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In recent times, much developments in the field of ‘nucleic acid 
sensors’, especially using alternative nucleic acid probes like peptide 
nucleic acid (PNA) and locked nucleic acid (LNA), have taken place. 
Although most of these are concerned with ‘solution phase’ studies, 
some reports have been made on ‘on-surface’ detection. The latter type 
of detection is particularly important to nurture, considering clinical 
diagnostic applications using microarrays. In this article, we’ll briefly 
present the primary developments reported in the past two decades, 
along with possibilities for future developments, in case of the LNA-
based sensors. 

Among the different definitions of biosensors available so far, the 
most accepted and updated version (by IUPAC) is “a biosensor is a 
compact analytical device incorporating a biological or biologically 
derived sensing element, either integrated within or intimately 
associated with a physicochemical transducer” [1]. Nucleic acid based 
biosensors are those in which the probe molecule is DNA, RNA, or 
synthetic polymer analogous to natural nucleic acids like PNA, LNA 
etc. [2]. Most of the current nucleic acid based biosensors exploit their 
base pair hybridization properties, although some use aptamers as 
biosensing element [3]. Nucleic acid immobilization on the biosensor 
surface is a crucial step that affects the overall performance of the 
sensor. In general nucleic acids are immobilized onto solid surfaces 
in such a way that a signal is obtained only if they react with their 
specific target molecules. The immobilization methods include 
covalent binding (immobilization onto the surface via one end of 
the nucleic acid molecule, e.g., binding of a 5′-amino-modified DNA 
oligonucleotide onto an epoxy-modified surface), non-covalent binding 
(e.g., affinity binding as relevant in case of avidin–biotin interactions), 
and chemisorption via near-covalent interactions (e.g., adsorption 
of thiolated oligonucleotides on gold surface via formation of gold-
sulfur linkages) [2]. For signal transduction in the current nucleic acid 
sensors, without compromising with sensitivity and specificity of target 
detection, optimized electrochemical, electrical, optical, mechanical, 
acoustic, or thermal methods are applied [4,5]. 

In the past two decades, the nucleic acid based biosensor 
technologies have made considerable advancements and have been 
applied in important areas like gene expression profiling, genotyping, 
and biological detection. Major investigations so far mainly focused 
on DNA-based sensors. Though the DNA-based sensors have found 
wide applications in the microscale [6] as well as nanoscale nucleic acid 
sensing experiments [7-10], its reduced bioactivity due to non-specific 
DNA−surface interactions through relatively exposed nucleobases and 
degradability by the nuclease compel one to search for alternatives. 
Locked Nucleic Acid (LNA) is a conformationally restricted molecule 
since it contains a modified ribose moiety in which the 2′-oxygen and 
the 4′-carbon are linked by a methylene bridge - in effect, locking the 
sugar in a RNA mimicking sugar conformation (N-type) [11,12]. LNA 
can bind with complementary DNA/RNA sequences in a sequence-
specific manner obeying the Watson−Crick base pairing rule with 
higher affinity compared to DNA, which is reflected in the higher 
values of the solution melting temperatures of LNA−DNA/LNA−RNA 
duplexes compared to those of DNA−DNA/DNA−RNA duplexes 
[11,12]. LNA is nuclease-resistant; [13,14] its higher structural rigidity 

may prevent interactions with the solid substrates, [15] and it can have 
multiple water bridges that provide it with extra stability compared to 
DNA or RNA. It has been shown that both the highest Tm increase 
per LNA modification and the best mismatch discrimination are 
achieved for short LNA sequences [16]. In addition to that, LNA 
phosphoramidites and their oligomers are commercially available, 
and LNA nucleotides can be mixed with those of the natural nucleic 
acids for generating heterogeneous probe molecules. These properties 
of LNA hold the promise that it can be a potentially better alternative 
than DNA in nucleic acid based detection technologies.

