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Abstract
Buckling and post-buckling are among the most important failure factors in thin walled structures. The load-

carrying behavior of cylindrical thin-walled shell structures under external pressure load is strongly dependent upon 
the nature and magnitude of the initial imperfections. These imperfections are invariably caused by an assortment of 
manufacturing processes like installing or welding. One of the most important imperfections caused by welding that 
has been reported to have an essential detrimental effect on the buckling resistance of these shells under external 
pressure load is longitudinal imperfections. Buckling and post buckling capacity of the shells depend on the H/R and 
t/ R ratios (H the height, R the radius and t the thickness of a cylindrical shell). The present work discusses the finite-
element models labeled as SS (Shallow Slim), DS (Deep Slim), ST (Shallow Thick) and DT (Deep Thick). The samples 
of first group are modified to include a line longitudinal imperfection, amplitudes of 0.5t, 1t, 2t, 3t, 4t and 8t in depth 
(t is the thickness of cylindrical shell). The results presented are in agreement with international codes and theories 
concerning buckling. 
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Introduction
Buckling and collapse are two structures of thin-walled cylindrical 

shells. Buckling of a cylindrical shell depends on the scores of variables, 
for example, the geometric properties, the material properties and the 
type of the applied load. Thin-walled circular cylindrical shells are 
very common in civil engineering applications, such as tanks, silos, 
offshore and marine structures, ship industrial chemical plants [1-
4]. Rolling and construction have much effect on buckling and post-
buckling capacity of the cylindrical shells. The buckling capacity of 
the cylindrical shell depends greatly on the following two geometric 
rations: H/R (height to the radius of shell), and the slenderness t/R 
(thickness to the radius of shell) [5]. There is a lot of literature devoted 
to the analysis of geometrically imperfect cylindrical shells. In 1995, 
Showkati and Ansourian [6] investigated the influence of primary 
boundary conditions on the buckling of shallow cylindrical shells 
under uniform external pressure [6]. Donnell calculated the buckling 
load for a cylindrical shell and obtaining a theoretical load on the 
cylindrical shell under hydrostatic pressure [6]. In 2001, Pircher et al. 
[7] studied the shape of circumferential weld-induced imperfections 
in thin–walled steel silos and tanks, and introduced several shapes of 
circumferential imperfections, which occurs in real conditions. Many 
researchers studied the buckling resistance of cylindrical shells through 
nonlinear finite-element methods. Hornug and Saal [8] searched on 
real-size tanks to examine the effects of imperfections on the buckling 
load of cylindrical shells. Schneider and Brede [9] studied the effects 
of geometric imperfections on the buckling resistance of cylindrical 
shells. Maali et al. [10] studied the buckling behavior of conical shells 
and showed the stiffening effect of weld-induced imperfections on the 
buckling strength. In 2013, Fatemi et al. [5] conducted experiments on 
imperfect cylindrical shells under uniform external pressure and showed 
the detrimental effects on the buckling of weld-induced geometric 
imperfections. Niloufari et al. [11] conducted experiments on imperfect 
steel tanks under hydrostatic pressure and showed the detrimental 
effects on buckling and post buckling of weld-induced geometric 
imperfections. Additionally, Eurocode 3, ECCS and DINI18800 [12-18] 
have all set limitations for rolling- and welding-induced imperfections.

In this study, not only presents the longitudinal overall imperfection, 
which is same circumferential imperfection in Picher’s paper [7], but 
also presents the effects of imperfection on the buckling of circular 
cylindrical shells under external uniform pressure with different H/R 
and R/t ratios.

Materials and Methods
The present study considers 28 cylindrical shells in four groups with 

different H/R and t/R ratios. All models contained one perfect model 
with the remaining models having imperfections with amplitudes of t 
(t the thickness of cylindrical shell). Average yield and failure stresses 
were obtained 194.2MPa and 325.5MPa, respectively. Young’s modulus 
calculated as 200GPa and Poisson’s ratio was obtained as 0.28 [5]. All 
models were simply supported and analyzed by ABAQUS software. The 
results of the buckling were not only compared to the results reported 
in previous and international codes, but also compared with the perfect 
model.

Size and imperfect shape

According to previous research on thin–walled cylindrical shells, 
and also international codes have all set limitation for rolling and 
welding induced imperfection [12-18]. We decided to choose the 
different thickness-to-radius ratio (t/R) within the range of 0.001-
0.0033 [6].

