 
to suboptimal results [11] or which may have been exacerbated by the 
testing procedure [12]. Of the total eligible population, eight patients 
refused to participate, six were recently deceased, four were excluded for 
medical reasons namely HIV, viral hepatitis (2 patients) and pregnancy, 
and 189 patients were unavailable or could not be contacted. 

Healthy subjects: We recruited 74 ethnically matched healthy 
subjects (controls) with a smoking history of less than 5 pack years [13]. 
All controls had no medical symptoms or history of medical illness and 
also had normal lung function that is, FEV1 greater than 80% predicted 
for age and height and FEV1/FVC greater than 70%. 

Ethical review 

The study was approved by the institutional review boards of the 
University of the West Indies and Port of Spain General Hospital, 
Trinidad and Tobago. All subjects gave written informed consent. 

Lung function

Spirometry measurements were performed with a hand-held turbine 
spirometer (MicroSpirometerCat No: MS01 Micromedical Limited P. O 
Box 6 Rochester, Kent, ME1 2AZ, UK), according to Global Initiative 
for Obstructive Lung Disease Criteria [14]. Post bronchodilator 
spirometry was taken for all sickle cell disease patients. Since by 
definition normal subjects had no history of disease or symptoms of 
illness, this was not a prerequisite for their spirometry measurements. 
To calculate the predicted value for lung function, we used the Third 
National Health and Nutrition Examination Survey (NHANES-III) 
Hankinson’s reference equations for afro-Americans [15], according to 
age, sex, and height. An obstructive ventilatory defect was defined as an 
FEV1/FVC ratio less than 70% while a restrictive ventilatory defect was 
taken as an FVC% predicted for age and height of less than 80%.

Other measurements

Non-fasting venous blood samples were obtained from sickle 
cell disease patients for serum CRP analysis and plasma samples 
with ethylene diamine tetra acetic acid (EDTA) as anticoagulant 
used for haemoglobin determination. Serum CRP concentrations 
were measured using the Tina-Quant sCRP (Latex) high sensitive 
immunoturbidimetric assay on the Roche/Hitachi 912 Automatic 
Analyzer (Roche Diagnostics, GmbH, D-68298 Mannheim). The 
measuring range was 0.1-20 mg/L with a detection limit of 0.03 mg/L. 

Statistical analysis

We assumed that controls would have a mean (SD) FEV1 of 100 
(12%) predicted for age and height. At the 5% level of significance with a 
power of 95%, we estimated that the sample size required to detect an 8% 
difference in mean FEV1 in sickle cell disease subjects was 60 [16]. Data 
was analysed using SPSS (version 12 for Windows). Normally distributed 
data were summarised by mean (standard deviation, SD), skewed data 
by median (interquartile range, IQR) and categorical data by absolute 
number (percentage). CRP was normalized by log transformation. 

Normally distributed continuous variables were compared by t-test; 
otherwise Mann-Whitney U or Wilcoxon signed ranks test were used. 

One-way ANOVA was used to examine the relationship of 
haemoglobin in sickle cell disease patients with lung function 
categorized as (A) normal lung function, (B) either restriction or 
obstruction but not both and (C) both obstruction and restriction. 
Backward linear regression with plasma haemoglobin as outcome 
variable was used to examine the relationship between baseline 
variables and haemoglobin as an estimator of severity of sickle cell 
anaemia. Gender and all variables with significant univariate relation 
to Hb were entered into the multivariate analysis. All data was analysed 
using SPSS version 12 (for Windows).

Results 
Demographic and physiologic variables: all study participants 

We recruited 154 sickle cell disease patients and 74 controls. 
CRP data was available for 138 and Hb data for 149 sickle cell disease 
patients. The baseline and demographic variables for controls and for 
sickle cell patients are shown in Table 1. 1.27 (18%) of the sickle cell 
disease patients had a history of acute chest syndrome (ACS). 17 (11%) 
sickle cell disease patients had one acute chest syndrome episode only, 
5 (3.2%) patients had two episodes and 3 patients had three or more 
episodes. 9 (12%) of controls and 39 (25%) of the sickle cell disease 
patients sampled were smokers. The normal subjects did not differ from 
the sickle cell population in age and gender. Sickle cell patients had a 
mean (SD) height of 1.69 (0.88) m and weight of 60.0 (12.4) kg. In the 
sickle cell disease patients, blood results showed mean (SD) Hb was 
8.97 (2.23) g/dl and median (IQR) CRP was 3.15 (1.43, 8.58) mg/L. 

