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algebras in characteristic two
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Abstract
It is known that the Betti numbers of the Heisenberg Lie algebras are unimodal over

fields of characteristic two. This note observes that they are log-concave. An example is
given of a nilpotent Lie algebra in characteristic two for which the Betti numbers are
unimodal but not log-concave.
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The Heisenberg Lie algebra of dimension 2m + 1 is the Lie algebra hm having the basis
{x1, . . . , xm, y1, . . . , ym, z} and nonzero relations [xi, yi] = z, 1 ≤ i ≤ m. For the cohomology
with trivial coefficients, the Betti numbers bn = dim Hn(hm) have been explicitly computed
in all characteristics [1, 3, 4]. Recall that the Betti numbers are unimodal if bi ≤ bj for all
0 ≤ i ≤ j ≤ m and bi ≥ bj for all m ≤ i ≤ j ≤ 2m + 1, and they are concave (resp.,
log-concave) if bi is at least as great as the arithmetic (resp., geometric) mean of the pair
bi−1, bi+1 for all 1 ≤ i ≤ 2m. So concave implies log-concave which implies unimodal. In
characteristic zero, unimodality is quite common. The Heisenberg Lie algebras play a key
role in the construction of all known examples of Lie algebras in characteristic zero where
the Betti numbers are not unimodal [2]. In fact, the Betti numbers of hm are unimodal
only in characteristic two [1]. On the other hand, we know of no nilpotent Lie algebra in
characteristic two whose Betti numbers fail to be unimodal. In [1], the question was posed:
in characteristic two, do all nilpotent Lie algebras have unimodal Betti numbers? Since log-
concavity is a common route taken to prove unimodality, it is natural to ask whether the
Betti numbers of the Heisenberg algebras are unimodal in characteristic two. We record the
following observation as a theorem, though it is really just a corollary of the works [1, 4].

Theorem 1. Over fields of characteristic two, the Betti numbers of hm are log-concave; i.e.,
b2
n ≥ bn−1bn+1 for all n.

Proof. For the rest of this note we fix the characteristic to be two. Emil Sköldberg showed
that the Poincaré polynomial Sm(t) =

∑
n bntn is [4]

Sm(t) =

(
1 + t3

)
(1 + t)2m +

(
t + t2

)
(2t)m

1 + t2
(1)

Though we will not need them, we mention that the individual Betti numbers are given in
[1]; for all i ≤ m,

bn =
bn

2
c∑

i=0

(−1)i

(
2m

n− 2i

)
+
bn−3

2
c∑

i=0

(−1)i

(
2m

n− 3− 2i

)
To establish the log-concavity, we observe that the Betti numbers of hm+1 are essentially
determined by those of hm, with a curious correction for the middle two terms. Explicitly,

Sm+1(t) = (1 + t)2Sm(t)− 2m
(
tm+1 + tm+2

)
(2)
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This relation is easily deduced from (1). Using induction, we assume that Sm is log-concave.
Since (1+ t)2 is log-concave, (1+ t)2Sm(t) is thus also log-concave (see [5]). So in view of (2),
to establish the log-concavity of Sm+1, it remains to verify it for the middle terms; that is,
for hm+1 we require that b2

m+1 ≥ bmbm+2. But by Poincaré duality, bm+1 = bm+2, and so we
only require bm+1 ≥ bm, and this is given by the unimodality of the Betti numbers, which
was shown in [1]. This completes the proof.

The following example shows that, despite the above result, log-concavity is not a route
for establishing unimodality in the general setting of nilpotent Lie algebras in characteristic
two.

Example 2. Let g denote the 7-dimensional Lie algebra with basis x1, . . . , x7 and defining
relations:[

x1, xi

]
= xi+1, i = 2, . . . , 6[

x2, xi

]
= xi+2, i = 3, 4[

x3, x4

]
= x7

Clearly g is nilpotent (and actually graded and filiform). Direct calculations using Mathe-
matica show that in characteristic two, the Betti numbers are

b0 b1 b2 b3 b4 b5 b6 b7

1 2 3 6 6 3 2 1

As b2
2 < b1b3, the Betti numbers are not log-concave.
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