Four groups of models were tested for this study. The first group 
is SS (Shallow Slim labeled specimens labeled as SSP, SS0.5, SS1, SS2, 
SS3, SS4, and SS8. The second group of specimens is DS (Deep Slim) 
ones labeled as DSP, DS0.5, DS1, DS2, DS3, DS4, and DS8. The third 
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Where λ = mπ/Land m, n=1, 2, 3, … . The boundary conditions are 
used to solve the four constants. The case that is amenable to analytical 
solution is S-S, which corresponds to radial restraint at the two ends. 
Substitution of the conditions of zero radial deflection and moment at 
the ends and minimization of the buckling solution with respect to the 
wave numbers m and n leads to the solution m=1 and:

( )

22 2 42

2 22 212 1 22

q

R t Rn
Lt R LEcr R n R n

Ln

π π

ν π

 
        +              = + 

 −     +      
       

…… (3)

This critical pressure is a function of n4 obtained following minimization 
of qcr as:
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Some simplification is possible when 2n  is much greater than 1, when n 

becomes:
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Except in the case of classical simple supports and a limited 
geometry, it is not generally possible to find analytical solutions for n. 
In addition, a full numerical investigation of n under general boundary 
conditions has not been noted throughout the literature except possibly 
for the case of clamped supports at both ends. The case of elastic end 

group labeled ST (Shallow Thick) labeled as STP, ST0.5, ST1, ST2, ST3, 
ST4, and ST8. The fourth group is named as DT (Deep Thick) with the 
specimens labeled as DTP, DT0.5, DT1, DT2, DT3, DCT4 and DT8. 
Table 1 provides the detailed geometry and slenderness ratios of the 
specimens. All models were considered as simply supported and 
analyzed by ABAQUS software in accordance with the past research [2-
7]. Therefore, in this study, we selected good geometric imperfection, 
which occurs in real conditions. The imperfection type is as shown in 
Figure 1. 

The imperfection is composed of a four quarter–circle compound 
with a radius of Bt (Bt is the depth of the imperfection).

The Buckle and Riks analyses
The buckling load can be obtained by the liner (Eigen value) and 

nonlinear analyses in the Abaqus software. As a result of static linear 
analysis and internal forces, the stiffness matrix of the structure and 
the Eigen value mode can be obtained from the equilibrium equations. 
The linear method simply calculates the overall distribution of stress 
and the relative displacement. Furthermore, the buckling shape mode 
and factor load offered by the linear method can be obtained [19]. The 
nonlinear methods calculate the real displacement and stress. Therefore, 
the Arc length (Riks) method is used, as a proper method for solving the 
nonlinear buckling problem and to determine the load-displacement 
path within a more realistic way. By this way, the main characteristics 
are considered as nonlinear, unlike the Eigen value method. The most 
important point in this method is to shorten the maximum arc length, 
when the load amounts become negative and the analyses become 
unstable after arriving to bifurcation point. 

Theoretical analyses

The analytical solutions given here ignore the effect of pre-buckling 
rotations,and assume the cylinder as free to stretch longitudinally. The 
simplified version of the Donnell Stability equations (1) in coupled form 
and for uniform pressure q is [6]:

8 4
, ,2

1 0XXXX
EtD w W q W
R R θθ∆ + + ∆ =                          ……....(1)

Where D = Et3/12 (1-υ2), w=radial deflection, x= meridional 
distance and θ= circumferential angle. Symmetry considerations imply 
periodicity and the general solution in terms of the four constants of 
integration is given by:

( )1 2 3 4.sin .cos . sinw c x c x c x c nλ λ θ= + + +                             
…… (2)

Model R (mm) t (mm) H/R t/R Mode Model R (mm) t (mm) H/R t/R Mode
SSP 300 0.5 1 0.002 Perfect STP 300 0.6 1 0 Perfect

SS0.5 300 0.5 1 0.002 0.5t* ST0.5 300 0.6 1 0 0.5t
SS1 300 0.5 1 0.002 1t ST1 300 0.6 1 0 1t
SS2 300 0.5 1 0.002 2t ST2 300 0.6 1 0 2t
SS3 300 0.5 1 0.002 3t ST3 300 0.6 1 0 3t
SS4 300 0.5 1 0.002 4t ST4 300 0.6 1 0 4t
SS8 300 0.5 1 0.002 8t ST8 300 0.6 1 0 8t
DSP 300 0.5 1.5 0.002 Perfect DTP 300 0.6 1.5 0 Perfect

DS0.5 300 0.5 1.5 0.002 0.5t DT0.5 300 0.6 1.5 0 0.5t
DS1 300 0.5 1.5 0.002 1t DT1 300 0.6 1.5 0 1t
DS2 300 0.5 1.5 0.002 2t DT2 300 0.6 1.5 0 2t
DS3 300 0.5 1.5 0.002 3t DT3 300 0.6 1.5 0 3t
DS4 300 0.5 1.5 0.002 4t DT4 300 0.6 1.5 0 4t
DS8 300 0.5 1.5 0.002 8t DT8 300 0.6 1.5 0 8t

*Imperfection depth

 Table 1: Dimensions and geometric ratios of the specimens.