Lung function in controls vs. sickle cell disease 

Lung function among controls and sickle cell disease patients is 

Variable Controls SCD p-value
N 74 154
Age 30.7 (10.3) 33.8 (12.0) 0.053
Height, m 1.71 (0.093) 1.69 (0.09) 0.064
FEV1 (L) 3.13 (0.62) 2.34 (0.66) <0.001
FEV1% 94.9 (11.6) 74.5 (13.3) <0.001
FVC (L) 3.83 (0.79) 3.13 (0.93) <0.001
FVC% 97.6 (12.1) 83.6 (16.3) <0.001
FEV1/FVC% 82.0 (5.6) 75.5 (11.0) <0.001

Abbreviations: SCD: Sickle Cell Disease; ACS: Acute Chest Syndrome; N: 
Number; M: Male; BMI: Body Mass Index 
Table 1: Baseline data/confounding variables for 74 controls and 154 sickle cell 
disease patients. Data are shown as mean (SD) or IQR (25th centile, 75th centile) 
or number (%). There were N = 36 (48.6%) males amongst the controls and 67 
(43.5%) sickle cell disease patients. BMI for sickle cell disease patients was 21.0 
(4.2) kg per square metre.

Variable Correlation w/ SCD p-value
Age 0.123 0.099
Gender -0.106 0.157
Height -0.167 0.025
FEV1 -0.566 <0.001
FEV1% -0.652 <0.001
FVC -0.432 <0.001
FVC% -0.466 <0.001
FEV1/FVC -0.317 <0.001

Table 2: Spearman’s Correlations amongst never-smokers between baseline 
variables and presence of sickle cell disease (65 controls and 115 sickle cell 
disease patients).
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shown in Table 1. Lung function was higher in controls than in sickle 
cell disease patients in every parameter measured (Table 1) with 
controls having a median FEV1% of 94%. Median (range) FVC% in 
sickle cell disease patients was 82%. 

Whether or not smokers were included in the analysis, sickle cell 
disease patients as a group still had significant inverse relationships 
with all lung function parameters when compared to the control group. 
Because smoking history can be a confounder in lung function analyses, 
we show the data for relationships with lung function in never-smokers 
amongst both the control and sickle cell disease samples in Table 2. The 
Table shows that the highest of the correlations between lung function 
in sickle cell disease vs. controls was -0.652 between FEV1% and 
presence of sickle cell disease. These values did not changed markedly 
when smokers were included in the analysis. 

Lung function in sickle cell disease (SCD) patients 

Lung function abnormalities in sickle cell disease (SCD), 52 sickle 
cell disease patients had normal lung function. Table 3 shows that 
30 (19.5%) sickle cell disease patients had a FEV1/FVC ratio of less 
than 70% indicating obstruction. 12 (7.8%) had a mixed obstructive-
restrictive ventilatory defect and 60 (39%) had a purely restrictive 
defect. 4 (5.4%) of the 74 controls had a restrictive defect. Figure 1 
shows the distribution of FVC% in the sickle cell disease patients. 72 
(46.8%) sickle cell disease patients were found to have a restrictive 
defect (including those with mixed defects). 

Lung function and ACS, there was no statistically significant 
difference in the measures of lung function between sickle cell disease 
patients with a history of acute chest syndrome and those who never 
had an episode. However, patients with one or less acute chest syndrome 

episodes had a FEV1% of 75.16 (13.25%) vs. 65.74 (10.89%) in those 
with two or more episodes (p=0.030). There was also a non-significant 
trend toward lower FVC%: one or less acute chest syndrome episodes 
had a FEV1% of 84.0 (16.35%) vs. 77.9 (15.3%), p=0.255. 

