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Introduction
What are CpG islands and why do we study them?

A CpG island is a short genomic region that has a higher frequency 
of CpG dinucleotide than other regions.In vertebrate DNA, CpG 
dinucleotides are observed to occur much less frequently than 
expected by chance [1]. Also, typically, CpG dinucleotides are not 
uniformly distributed in mammalian DNA. For example,McClelland 
and Ivarie [2] examined 15 mammalian genes and reported that 
CpG dinucleotides are much richer in the 5'-anking sequences than 
in the 3'-anking regions. Tomso and Bell [3] demonstrated that CpG 
dinucleotides are substantially overrepresented at polymorphic sites 
within the human genome based on a comprehensive computational 
survey of 1.9 million human single nucleotide polymorphisms. 
Together, these studies indicate that CpG dinucleotides do not occur 
in a completely random manner.

CpG dinucleotides and methylation

In the genomes of many higher plants and animals, there is a gene 
called DNA methyltransferase (Dnmt1). Dnmt1 is an enzyme which 
can attach a methyl (CH3) group onto the 5-carbon of cytosine. This 
methylation process only targets the cytosine joined with guanine 
by a phosphodiester bond on the same strand. Some people refer to 
this 5-methyl-C as the fifth base in DNA ([4], p.26). It is reported 
that approximately 70% of the CpG dinucleotides in eukaryotic 
chromosomal DNA are methylated ([1]; [5], p.147).

However, the locations of methylated cytosine do not seem to 
be random. A high proportion of methylated cytosines are found in 
inactive genes, whereas the CpG dinucleotides located around the 
promoters of housekeeping genes or around some tissue-specific 
genes are often not methylated [6,7]. This observation has at least two 
important implications. First, CpG islands are gene-associated and can 
be used as markers to identify genes [8-15]. For example, according 
to the results in [15], about 70% of the identi_ed CpG islands are 
associated with the human genes. Antequera and Bird [16] used some 
distinct features of CpG islands to estimate the number of genes in 

humans and mice by counting the CpG islands. In [17], Davuluri, 
Grosse and Zhang implemented discriminant functions to predict 
CpG-related and non-CpG-related first exons in the human genome. 
The second implication relates to the regulation of methylation (see 
[1], [18-20]). It has been understood since the 1960s that methylated 
cytosines are associated with transcriptionally inactive genes ([4], 
p.26). The effects of methylation include silencing tumor-suppressor
genes [21,22], activating growth-stimulating genes [23], and human
X-inactivation [24].

Goals of our work

A commonly accepted rule for deciding CpG islands in vertebrate 
genomes was proposed in 1987 by Gardiner-Garden and Frommer 
[6]. They took a DNA stretch of more than 200 basepairs (bps) in 
length, and checked to see if the ratio of the observed number of CpG 
dinucleotides to the expected number of CpG dinucleotides exceeded 
0.6 and if the G+C residue content was at least 50%. Takai and Jones, 
in their 2002 paper [25], did a comprehensive analysis of CpG islands 
in human chromosomes 21 and 22, and they found that a region longer 
than 500 bps with G+C residue content larger than 55% and the ratio 
\observed CpG/expected CpG" no less than 0.65 is more likely to be 
associated with the 5' regions of genes. We need to consider three issues 
for locating CpG islands.

The first issue is how to determine a proper length of a window for 
screening and a proper step size at which a window is shifted along the 
sequence while screening. These two quantities are called, respectively, 
the window and the shift. As Cuadrado, Sacristan, and Antequera [11] 
pointed out that CpG islands are quite variable in terms of sequence 
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lengths and positions relative to the transcription initiation sites, it 
seems unlikely to have a fixed window size or a fixed shift size that will 
work uniformly well in screening different DNA sequences for locating 
CpG islands. To tackle this problem, we propose an algorithm that uses 
a DNA sequence itself to determine both the window size and the shift 
size.