 
Figure 1: Shape of the imperfection
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restraint is not considered throughout this paper, although this will be 
the subject of a subsequent paper [6].

The follower load effects have not been taken into account in this 
investigation. It has been reported that, in long and thick cylinders, the 
effect is to reduce the critical pressure by a few percent when compared 
with solutions that consider a constant load direction. Long and thick 
cylinders are also less imperfection sensitive. The range of parameters is 
considered in this paper, such that the neglect of the follower load effect 
leads only to very small errors except for the case where n=2. The cases 
n=0 and n=1 are special cases of axisymmetric, beam-like or torsional 
buckling. In the case of external pressure loading, n has a minimum 
value of 2, which is the ovalization mode in very long, or long and thick 
cylinders, or short cylinders with special boundary conditions. In a 
mathematical treatment of buckling, when the pressure is minimized 
with respect to n, n is assumed to be a continuous variable, although is 
in fact an integer value. In this case, the waves are of the same length, 
while, under non-uniform loading, the modal pattern is not regular for 
wind pressure loading [6].

For other boundary conditions, numerical methods are generally 
required. When the geometric parameter ( ) ( )2 21 /L Rtν−  obtained as 
one (very short cylinders), the behavior is like a long, flat, rectangular 
plate in uniaxial compression for most boundary conditions. When the 
pressure is ‘hydrostatic’, the equivalent plate is bi-axially compressed. 
The geometric analogy is that the plate thickness is also t, the length a; 
corresponds to 2πR, and the width b to L. The results for these very short 
cylinders are not reproduced here, but elsewhere [6].

The critical buckling load of thin-walled cylindrical shells is 
estimated by equation (6), which was obtained from Donnell's exact 
solution with some simplifications. This is offered for an ideal geometric 
form [2].

2.50.92 [ ( ) )R t
cr L RP E=                                                   

……(6)

Where E is the Young’s modulus, t is the thickness, R is the radius 
and L is the height. Table 2 presents the results from the Donnell 
equation and the number of circumferential buckling waves, calculated 
through approximate equation (5) for the perfect models. 

Finite-element mesh

We select S4R element and 6 degrees of freedom for each point, which 
is especially shell by past research and Abaqus software laboratory. It's 
designed for linear and nonlinear analyses and it is a useful tool for large 
deformities [20,21]. In this study, the SSP and DTP Models are selected, 
and the ideal mesh is obtained through linear buckling load analyses 
when an ideal mesh is obtained for SSP and DTP models, that mesh can 
be better for all models. According to analysis of buckling load, a proper 
mesh is obtained with an approximate global size as 0.005. Furthermore, 
we selected one point in each 5mm on cylindrical shell for mesh section. 
Figures 2 and 3 and Tables 3 and 4 present the selection of the mesh 
for SSP and DTP models. In addition, we shortened distance meshes 
to half of another point distance in imperfection location. Thus, the 
accuracy level of the analysis is increased. We also used sweep technical 
mesh with quad-dominated shape in this study. This technique causes 
coordinating and adapting of the structure to meshing formed. 

 All models analyzed under uniform external pressure load and 
analyzed by ABAQUS software. All models were considered simply 
supported while they assumed the third displacement components are 
closed and the third rotation components are opened.

Results of Buckle Analysis (Linear Analysis)
As mentioned in most articles where cylindrical shells under 

pressure load have been investigated, we used in equation 6 for 
normalizing the result of a perfect model. Table 2 presents the results 
of the Donnell equation for the Abaqus models. There are no equations 
for imperfection models. Furthermore, we have done linear analysis to 
find wave numbers for each group. Tables 5-8 present the linear analysis 
for perfect and imperfect models and wave number for each model. 
Figures 4-7 present the result of linear analysis and wave buckling for 
each group. 

Comparison between the results of the linear Analysis of the 
SS and DS groups of models with the ratio of t/R equal to 
0.0016

The results of buckling analysis were 1.54 times larger than the result 

Model SSP DSP STP DTP
Pcr - Eq. 6 (kPa) 20.9 13.9 32.9 21.9

Eq.5 Approx. number of waves 14 11 13 10

Table 2: Results of the critical buckling load and wave equation.
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Figure 2: Results of the approximate global size for the SSP model.