Lung function and haemoglobin in SCD patients 
Bivariate analyses showed that stable haemoglobin (Hb) was 

inversely correlated to age (r=-0.214, p=0.009), BMI (0.270, 0.001), 
abnormal (restrictive or obstructive) lung function (-0.286, p<0.001), 
presence of a restrictive ventilatory defect (-0.261, p=0.001), CRP (log) 
(-0.240, 0.005) and FVC% (0.286<0.001) but not other indices of lung 
function, history of smoking or height. 

When sickle cell disease patients were categorized by lung function 
(Table 3) there was a trend (r=-0.269, p=0.001) in mean (SD) Hb 
amongst sickle cell disease patients grouped as follows: (Group A) 
normal lung function Hb=9.66 (2.25); (Group B) either obstruction 
or restriction but not both Hb=8.36 (2.03) and (Group C) both 
obstruction and restriction Hb=8.13(2.53). Application of one-way 
ANOVA confirmed the relationship and post hoc (LSD) testing showed 
that Groups B and C were both different from Group A but did not 
differ significantly from each other. 

Multivariate linear regression with sickle cell patient plasma 
haemoglobin as outcome variable showed that regardless of age and 
gender there was a significant relationship between plasma haemoglobin 
and restrictive lung function as well as CRP (log) (Table 4). Figure 2 
illustrates the relationship between plasma haemoglobin and FVC% 
with correlation r=0.286, p<0.001, in sickle cell disease patients. 

Discussion
This is the first study of lung function and inflammation in sickle 

Number (%) Restriction** Total
No Yes

Obstruction* No 52 (34) 60 (39) 112 (73)
Yes 30 (19) 12 (8) 42 (27)

Total 82 (53) 72 (47) 154 (100)

* Obstruction was defined as FEV1/FVC less than 70%
** Restriction was defined as FVC less than 80% predicted for age and height
Table 3: The distribution of obstructive and restrictive ventilatory defects in 154 
patients with sickle cell disease. The number of sickle cell disease patients 
(percentage of total) is shown.
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Figure 1: Distribution of FVC% predicted among 154 sickle cell disease 
patients.

Variable B p-value
Restrictive ventilatory defect -0.689 0.049
Age -0.036 0.014
BMI 0.179 <0.001
CRP (log) -0.469 0.001
Male Gender 0.915 0.010

BMI = Body Mass Index
CRP (log) = Natural Logarithm of C reactive protein measured in mg/L
Table 4: Linear regression with haemoglobin as outcome variable in 154 sickle cell 
disease patients.
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Figure 2: The relation between FVC% predicted and Hb in 149 sickle cell 
patients, r = 0.286, p < 0.001.
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cell disease patients. In this study we found a prevalence of 18% with the 
acute chest syndrome (ACS) in our sickle cell disease patients. We found 
that about one-fifth of our sickle cell disease patients had an obstructive 
ventilatory defect and 39% had a restrictive-only ventilatory defect 
and so taken together 66% of sickle cell disease patients studied had 
abnormal lung function. We found that recurrent acute chest syndrome 
episodes were associated with a lower FEV1%. Plasma haemoglobin 
was lower in patients with a restrictive ventilatory defect and those with 
higher CRP. 

We found a predominantly restrictive ventilatory defect in 47% of 
our sickle cell disease patients. This is less so, than was found in Jamaica 
(60%) [17]. In a study conducted at the Montreal Children’s Hospital 
decreased lung volumes were thought to be the result of smaller thoraxes 
and a disparity between torso and limb growth among children with 
sickle cell disease [16]. Sylvester et al. [1] also found reduced height and 
lung volumes in children with sickle cell disease compared to controls 
and reported that this restrictive tendency increases with increasing 
age. Therefore, there is a tendency towards restriction among sickle cell 
disease patients from early childhood which progresses into adulthood 
and with which our results are consistent. In addition, unlike the 
Jamaican and USA studies, not all of our patients were homozygous for 
SS disease, the latter of which has been linked to disease severity [18]. 