The second issue is how to measure the signal strength of a CpG 
island. The proportion of CpG dinucleotides and the G+C residue 
content are two basic and important measures. In a 1997 online 
manuscript by Rouchka, Mazzarella, and States [26], a logarithmic 
probability score is computed for each region, and the breakpoints 
of CpG islands are located based on the scores. Davuluri, Grosse, and 
Zhang [17] defined the maximum of the CpG percentages in different 
sliding windows of 201 bps to be the CpG score. Here, we approach 
this problem from the perspective of information theory. We treat 
the CpG proportion of the entire bulk DNA as the background noise 
distribution and the observed proportion of CpG dinucleotides over a 
chosen window as the signal distribution. We ask whether or not the 
DNA composition within a window under screening contains a signal 
strong enough to stand out from its bulk as a portion of a CpG island. 
The Kullback-Leibler divergence is employed to measure the strength 
of the signal distribution contrasting with the noise distribution. A 
larger divergence value indicates stronger evidence for the presence of 
a CpG island signal.

We will compare our results to the putative CpG islands found in 
four well-studied mouse and human DNA sequences. The statistical 
method we propose here can reliably find high divergent subregions 
that are probable to be within a CpG island or in the proximity of a 
CpG island. We want to remark that a statistical method cannot and is 
not intended to find the exact site of a CpG island with the exact size. 
The biological interpretation of the presence of a CpG island and how a 
CpG island is functionally related to other regions should be examined 
and determined by geneticists.

Outline

This report is organized as follows. In Section 2, we explain our 

statistical reasoning and method for locating CpG islands. In Section 
3, we choose four well-studied DNA sequences, one from mouse 
and three from human, to demonstrate how our method works. At 
the same time, we assess the accuracy of our method by comparing 
our results to the putative CpG islands reported in those sequences. 
Some basic compositional statistics of the four sequences are given 
in Figure 1. All the DNA sequences are achieved from the GenBank 
website http://www.ncbi.nlm.nih.gov of the National Center for 
Biotechnology Information (NCBI) dated before January 2006. More 
detailed information about each sequence can be found at the NCBI 
website. We will explain and compare our results with the current 
findings on CpG islands for each of the four sequences. We conclude 
this report with a brief discussion on a more general problem-sequence 
segmentation.

Materials and Methods
How can CpG islands stand out statistically?

CpG islands are short DNA stretches that are generally rich in CpG 
dinucleotides, and the G+C content in each stretch is often relatively 
high. These numerical features provide a basis for quantitative methods 
of locating CpG islands. Di_erent speci_cations can yield di_erent 
results in locating CpG islands. A fundamental statistical question is 
to ask whether a DNA stretch stands out significantly enough to be 
distinguished from its bulk as a CpG island.

In this section, we present our reasoning and method for locating 
CpG islands in three parts. First, we explain how we use a DNA 
sequence itself to determine the window size and the shift size. Second, 
we introduce the Kullback-Leibler divergence as a statistical measure of 
the strength that a CpG island signal departs from the background bulk 
DNA. We build a profile of the Kullback-Leibler divergence values as 
windows are shifted along the DNA sequence. A region of consecutive 
windows with high divergence values should be in the proximity of 
a CpG island. Third, we show that the divergence values can be well-
fitted by a truncated Pareto distribution. We estimate the parameters 
associated with the truncated Pareto density function by the maximum 
likelihood principle. The fitted truncated Pareto distribution then is 
applied to locate regions with a divergence value exceeding the 95th 
percentile.

Sequence-defined window and shift

We can consider a DNA sequence as a realization of a stochastic 
renewal process where an occurrence of a CpG dinucleotide is regarded 
as a renewal. The segment of base pairs between two CpG dinucleotides, 
excluding the CpG dinucleotide preceding it but including the CpG 
dinucleotide tailing it, is called a CpG interarrival. Let us take sixty base 
pairs (from 961 to 1020) of the M63419 sequence, the mouse leukemia 

accession organism base pairs % of A % of T % of C % of G % of CpG

M63419 Mus musculus 8,735 21.820 23.721 27.018 27.441 2.164

AL022327 Homo sapiens 101,270 23.848 20.712 27.692 27.748 2.958

AL031723 Homo sapiens 41,255 22.717 19.433 29.509 28.341 3.100

AL049762 Homo sapiens 100,575 30.783 27.346 21.213 20.658 0.996

Figure 1: Compositional statistics of four DNA sequences.