Approximate 
global size

Eq. 6 Linear buckling load obtained by 
Abaqus (KPa) (PFEA)

 (PFEA)/ 
(Pcr) (kPa)Pcr

0.03 20.86 40.872 1.96
0.02 20.86 34.207 1.64
0.01 20.86 30.755 1.47

0.009 20.86 30.554 1.46
0.007 20.86 30.194 1.45
0.005 20.86 29.905 1.43
0.003 20.86 29.716 1.43

Table 3: Results of the buckling load for SSP model.

Table 4: Results of the buckling load for DTP model.

Approximate 
global size Eq. 6 (kPa)Pcr

Linear buckling load 
obtained by Abaqus (KPa) 

(PFEA)
 (PFEA)/ (Pcr)

0.03 21.94 38.491 1.75
0.02 21.94 34.371 1.57
0.01 21.94 32.214 1.47
0.009 21.94 32.084 1.46
0.007 21.94 31.867 1.45
0.005 21.94 31.707 1.44
0.003 21.94 31.602 1.44
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of the Donnell theory in the perfect models (without imperfection) 
which the result of linear analysis is inconsistent with the result of 
the Donnell theory and the result of linear analysis are conservative. 
Therefore, it is fitting that we use of the nonlinear analysis method 
(Riks method) for investigation buckling loads of cylindrical shells.

The theoretical buckling loads obtained from the Donnell theory 
from the SS and DS group models are in the range between 27-54 
percent less than the results of linear analysis. Therefore, if we used 
linear analysis for investigation buckling load of perfect and imperfect 
cylindrical shell. The result of linear analysis is greater than 1.54 times 
the results from the Donnell theory.

According to Tables 5 and 6, the imperfection depth is greater. The 
imperfect models ration to perfect models is the same as a stiffener. For 
example, the result of the Buckle analysis for SSP, SS2 and SS8 models 
is 29.905 KPa, 29.425 KPa and 29.933 KPa, respectively. These show 
that the buckling capacity is increased, and 8t imperfection can be used 
as a stiffener for cylindrical shells. As shown in Figures 4 and 5, axial 
number waves are the same as each other. The number of the wave is 
1 and circumferential wave numbers are 16 and 13 for the SS and DS 
models, respectively. Figures 4 and 5 show the circumferential waves 
are disappeared between ranges of 2t- 4t imperfections. Then, those 
are appearing in 8t imperfection, because of the 8t imperfection acts 
as a stiffener. There is a wave on an imperfection section in all models 
without SS8 and DS8 models are the same as a stiffener. We obtained 
the number of circumferential waves by 5 equations, which are shown 
in Table 2. The exact number of waves can be obtained by addition of 
5th and 2nd equations. 

Comparison between the results of the linear Analysis of the 
ST and DT groups of models with the ratio of t/R equal to 0.002

The results of buckling analysis showed 1.32 times larger than 
the result from the Donnell theory in the perfect models (without 

Model SSP SS0.5 SS1 SS2 SS3 SS4 SS8
Linear (buckle) (KPa) 29.91 29.887 29.82 29.43 28.92 29.43 29.93
Percent to perfect (%) _ -0.06 -0.295 -1.631 -3.42 -1.63 0.094
Percent to Eq. 6 (%) 30.25 30.22 30.04 29.11 27.86 29.11 30.31
Axial wave 1 1 1 1 1 1 1
Circumferential wave 16 16 16 16 16 16 16

Table 5: Results of the linear analysis of SS models.
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Figure 3: Results of the approximate global size for the DTP model.

Model DSP DS0.5 DS1 DS2 DS3 DS4 DS8
Linear (buckle) (KPa) 20.09 20.076 20.05 19.95 19.7 19.39 29.93
Percent to perfect (%) _ -0.045 -0.154 -0.671 -1.98 -3.595 32.9
Percent to Eq. 6 (%) 30.74 30.71 30.64 30.28 29.37 28.25 53.53
Axial wave 1 1 1 1 1 1 1
Circumferential wave 13 13 13 13 13 13 13

Table 6: Results of the linear analysis of DS models.
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Figure 4: The buckling analysis for SS models. 
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Figure 5: The buckling analysis for DS models.
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imperfection), where the result of linear analysis is inconsistent with 
the result from the Donnell theory. The results of linear analysis are 
conservative. Therefore, the nonlinear analysis method (Riks method) 
is a proper way for investigating buckling loads of cylindrical shells.