Although the dominant pattern of abnormal lung function was 
restrictive, 19.5% of our sickle cell disease patients were found to 
have an obstructive defect and 7.8% had mixed disease. Vendramini 
et al. [17] reported a high prevalence of airway hyperresponsiveness 
and obstructive disease in adult patients with sickle cell disease when 
compared to controls, though obstruction was not seen in the Jamaican 
study [19]. Post-bronchodilator spirometry was used in our patients. 
Thus, we are unable to comment on any relationships with reversibility 
or airway hyperresponsiveness. However an in vitro study of sickle 
cell disease using the mouse model has found increased large and 
small airway resistance in the airways, if sickle cell disease mice and 
mechanism may underlie the spirometric lesions seen in our patients 
[20]. 

Our study is only the second study to report a relationship between 
frequent acute chest syndrome episodes and lung function in sickle cell 
disease in West Indian patients. The Jamaican study which reported 
this relationship above, found that 32.5% of sickle cell disease patients 
had two or more acute chest syndrome episodes as compared to 7% in 
our study [19]. Our patients of similar height, tended to have a greater 
weight and this may perhaps indicate a better nutritional status than 
their Jamaican counterparts. Nutritional status has been shown to 
ameliorate severity in sickle cell disease in one in vitro study [21]. 

We found that there is an inverse relationship between serum CRP 
and plasma haemoglobin in our sickle cell disease patients. The relation 
between systemic inflammation and sickle cell disease has previously 
been shown in children [22] and adolescents [23]. In several mouse 
models, inflammatory markers have been found in the sickle cell 
disease lung [24]. Importantly interleukin-6 (IL-6), a precursor of CRP, 
was elevated about two-fold in the sickle cell lung. Thus apart from a 
systemic stimulus to CRP formation in sickle cell disease there may also 
be a pulmonary stimulus as has been suggested in another model of 
chronic lung disease [25,26]. 

It has been shown that lower baseline haemoglobin is associated with 
an increased rate of painful episodes and morbidity in sickle cell disease 
patients [8], and that the percentage of haemoglobin F is a powerful 
predictor of clinical severity in these patients [27]. Our study showed 
that there is an association between lower steady-state haemoglobin 

and the presence of a restrictive ventilatory defect. Moreover the lower 
the haemoglobin level, the higher the CRP, suggesting that chronic 
systemic inflammation is likely to play a role in the pathophysiology of 
the restrictive lung disease in these patients. These relationships support 
the hypothesis that the steady-state haemoglobin may be considered a 
surrogate marker of severity in the sickle cell disease in our population. 

The inability to fully sample the entire patient population 
registered at the Haematology Clinic was a limitation to the study. 
Post-bronchodilator spirometry was used and this may have masked 
any reversible obstructive defect in the sample population. We did 
not perform postbronchodilator spirometry on our controls as they 
were asymptomatic and had no history of medical illness. If anything 
this would have caused us to under estimate the difference in lung 
function parameters between controls and sickle cell disease patients. 
The Hankinson prediction equations for Afro-Americans were used 
in this study to define normal ranges for lung function parameters as 
no reference ranges for a Trinidadian population are available [15]. We 
overcame this limitation by using a control group. Further we relied 
exclusively on hospital notes thus we may have excluded those patients 
who may have been treated in the community, if any. Finally, smoking 
data was obtained primarily by self-reporting and this may have led 
to an under-representation of the true number of smokers in the two 
sample populations. 

In conclusion, this study confirms that in the Trinidadian 
population those with sickle cell disease tend to have lower lung function 
parameters than healthy controls consistent with a restrictive defect. 
In sickle cell patients low stable plasma haemoglobin is more likely in 
patients who have restricted lung function, who are older and who have 
more systemic inflammation and low BMI. Recently molecular markers 
rather than biophysical markers of severity have received most attention 
in sickle cell disease [28]. Throughout the last century, sickle cell disease 
has been studied at several physiologic levels (molecular, tissue, cellular 
and biochemical) little consensus has emerged on markers of disease 
severity [29,30]. Though our study was not designed to detect markers 
of severity in sickle cell disease, the relation of the easily measured 
plasma haemoglobin with FVC% and CRP lends support once again 
to the hypothesis that stable haemoglobin can be taken as a surrogate 
marker of severity in sickle cell disease. 
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