The third issue is how to establish a rule that can soundly decide 
whether or not the CpG island signal within a DNA stretch is statistically 
significant so that it is unlikely to observe such a signal by chance alone. 
Currently, both the thresholds for deciding CpG islands based on the 
ratio “observed CpG/expected CpG" and on the G+C residue content 
are only a rule of thumb. Many CpG island searchers allow users to 
specify their thresholds [27]. The quantification of the statistical 
significance of the observed evidence of a CpG island is lacking. A main 
goal of our work is to provide a sound statistical procedure to quantify 
this significance.
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inhibitory factor gene, listed below to demonstrate the definition.

977 993 996
aatgaaggtc ttggcccg cag gtaaatccat gcg ccg ggcc

                      1001 1003 1017
g cg atttaag agtcccg gct

Figure 2 displays the histograms and statistics of the CpG 
interarrivals of the four DNA sequences discussed in this report. It 
is interesting to see that those histograms indicate distributions with 
a negative power or an exponential density curve. We expect that a 
region in the proximity of a CpG island is denser in CpG dinucleotides 
than other regions, and hence it is more likely to observe smaller CpG 
interarrivals in such a region. How do we choose a proper window size 
for examining this? How many base positions should we shift from a 
window to the next window for screening along the DNA sequence? 

On one hand, a window should be wide enough to include a signi_
cant portion of a CpG island. On the other hand, a window should 
not be too wide, so that the CpG island signal within the window can 
be statistically detected from the bulk DNA. The shift size for sliding a 
window along the DNA sequence determines the number of times of 
screening. As each DNA sequence can have CpG islands vary in terms 
of lengths, it seems reasonable to adopt an algorithm that uses the 
sequence itself to determine the window size and the shift size.

Consider a DNA sequence consisting of L base pairs. Let I1, I2,.., 
and Iv be the lengths of the CpG interarrivals of the sequence, where 
v denotes the number of CpG dinucleotides in the sequence. Note 
that I1 + I2 + …+ Iv ≤ L. If v = 0, then we would report that no CpG 
islands are found. If v = 1, we set the window size to be the maximum 
length of the CpG interarrivals. This ensures that at least one CpG 
dinucleotide will be observed within each window for all windows 
preceding the last CpG dinucleotide. It also allows a moderately large 
window span for including a significant portion of a CpG island, if the 
window under screening lies in the vicinity of a CpG island. At the 
same time, as the data suggest, it is not unreasonably large to let the 
bulk base composition distribution outweigh the CpG island signal 
inside each window. Another reason for setting the window size to be 
the maximum CpG interarrival length is due to a technical point for 
computing the Kullback-Leibler divergence, which will be explained 
later. For the shift size, we choose a value such that the number of 
screenings is roughly equal to the number of CpG dinucleotides. So 
the shift size is taken to be the rounded value of the mean length of the 
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accession base pairs # CpG maximum mean SD

M63419 8,735 189 578 46.196 70.043

AL022327 101,270 2,996 465 33.792 44.512

AL031723 41,255 1,279 368 32.222 39.691

AL049762 100,575 1,002 1,309 100.363 140.883

Figure 2: Histograms and statistics of the CpG interarrivals of four DNA sequences.

Suppose we begin with the 961st base pair, which is an adenine. The 
first CpG dinucleotide ends at the 977th base position, so we say the 
length of the first CpG interarrival is 977-960 = 17. Now the process 
starts anew at the 978th base pair, which is a cytosine. The second 
CpG dinucleotide ends at the 993rd base position, so the length of 
the second CpG interarrival is 993-977 = 16. Likewise, the third CpG 
interarrival has length 996-993 = 3, the fourth CpG interarrival has 
length 1001-996 = 5, the fifth CpG interarrival has length 1003-1001 
= 2, and the sixth CpG interarrival has length 1017-1003 = 14. Each 
CpG interarrival includes the CpG dinucleotide at its end, and all CpG 
interarrivals are non-overlapping. The M63419 sequence has totally 
189 CpG interarrivals, with maximum 578 bps, mean 46:196 bps, and 
standard deviation 70:043 bps.
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CpG interarrivals. Now let w and h denote the window and shift sizes, 
respectively. That is, we have set

1 2window size max( , ,..., ) and= = vw I I I                            (2.1)

1 2
1= shift size = round[ ( ... )].+ + + vh I I I
v

                           (2.2)