The theoretical buckling loads, obtained with the Donnell theory 
from ST and DT group models, are in the range between 27-32 percent 
less than the linear analysis. Therefore, the linear results are 1.32 times 
greater than the Donnell theory, for the investigation of perfect and 
imperfect cylindrical shells buckling load. 

According to Tables 7 and 8, imperfection models are acted 
as stiffened ones. For example, the result of the Buckle analysis for 
DTP, DT2 and DT8 models is 31.707 KPa, 31.348 KPa and 31.810 
KPa, respectively. These show that the buckling capacity is increased. 
Thus, 8t imperfection can be used as a stiffener, and it is useful for 
cylindrical shells. As seen in Figures 6 and 7, axial number waves are 

the same as each other, and the wave number is 1 and circumferential 
wave numbers are 15 and 12 for the SS and DS models, respectively. 
Figures 4 and 5 show the circumferential waves, which are disappeared 
between ranges of 2t-4t imperfections. Then, those are appearing in 8t 
imperfection. Because of the 8t imperfection, it acts as a stiffener. There 
is a wave on an imperfection section in all models except ST8 and DT8 
models, which are the same as a stiffener. We obtained the number of 
circumferential waves by the 5th equations which are shown in Table 2. 
If we compare the results of equation 5 with imperfection models, we 
should add equation 5 to 2 to obtain correct number waves.

Comparison between the result of the linear analysis of all 
groups of models with the ratio of t/R equal to 0.0016 and 
0.002

While the values of t/R between 0.0016 and 0.002, the buckling 
loads obtained from the linear theory is 1.54 times greater than the 
Dunnel theory. The number of circumferential waves can be obtained 
by adding 5th and 2nd equations.

However, the imperfection depth is greater. The imperfections act 
as a stiffener in all groups. For example, 8t imperfection is as a stiffener, 
because the buckling load capacities in 8t imperfection models are 
greater than the other models in all groups. Furthermore, the height of 
the cylindrical (H) is higher. So, the buckling load capacity is low. The 
0.5t and 1t type imperfections are weaker and their effects low. Thus, 
0.5t and 1t type imperfections are neutral, and those are the same as the 
perfect models. The critical buckling load capacity occurs between 2t-3t 
type imperfections, which disappear in the range of all groups. 

Results of Riks Analysis (Non-linear)
 Non-linear analysis of the SS and DS groups of models with 
the ratio of t/R equal to 0.0016

Table 9 presents the results of initial and collapse buckling to the 
Donnell theory for the perfect models. The comparison between the 
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Figure 6: The buckling analysis for ST models. 
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Figure 7: The buckling analysis for DT models. 

Model STP ST0.5 ST1 ST2 ST3 ST4 ST8

Linear (buckle) (KPa) 46.8 46.76 46.66 45.95 45.41 46.78 47
Percent to perfect (%) _ -0.068 -0.302 -1.857 -3.06 -0.045 0.41
Percent to Eq. 6 (%) 29.67 29.63 29.46 28.37 27.52 29.64 30

Axial wave 1 1 1 1 1 1 1
Circumferential wave 15 15 15 15 15 15 15

 Table 7: Results of the linear analysis of ST models.

Model DTP DT0.5 DT1 DT2 DT3 DT4 DT8

Linear (buckle) (KPa) 31.71 31.69 31.63 31.35 30.77 30.38 31.8

Percent to perfect (%) - -0.054 -0.237 -1.145 -3.062 -4.36 0.32

Percent to Eq. 6 (%) 30.8 30.76 30.64 30.01 28.68 27.78 31

Axial wave 1 1 1 1 1 1 1

Circumferential wave 12 12 12 12 12 12 12

 Table 8: Results of the linear analysis of DT models.
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Model Initial Buckling 
(kPa) (FEA)

Collapse (kPa) 
(FEA)

Percent initial buckling 
to Perfect (%)

Percent collapse to 
Perfect (%)

Percent initial 
buckling to Eq. 6 (%)

Percent collapse to 
Eq. 6 (%)

Post-Buckling Percent 
collapse to Initial (%)

SSP 32.38 32.6 --- --- 35.58 36.01 0.67
SS0.5 27.95 29.7 -15.85 -9.76 -- -- 5.89
SS1 24.5 28.65 -32.16 -13.78 -- -- 14.48

 Table 9: Results of the non-linear analysis for t/R equal to 0.0016.

results of Eq. (6) and the results of the t/R=0.0016 models reveal that the 
obtained initial buckling load of the Riks analysis is 26%-36% greater 
than the Donnell theory. The buckling load for the collapse is 30%-36% 
greater than the Donnell theory. Therefore, if we want to obtain the 
non-linear buckling load from the Donnell theory for t/R=0.0016, we 
should multiply the Donnell theory with 1.36. 