In early days, Orum et al. demonstrated that LNAs can effectively 
and reproducibly capture PCR amplicons in a simple solid-
phase hybridization assay [17]. Fang et al. [18] reported that LNA 
microarrays that could be used to detect multiple miRNAs by means of 
a novel approach have an outstanding detection limit of approximately 
10-18 mol L-1. Simeonov and Nikiforov [19] reported efficient SNP
scoring using short LNAs by means of fluorescence polarization (FP)
detection. Wang et al. [20] designed molecular beacons (MB) with a
LNA backbone to generate novel probes with higher thermostability,
enhanced selectivity, nuclease resistance, and reduction of false positive
signals, even in complex biological environments. Chen et al. [21] used
a 18-mer LNA-modified capture probe for hybridization with the BCR/
ABL fusion gene to detect chronic myelogenous leukaemia. Differential
pulse voltammetry was used to monitor the hybridization reaction on
the capture probe electrode. Recently, they dually labelled the LNA
hairpin probe with biotin (for streptavidin-based immobilization) and
a carboxyfluorescein (FAM) molecule (as an affinity tag for HRP) [22].
The immobilized hairpin probe suffers a significant conformational
change upon target hybridization, separating FAM from the electrode
and making it accessible to the anti-FAM-HRP antibody. This biosensor
is capable of specific SNP detection and could be used to detect
8.3×10−14 mol L−1 target DNA in real samples, thus constituting a good
example of the usefulness of LNA-based probes. A comparative study
of the properties of PNA and LNA as capture probes for development
of an electrochemical hybridization assay has been carried out by
Mascini’s group [23]. Where, streptavidin-coated paramagnetic micro-
beads were used as solid phase to immobilize biotinylated DNA, PNA,
and LNA capture probes complementary to DNA and RNA target
oligonucleotides. Detection limits for the DNA target were 1.52, 1.18,
and 0.91×10−10 mol L−1 (DNA, PNA, and LNA probes, respectively). For
the RNA target, they were even smaller: 5.1, 6.0, and 7.8×10−11 mol L−1,
respectively. While the performance of the biosensor for SNP detection
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was not checked in those cases, an application that is likely to reveal 
the advantages of PNA and LNA probes over DNA probes, was tested 
in such a biosensor. LNA nucleotides have also been introduced in 
DNA or RNA aptamers developed for biosensing applications, because 
“locked” nucleotides not only increase the thermal stability of the 
aptamer but also improve its in vivo resistance to nuclease digestion. 
Darfeuille et al. studied the effect of incorporation of LNA nucleotides 
into the RNA aptamer specific to the HIV-1 TAR RNA element [24].

Motivated by the earlier findings that LNA can potentially 
be a better alternative in nucleic acid detection technologies, and 
considering the lack of studies reported on on-surface nucleic acid 
detection by the LNA probes, the authors’ group developed a sensitive 
and robust LNA sensor layer, which is capable of efficient and specific 
target detection. Systematic designing of such films requires molecular 
level understanding of the structural and functional properties of these 
films, since it is often found that the nature of the molecular organization 
can influence the film’s capacity of being bioactive. We reported for 
the first time, a straightforward way (based on simple immersion 
method) of generating an ordered self-assembled LNA monolayer, 
which is bioactive, onto a gold (111) surface. This layer is capable of 
giving rise to a stronger DNA recognition signal (4-4.5 times) than its 
DNA counterpart, and importantly, it can differentiate between a fully 
complementary DNA target and that having a single base mismatch, 
where the mismatch discrimination ratio is almost two times compared 
to the ratio relevant in case of DNA-based detection [25]. Recently, 
we have further shown that by varying the salt concentration and 
type of cations, the single base mismatch discrimination ability of 
surface-tethered LNA probes could be controlled. At the same time, we 
proposed a method to measure the ‘on-surface’ melting temperature 
of nucleic acid duplexes formed in different ionic environments and 
then from the difference in melting temperatures the sensitivity of the 
approach was measured. Generally, it was observed that with increase 
in salt concentration mismatch discrimination ability of the LNA 
sensor layer was increased and Mg2+ was found to be more efficient 
in single base mismatch discrimination compared to the monovalent 
sodium as well as the trivalent spermidine and tetravalent spermine 
[26].

Though the studies mentioned above indicate that LNA probes 
are better performers than the DNA probes in some aspects, it’s yet to 
be seen whether LNA-based microarrays can be developed for clinical 
purposes and especially if it can be realized for high-throughput 
detection. For this, highly reproducible, robust and sensitive detection 
is necessary and works in the authors’ laboratory are in progress 
towards this direction. 
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