For the M63419 sequences, it has v = 189 CpG dinucleotides out 
of a total of L = 8735 base pairs. The window size is w = 578 bps, and 
the shift size is h = 46 bps. For the four DNA sequences listed in Figure 
2, the window parameter ranges from 368 to 1309 bps, and the shift 
parameter runs from 32 to 100 bps. Note that the two quantities defined 
in (2.1) and (2.2) appear to be positively correlated. Kullback-Leibler 
divergence. The Kullback-Leibler divergence is used in information 
theory to measure the statistical distance between two distributions. 
Let f0 and f1 be two discrete probability mass functions. The quantity 
f0(x) is the likelihood of observing a random outcome x from a 
background noise distribution f0. The quantity f1(x) is the likelihood 
of observing the same random outcome x from a signal distribution f1 
that needs to be detected from the noise. Kullback [28] interpreted the 
logarithmic ratio log [f1(x)=f0(x)] as the information in the observation 
x for discriminating f1(x) against f0(x). The Kullback-Leibler divergence 
of the distribution f1 against the distribution f0 is defined to be

1
K-L 1 0 1

0

( )( , ) ( ) log .
( )

=∑
x

f xdiv f f f x
f x               (2.3)

The Kullback-Leibler divergence is nonnegative for any 
distributions f0 and f1. A larger divergence indicates the two 
distributions are more distinct from each other. For example, if the 
noise has the probability masses on dichotomous outcomes \head" and 
\tail" with f0(head) = 0:4 and f0(tail) = 0:6, then the Kullback-Leibler 
divergence for discriminating the distribution with f1(head) = p and 
f1(tail) = 1 - p against f0 is

K-L 1 0
1( , ) log (1 ) log .

0.4 0.6
−

= + −
p pdiv f f p p

This Kullback-Leibler divergence is a function of p, and it is plotted 
in Figure 3. Note that the minimum divergence value zero is attained 
at p = 0:4. We will simply call a value obtained from (2.3) a divergence 
instead of Kullback-Leibler divergence throughout this report, and 
symbolize it by div. The main idea of employing the divergence to 
differentiate a CpG island from its bulk DNA is to use the entire CpG 
proportion of bulk DNA as the background noise distribution f0 and 
the observed CpG proportion over a specific window as the signal 
distribution f1. Let f0(CpG) be the CpG proportion of the bulk DNA, 
and let f1;W (CpG) be the observed CpG proportion over window W, 
then the divergence for this particular window W is

1
1 0 1

0

w(CpG)( , w, ) w(CpG) log
(CpG)

=
fdiv f f f
f

              1
1

0

1 w(CpG)(1 , w(CpG)) log .
1 (CpG)
−

+ −
−

ff
f

(2.4)

The divergence of a window that is richer in CpG dinucleotides 
than its bulk DNA tends to be larger, and it indicates that the window 
may contain, or be contained by, or substantially overlap a CpG island. 
The window (whose size is chosen to be the maximum CpG interarrival 
length) is moved along the sequence by a particular shift size (set to 
be the rounded value of the mean CpG interarrival length) until there 
is no space to move. The divergence is evaluated each time when the 
window is shifted. This establishes a list of divergences for the DNA 
sequence under screening. For example, the M63419 sequence has 189 
CpG dinucleotides out of 8735 base pairs, so the CpG proportion of the 
entire sequence is

0
189(CpG) 0.0216.

8735 1
= ≈

−
f

The reason why we subtract 1 from 8735 is that 8735 bps can 
form 8734 dinucleotides. The window size we choose for the M63419 
sequence is 578 bps. Within the first window of 578 bps, there are 6 
CpG dinucleotides, so the observed CpG proportion within the first 
window is

1
6, w(CpG) 0.0104.

578 1
= ≈

−
f

It follows from (2.4) that the divergence for the first window is
0.0104 1 0.01040.0104 log( ) (1 0.0104) log( ) 0.0037
0.0216 1 0.0216

−
× + − × ≈

−
       (2.5)

A technical reason for choosing the maximum CpG interarrival to 
be the window size is that the observed CpG proportion within each 
window is assured to be positive so the logarithmic values are well-
defined in the divergence formula (2.4). (We can also define limx→0+ 
x × log x = 0.) Now the shift size is set to be 46 bps, the rounded mean 
CpG interarrival length, for the M63419 sequence. We move the first 
window down 46 bps and compute the divergence of this shifted 
window using (2.4). We repeat this procedure as we move. How many 
shifts do we make before we stop? If we let k be the number of shifts of 
size h bases, then it should satisfy the inequality (w + kh) ≤ L, where L 
is the length of the DNA sequence. It implies that the number of shifts 
k is the largest integer not exceeding (L -w)=h. Recall that L = 8735, w = 
578, and h = 46 for the M63419 sequence, so the number of shifts is k = 
177. Because there is a starting window before shifting, there are totally 
k + 1 = 177 + 1 = 178 evaluations of divergence, which is close to 189, 
the number of CpG dinucleotides in the sequence.