Table 9, Figures 8 and 9 present the results of the initial buckling 
by Riks analysis for SS and DS models. Although the imperfection 
depth is greater, the imperfections act weaker, where a negative effect 

is occurred in the SS4 and DS4 which present initial buckling to the 
perfect model are -196.52% and -159.89% for SS4 and DS4, respectively. 
Table 9 shows the 8t type imperfection. It acts as a stiffener than to 
the other imperfections. However, the imperfection depth is greater; 
the collapse load is decreasing until 4t type imperfection. After that, 
the collapse load is suddenly increased. Thus, the models have a big 
imperfection effect such as a stiffener. Conversely, all models showed 
the post-buckling phenomenon, while after initial buckling a length 
path obtained, until the collapse occurred by buckling. For example, in 
the SS8 model, the initial buckling load is 15.10 KPa, and the collapse 
load is 83.70 KPa. The collapse load is 4.7 times greater than the initial 
buckling load. Table 9 shows the 8t type imperfection acts as a stiffener 
more than to the other ones.

Figures 10 and 11 show the buckling effect started from the 
imperfection located and continued by the cylindrical shell. Figures 
show, which ˅ and ˄ shapes causes lift the edge, and end of analysis. 
The 8t type imperfection models are resisted against buckling as seen 
in Figures 10 and 11.

Non-linear analysis of the ST and DT groups of models with 
the ratio of t/R equal to 0.002

Table 10 presents the initial buckling and collapse loads’ 
comparison according to the Donnell theory. The obtained initial 
buckling and the collapse load of the Riks analysis is 25% to 35%, 
and 30% to 36% greater than the Donnell theory, respectively. Table 
10, Figures 12 and 13 present the results of the initial buckling by 
Riks analysis for ST and DT models. When the imperfection depth 
increases in the SS4 and DS4 models, negative effects occurred and the 
imperfection acts as weakener. The initial buckling loads are -249.09% 
and -175.12% for the ST4 and DT4 models, respectively. Table 10 
shows the 8t imperfection model, which acts as a stiffener than to other 
imperfections. However, when the imperfection depth increases, the 
collapse load decreases until 4t imperfection model. Then, the models 
have greater imperfection resulted as a stiffener. The post-buckling 
phenomenon obtained in all models. After the initial buckling load, a 
length path occurred until the collapse for all models. For example, in 
the DT8 model, the initial buckling load and the collapse load is 13.92 
KPa, and 50.42 KPa, respectively. The collapse load is 3.6 times greater 
than the initial buckling load. Table 10 shows the 8t imperfection 
model, and it acts as a stiffener than to other imperfections. Figures 
14 and 15 show the buckling effect, which ˅ and ˄ shapes cause lift the 
edge and end of analysis. The 8t imperfection models are stabil and 
resistant against buckling, as seen in Figures 14 and 15.

Non-linear analysis of all groups with t/R=0.0016 and t/
R=0.002

Whatever the imperfection depth is greater, imperfections act as 
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Figure 8: Load–displacement graphs for SS groups.
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Figure 9: Load–displacement graphs for DS groups.

Model Initial Buckling 
(kPa) (FEA)

Collapse (kPa) 
(FEA)

Percent initial buckling 
to Perfect (%)

Percent collapse 
to Perfect (%)

Percent initial buckling 
to Eq. 6 (%)

Percent collapse 
to Eq. 6 (%)

Post-Buckling Percent 
collapse to Initial (%)

STP 50.05 51.78 --- --- 34.46 36.44 3.34
ST0.5 41 46.5 -22.07 -11.35 --- --- 11.83
ST1 34.3 42.985 -45.92 -20.46 --- --- 25.32

 Table 10: Results of the non-linear analysis for t/R equal to 0.002.
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weakeners until the 4t imperfection. It afterwards acts as a stiffener in the 
other three groups. The weakest effect occurred in the 4t imperfection 
model from all groups. When the height of the cylinder increased, the 
buckling load capacity is decreased in each group. For example, the 
initial buckling load of the STP model is equal to 50.4 KPa. The initial 
buckling load of DTP model is equal to 29.30 KPa for variable heights. 
When the thickness of cylinder increased, the buckling load capacity is 
increased in each group. For example, the initial buckling of the STP 
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Figure 10: The Riks method of analysis for SS models.
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Figure 11: The Riks method of analysis for DS models.
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Figure 12: Load–displacement graphs for ST groups.
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Figure 13: Load–displacement graphs for DT groups.
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Figure 14: The Riks method of analysis for ST models.

model is equal to 19.05 KPa, while the initial buckling load of DTP is 
equal to 29.30 KPa with same thickness. The nonlinear buckling load 
can be obtained by multiplying with 1.36 the results from the Donnell 
theory for t/R=0.002 and t/R=0.0016 models. 