Truncated Pareto distribution
Is the divergence 0:0037 shown in (2.5) significantly large enough 

to infer that the first window of 578 bps of the M63419 sequence is 
within or overlapping a CpG island? If we slide the window down for 
20 shifts of size 46 bps each, the divergence of this particular window is 
0.0732. Is this divergence significantly large? We need to examine the 
distribution of the divergences to assess the statistical significance. The 
histogram and basic statistics of the 178 values of divergence for the 
M63419 sequence are shown in Figure 4(a). The data suggest that the 
distribution of the divergences can be suitably described by a truncated 
Pareto distribution with a negative power parameter. A truncated 
Pareto distribution has the density function
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1 1

1 , 0 , 1;
( )

1 , 0 , 1.
ln ln

α β
β α

α β
β α

+ +

+ < < < ≠ − −= 
 < < < = −
 −

r
r r

r

r x x if r
f x

x x if r
          (2.6)

where α is a positive parameter for the lower bound of the data range, β 
is a parameter for the upper bound, and r is a power parameter. (Note 
that when r < -1, the denominator βr+1 - βr+1 becomes negative and the 
density is still positive.) Let X1, X2,…, Xn be a random sample from 
the truncated Pareto distribution in (2.6), and let ,α βand r  be the 
maximum likelihood estimators (MLEs) of the parameters ,α βand r  
respectively. Then

1 2 1 2
ˆˆ min( , ,... ), max( , ,... ),α β= =n nX X X X X X            (2.7)

and r̂  is the unique solution to the equation (with r as the unknown)
1 1

1 1
1

ˆ ˆ ˆ1 log log 1 log .ˆ1 ˆ
β β α α

β α

+ +

+ +
=

−
− = −

+ −
∑

r r n

ir r
i

X
r n

                (2.8)

A reference on the MLEs related to a truncated Pareto distribution 
can be found in [29]. We like to remark that an MLE may be biased for 
the true parameter value. For the M63419 sequence, the values of the 
MLEs of the three parameters are

5
M63419 M63419 M63419

ˆˆ ˆ1.70 10 , 0.0788, and 0.9553,α β−= × = = −r  (2.9)

and the fitted truncated Pareto density is

0.9553 5
M63419

ˆ ( ) 0.1593 ,1.70 10 0.0788.− −= × ≤ ≤f x x x            (2.10)

We plot the fitted truncated Pareto density curve, together with 
the histogram of the divergences, in Figure 4(b). Once we obtain a 
fitted truncated Pareto distribution of the divergences, we can use it to 
assess the statistical significance of a divergence value because a larger 
divergence indicates stronger evidence in favor of the presence of a 
CpG island. That is, we can locate CpG islands by identifying those high 
divergence regions with a predetermined threshold level of likelihood. 
Let 0 < p < 1 be a probability. We can ask if a given divergence is in the 
top (100 × p)% of the data. Now let X be a random variable that has the 
truncated Pareto distribution with the density function given in (2.6). 
If xp is the cutoff for the divergences in the top (100 × p)% of the data, 
then we have 

1 1

1Pr{ } .
β

β α+ +

+
> = =

−∫
n

r
p r rx

rX x x dx p

This equation leads to

1 1 1/( 1)[(1 ) ] .β α+ + += − +r r r
px p p               (2.11)

( 0.9553 1)
0.05,M63419ˆ [0.95 0.0788 0.05− += × +x

                     5 ( 0.9553 1) 1/( 0.9553 1)(1.70 10 ) ] 0.0553.− − + − +× × = (2.12)

For the first window of 578 bps of the M63419 sequence, the 
divergence 0.0037 shown in (2.5) is lower than the top fifth percentile 
given in (2.12), so it is not statistically significant enough to be 
considered to lie within the proximity of a CpG island. However, after 
we make 20 shifts of size 46 bps, we will have a divergence value 0.0732, 
which exceeds the top fifth percentile, and therefore we can consider 
this particular region of 578 bps to be in the proximity of a CpG island 
with 5% level of significance.

Results: Do CpG Islands Stand Out Statistically?
We will present our results on CpG islands for each of the four 

DNA sequences listed in Figure 1. For each sequence, we start with a 
graph that shows the divergences against the window index, and we 
will call it a divergence plot. On each of the divergence plots we draw 
a horizontal line to indicate the top fifth percentile of the divergences. 
A divergence above the cutoff line indicates evidence in favor of 
being in the proximity of a CpG island at 5% level of significance. To 
demonstrate visually how well the distribution of the divergences can 
be fitted by a truncated Pareto distribution, we display the histogram 
of the divergences and the fitted truncated Pareto density curve like the 
one shown in Figure 4. Within the displaying frame of each histogram, 
we show the basic statistics that include the sequence accession code, 
and the number, minimum, maximum, mean, and standard deviation 
of the divergences. We also present the density function of each fitted 
truncated Pareto distribution whose parameters are replaced by the 
maximum likelihood estimates. We report and interpret the high 
divergence regions we locate, and compare our predictions with the 
current statistics and results on CpG islands for those DNA sequences.

Before presenting the results on each sequence, we first explain how 
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Figure 4: (a) Statistics and Histogram of the divergences of M63419; (b) Pareto fit of the divergences

We can replace the parameters α,β and r in equation (2.11) by 
the MLEs α̂ , β̂  r̂  and given in (2.7) and(2.8), respectively, to get an 
estimated top (100 × p)th percentile ˆpx . In our work, we particularly 
choose the significance level to be p = 0:05. That is, we set the 95th 
percentile to be the threshold level. So we find those regions with a 
divergence at least as large as the top fiifth percentile ^x0:05, and those 
regions are reported to be in the proximity of a CpG island. For the 
M63419 sequence, substituting the MLEs in (2.9) to (2.11), the resulting 
estimated top fifth percentile of the divergence distribution is
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we convert from “window index" to “base position." We have adopted 
the symbols w and h for the window size and shift size in (2.1) and (2.2), 
respectively. Suppose we _nd a region with divergences consistently 
larger than the threshold determined bythe 5% level of signi_cance, 
and the region consists of consecutive windows from index i to index 
j. Then the beginning window i starts at base position (i - 1)×h, and the 
ending window j stops at base position w + (j - 1) × h. Therefore we 
have the following conversion formula:

windows of size w from i to j with shift size h

base positions from ( 1) ( 1)⇒ − × + − ×i h to w j h                           (3.1)

Results on M63419

We have shown some results for the M63419 sequence, the mouse 
leukemia inhibitory factor gene, when we explained our method in 
Section 2. Here we give a recap. The M63419 sequence has 189 CpG 
dinucleotides out of 8735 bps. The maximum CpG interarrival is 578 
bps (so the window size w = 578), and the mean CpG interarrival is 
46.20 bps (so the shift size h = 46). There are totally 178 evaluations 
of divergence. We show the divergence plot in Figure 5(a), and all the 
divergences are below 0.08 with mean 0.0061 and standard deviation 
0.0134.

The MLEs of the parameters of the truncated Pareto distribution, 
the fitted density function, and the estimated top fifth percentile of 
the divergence distribution are respectively given in (2.9), (2.10), and 
(2.12).There is only one region with divergences exceeding the top 
fifth percentile 0.05,AL0222327x̂ 0.0853= . This region consists of windows 
indexed from 20 to 23. According to the conversion formula in (3.1) 

with window size w = 578 and shift size h = 46, the region is converted 
into the following base positions. 

M63419 high divergence region: base positions from 874 to 1590

This sequence was analyzed in [12], which proposed that the span 
of nucleotides 1313-1458 is a part of a CpG island. The region we locate 
is wider, and it has 439 bps more in the upstream and 132 bps more in 
the downstream.