There is post-buckling phenomenon and a length path after initial 
buckling load until the collapse in all models. The collapse load is 3.6 
times greater than the initial buckling for the t/R=0.002 models and 4.7 
times for t/R=0.0016 models. 

The buckling effects started with imperfection locate and continue 
to the cylindrical shell. Figs showed which ˅  and ˄  shapes causes lift the 
edge and end of analysis also 8t imperfection models are stability and 
resistant to buckling.

Discussion
The ABAQUS analyses and experimental results of Fatemi et 
al.’s work

In 2013, the authors have conducted tests on SS, DS, ST and 
DT models with perfect, the 4t and 8t imperfection models [5] and 
compared the results with ABAQUS models (Table 11). It should be 
noted that all models were supported in ABAQUS models, while all 
models were supported in which a radial constraint at the edges was the 
only boundary condition in experimental models. 

Table 11 presents the results of the buckling loads from Riks 
analysis and experimental tests [5] of Fatemi et al.’s work. The 
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Figure 15: After images displaying the Riks method of analysis for 
DT models.
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Figure 16: Post-buckling behavior torsion ˅ and ˄ shaped failure 
mode for experimental models.

located and continued to the cylindrical shell. The failure shapes of 
cylindrical waves are the same as ˅ and ˄ which ˅ and ˄ failure shapes 
cause lift of the edge and end of analysis or tests [5]. 

Geometrical imperfections tolerated by the standards

International codes (such as Eurocode 3, ECCS and DIN 18800-
4) for designing thin-walled shells simply limit the permitted 
deformations and disturbances during the welding and construction of 
conical shells (Table 4). Various methods proposed for measuring the 
magnitude of the initial imperfection depth on the shell’s skin in the 
longitudinal direction include the following: 

lg= 4(r/t)0.5

lg=25t ≤ 500 mm at welds for prENV 1993-1-6 (2007): Eurocode 
3 [12]

lr=4(r/t)0.5 ≤ 0.95 times the distance of the welds

lr=25t at welds for ECCS (2008) [13]

lmx=4(r/t)0.5  ≤ 2000 mm

lmx ≤ 500 mm at welds for DIN 18800 [14]

In these equations, r is the middle surface of the conical shell, t 
is the thickness of the cone and lmx, lr and lg are all the longitudinal 
imperfections created circumferentially. The mx, r and g indexes in 
different codes represent the same length in various forms. Table 12 
demonstrates the exact location of this dimension. In the present study, 
the size of the dent tv and the length of the curve lmQ were designed 
and created with precise tools, so there is no need to compute the 
limitations of the above-mentioned formulas.

The values of tv for the 0.5t, 1t, 2t, 3t, 4t and 8t models, where t is the 
thickness of the shell, were 0.25mm, 0.5mm, 1mm, 1.5mm, 2 mm and 
4 mm for t=0.5 and were 0.3mm, 0.6mm, 1.2mm, 1.8mm, 2.4 mm and 
4.8 mm for t=0.6, respectively. The values of lmQ related to 2t, 4t, 8t,12t, 
16t and 32t were 1 mm, 2 mm, 4 mm, 6 mm, 8 mm and 16 mm for 
t=0.5 and were 1.2 mm, 2.4 mm, 4.8mm, 7.2 mm, 9.6 mm and 19.2 mm 
for t=0.6, respectively. The computation of tv and lmQ reveals that the 
specimen values far exceeded the amounts allowed by codes; in such 
cases, the structure cannot be used. 

Calculation of the tv and lmQ reveals that the imposed tv exceeds the 
value allowed by the code and the structure should stop functioning. 
The codes do not refer to destruction of these structures. The Abaqus 
analyses results show that in some structures, imperfections strengthen 
the shell and, in some cases, increase the resistance as much as three 

Model Experimental Collapse load [5] 
(kPa)

ABAQUS collapse load 
(kPa) Experimental waves ABAQUS waves 

( linear waves) Percent ABAQUS to Experimental (%)