Results on AL022327 
According to the information provided by GenBank, AL022327 is 

the human DNA sequence from clone RP3-355C18 on chromosome 
22q13.3. The sequence consists of 101270 bps of which there are 2996 
CpG dinucleotides. The maximum CpG interarrival is 465 bps and the 
mean CpG interarrival is 33.79 bps. There are totally 2965 evaluations 
of divergence, and the divergence plot is given in Figure 6(a).

The maximum divergence does not exceed 0.1286, and the mean 
and the standard deviation of the divergences are 0.0055 and 0.0125, 
respectively. The histogram of the divergences shown in Figure 7(a) is 
highly skewed to the right. The MLEs of the parameters of the truncated 
Pareto distribution and the estimated top fifth percentile are 

56
AL022327 AL022327 AL022327

ˆˆ ˆ5.98 10 , 0.1286,α β−= × = r

              0.05,AL022327ˆ0.9578,and 0.0853.= − =x (3.2)

The fitted truncated Pareto density is
0.9578 6

AL022327
ˆ ( ) 0.1340 ,5.98 10 0.1286,− −= × ≤ ≤f x x x

which is displayed with the histogram in Figure 7(b).
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Figure 5: Divergence plot of M63419.
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Figure 6: Divergence plot of AL022327.
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We find two regions with divergences exceeding the top fifth 
percentile 0.05,AL049762x̂ 0.0895= . The first region contains windows with 
indices from 808 to 818, which is converted to base positions from 
27438 to 28243. The second region has window indices from 2081 to 
2090, which is converted to base positions from 70720 to 71491. We 
summarize the results below.

1st AL022327 high divergence region: base positions from 27438 to 28243

2nd AL022327 high divergence region: base positions from 70720 to 71491

GenBank reports seven putative CpG islands. However, only six are 
listed with non-experimental evidence, and we tabulate them below.

CpG island 
1

CpG island 
2

CpG island 
3 CpG island 4 CpG island 

5
CpG island 

6
11973 
-13056

22848-
23801

27337-
28417 42172-43633 44147-

44700
70722-
71673

Note that our first predicted CpG island is a subregion of the third 
putative CpG island. They differ by 101 bps in the upstream and 174 
bps in the downstream. Our second predicted CpG island overlaps 
the sixth putative CpG island, with two base pairs difference in the 
upstream and 182 bps difference in the downstream. Nevertheless, the 
divergence plot in Figure 6 shows five prominent spikes of unequally 
high divergences. We have set the significance level at 5%, which may 
be too stringent to detect all the CpGislands reported in GenBank.

Results on AL031723 

The AL031723 sequence, reported in GenBank, is the human DNA 
sequence from clone LA16c-439A6 on chromosome 16. It has 41255 
bps of which there are 1279 CpG dinucleotides. The maximum CpG 

interarrival is 368 bps and the mean CpG interarrival is 32.22 bps. 
There are totally 1278 evaluations of divergence. The divergence plot 
is given in Figure 8(a). The divergences are no more than 0.149 with 
mean 0.0064 and standard deviation 0.0171. The histogram of the 
divergences is shown in Figure 9(a). The MLEs of the parameters of the 
truncated Pareto distribution and the estimated top fifth percentile are

5
AL031723 AL031723 AL031723

ˆˆ ˆ1.79 10 , 0.1488,α β−= × = r

                0.05,AL031723ˆ1.0274,and 0.0895= − =x (3.4)

The fitted truncated Pareto density is
1.0274 5

AL031723
ˆ ( ) 0.0927 ,1.79 10 0.1488,− −= × ≤ ≤f x x x      (3.5)

which is plotted along with the histogram in Figure 9(b).

For the AL031723 sequence, there are two regions found to have 
divergences exceeding the top fifth percentile 0.05,AL031723x̂ 0.0895= . 
The first region goes from window 789 to window 806, and the second 
region covers windows indexed from 1159 to 1161. They are converted 
to the following based positions.

1st AL031723 high divergence region: base positions from 25216 
to 26128

2nd AL031723 high divergence region: base positions from 37056 
to 37488

GenBank reports that there are three non-experimental CpG 
islands. The first has base positions from 18929 to 19548, the second 
goes from 25202 to 26372, and the third goes from 36891 to 37694. 