SCSP 28.57 32.6 10 16 12.28
SCS4 27.95 27.8 10 16 -0.53
SCS8 33.975 83.7 10 16 59.41
DCSP 14.125 19.95 8 13 29.2
DCS4 17.575 18.75 7 13 6.3
DCS8 17.825 42.2 9 13 57.76
SCTP 38.7 51.7 10 15 25.14
SCT4 29.3 44.47 9 15 34.11
SCT8 30.6 46 10 15 33.48
DCTP 18.375 31.4 8 12 41.48
DCT4 19.7 34 8 12 42.06
DCT8 20.425 50.42 9 12 59.49

 Table 11: Comparison between ABAQUS analyses and experimental results of Fatemi’s works.

boundary condition has many effects in buckling loads and number of 
circumferential waves. Table 11 shows the models with simple support, 
which have been greater buckling loads than the models considered 
as simply supported with a radial constraint at the edges. Within 
the ABAQUS analyses, the simple support with a radial constraint 
at the edges in experimental were -1% to 60%, and the models with 
simple support have a greater number of circumferential waves than 
models considered with a radial constraint at the edges. The number 
of circumferential waves obtained from ABAQUS analyses and 
experiments, the number of waves were between 33% and 67%. 

Figure 16 of the experimental model is the same as (Figures 4-7, 10, 
11, 14, 15). As seen, the buckling effect is started with the imperfection 
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times. In these cases, there is no need to stop using these structures and 
their function should continue with special care. The codes related to 
thin-walled shells have no references to studies referring to the post-
buckling capacities of shells. The codes simply suggest not using such 
structures. This conclusion requires a great deal of investigation and 
thought [5].

Conclusion
This study discusses the buckling behavior of thin-walled conical 

shells. The 28 models with various imperfections with various 
amplitudes were loaded under external pressure. All models were 
analyzed by Abaqus software. The following results were concluded:

a) The number of circumferential waves in buckling analyses can be 
obtained by adding 5th and 2nd equations. 

b) Axial waves are equal to one in all groups. There is always an axial 
wave in cylindrical shells with longitudinal imperfection. 

c) When the imperfection depth is greater, imperfections act as a 
stiffener in all groups in linear analyses. 

d) The height of the cylinder (H) is higher; the buckling load capacity 
is low in linear analyses. 

e) The critical buckling load capacity occurred between the 2t and 
3t imperfections, which disappeared in the range of all groups in 
linear analyses. 

f) Whenever the imperfection depth is greater, imperfections act as 
weakener until the 4t imperfection, and afterwards act as a stiffener 
in the three groups in the nonlinear analyses. 

Definition of the depth  of initial dimples Tolerances according to different standards

Depth of initial dimples in plates measured vertically

DIN 18800-4
tr ˂1% of measuring length Lmx

ESSC Rec {2008}
L= Ir:tr=

tr ˂1% of measuring length Lmx

pr ENV 1993-1-6 {2007}
Lmx=Lg:tr= Δw0

class A:tr ≤0.006 Lmx

class B:tr ≤0.010 Lmx

class C:tr ≤0.016 Lmx

Initial dimple of circumferential weld seam

DIN 18800-4
tr ˂1% of measuring length Lmx

ESSCRec {2008}
Lmx= Ir:tr=

tr ˂1% of measuring length Lmx

pr ENV 1993-1-6 {2007}
Lmx=L:tr= Δw

class A:tr ≤0.006 Lmx

class B:tr ≤0.010 Lmx

class C:tr ≤0.016 Lmx

 Table 12: Geometric tolerances according to different standards.

g) The weakest effect occurred in the 4t imperfection in all groups in 
the nonlinear analyses. 

h) When the height of the cylinder increased, the capacity buckling 
load decreased in each group. When the thickness of the cylinder 
increased, the buckling load capacity increased in each group in 
nonlinear analyses.

i) The nonlinear buckling load can be obtained from the Donnell 
theory for t/R=0.002 and t/R=0.0016 models, by multiplying the 
Donnell theory with 1.36.

j) There is post-buckling phenomenon in all models. The collapse 
load is 3.6 times greater than the initial buckling load for the  
t/R=0.002 models and 4.7 times for t/R=0.0016 models.

k) The buckling effects started with imperfection located and 
continued to the cylindrical shell. Figures 10-16 showed which ˅ 
and ˄ failure shapes cause lifting of the edge and end of analysis.

l) The models with simple support have greater number of 
circumferential waves than models, which considered simply 
supported with a radial constraint at the edges. Furthermore, the 
number of circumferential waves from Abaqus analyses and from 
the experiments was between 33% and 67%.

m) The codes related to thin-walled shells have no references about 
post-buckling capacities of shells; the codes simply suggest that 
such structures should not be used. This conclusion requires a great 
deal of investigation and thought.
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