Although the divergence plot in Figure 8 indicates some evidence 
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Figure 8: Divergence plot of AL031723.
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Figure 7: (a) Statistics and histogram of the divergences of AL022327; (b) Pareto fit of the divergences
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for a CpG island within the proximity of the first non-experimental CpG 
island reported by GenBank, it is not significant at the level of 5% as we 
specify. Each of the other two reported putative CpG islands contains 
the corresponding high divergence region we report as a subset. The 
second putative CpG island has 14 bps longer in the upstream and 244 
bps shorter in the downstream than ours, and the third putative CpG 
island has 265 bps longer in the upstream and 206bps shorter in the 
downstream than ours.

Results on AL049762 

According to GenBank, AL049762 is the human DNA sequence 
from clone RP1- 81F6 on chromosome 1q24.1-25.2. The sequence 
consists of 100575 bps, and there are 1002 CpG dinucleotides in it. The 
maximum CpG interarrival is 1309 bps and the mean CpG interarrival 
is 100.36 bps. There are totally 993 evaluations of divergence, and 
the divergence plot is given in Figure 10(a). The divergences are in a 
range of 0.046 with mean 0.0018 and standard deviation 0.0045. The 
histogram of the divergences is shown Figure 11(a). The MLEs of the 
parameters of the truncated Pareto distribution and the estimated top 
fifth percentile are

AL049762 AL049762 AL049762

8 ˆˆ ˆ2.92 10 , 0.0461,α β−= × = r

                
0.05,AL049762

ˆ0.8609,and 0.0336= − =x (3.6)

The fitted truncated Pareto density is
0.8609 8

AL049762
ˆ ( ) 0.2475 ,2.92 10 0.0461,− −= × ≤ ≤f x x x              (3.7)

which is displayed with the histogram in Figure 11(b).

There is only one region with divergences exceeding the top fifth 
percentile  0.05,AL049762x̂ = 0:0336. This region goes from window 956 
to window 963, and it is converted to the base positions as below.

AL049762 high divergence region: base positions from 95500 to 97509

There is only one putative CpG island, base positions from 96101 to 
96822, reported in the GenBank data for the sequence. It is a subregion 
of the high divergence region we locate. Our region stretches 601 bps 
more in the upstream and 687 bps more in the downstream.

Concluding Remarks
CpG islands can be used as markers to identify genes and help gain 

information about the methylation process. We employ the Kullback-
Leibler divergence as a statistical measure for discriminating CpG 
islands in a DNA sequence from its bulk. We also develop an algorithm 
that uses a DNA sequence itself to determine the window size and the 
shift size for computing the Kullback-Leibler divergence values. In 
addition, we propose truncated Pareto distributions to quantify how 
statistically confident we are in locating CpG islands.

The use of truncated Pareto distribution is strongly suggested by 
the histograms of the Kullback-Leibler divergence values. We have 
empirically discovered that all histograms appear to be well-fitted by a 
negative power density curve as long as the window size and the shift 
size are properly chosen. Our empirical exploration sheds light on 
fitting the distribution of divergence values. A direction of our future 
work is to investigate alternative statistical models for describing the 
distribution of the Kullback-Leibler divergence values.
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Figure 9: (a) Statistics and histogram of the divergences of AL031723; (b) Pareto fit of the divergences.
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Figure 10: Divergence plot of AL049762.
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As we explained in the introduction, the method we propose is not 
aimed at locating the exact site of a CpG island with the exact size, 
but instead finding the regions of high divergences with their statistical 
significances quantified. The regions we locate with the 5% threshold 
level of significance can overlap, contain, or be contained in those 
putative CpG islands reported in the GenBank. Overall, our results 
show consistently reliable predictions of the CpG island locations.

Locating CpG islands can be regarded as a special case of a general 
problem of sequence segmentation that tries to divide a sequence in a 
meaningful way. For example, many bioinformatics researchers have 
been working on statistical methods and models for segmenting a 
DNA sequence into regions of different biological functions. Finding 
CpG islands seems to be more straightforward than many other 
sequence segmentation problems because it is simply based on the 
CpG composition. Many segmentation methods and algorithms are 
mathematically intriguing and can be computationally expensive. In 
particular, it is difficult to either quantify the uncertainty involved 
or give meaningful biological interpretations. In this report, we have 
manifested an approach for locating CpG islands with statistical 
significance.
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Figure 11: (a) Statistics and histogram of the divergences of AL049762; (b) Pareto fit of the divergences.
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