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Abstract
The author reviews his results on locally compact homogeneous spaces with inner metric, in particular, 

homogeneous manifolds with inner metric. The latter are isometric to homogeneous (sub-) Finslerian manifolds; 
under some additional conditions they are isometric to homogeneous (sub)-Riemannian manifolds. The class Ω of 
all locally compact homogeneous spaces with inner metric is supplied with some metric dBGH such that 1) (Ω, dBGH) is 
a complete metric space; 2) a sequences in (Ω, dBGH) is converging if and only if it is converging in Gromov-Hausdor 
sense; 3) the subclasses M of homogeneous manifolds with inner metric and L G of connected Lie groups with left-
invariant Finslerian metric are everywhere dense in (Ω, dBGH): It is given a metric characterization of Carnot groups 
with left-invariant sub-Finslerian metric. At the end are described homogeneous manifolds such that any invariant 
inner metric on any of them is Finslerian.
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manifold with inner metric; Homogeneous space with integrable 
invariant distributions; Homogeneous (sub-)Finslerian manifold; 
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Introduction 
One can observe in last decades an intensive development of non-

holonomic metric geometry and its applications to geometric group 
theory, analysis, CR-manifolds, the theory of hypo-elliptic differential 
equations, non-holonomic mechanics, mathematical physics, 
thermodynamics, neurophysiology of vision etc. Montgomery's book 
[1] gives a well written track of this. A natural context for (sub-)
Finslerian, in particular, (sub-)Riemannian geometry is geometric
control theory [2,3].

Homogeneous Riemannian and Finslerian manifolds and their 
non-holonomic generalizations, homogeneous sub-Riemannian and 
sub-Finsleian manifolds, are especially important as models, because 
in some cases it is possible to find exactly geodesics, shortest arcs, 
conjugate and cut locus, and even distances for them.

A simple geometric axiomatic for homogeneous (sub-)Finslerian, 
in particular, (sub-)Riemannian, manifolds in general context of locally 
compact homogeneous spaces with inner metric, have been announced 
in paper [4]. Later appeared proofs of this announcement [5-7], other 
interpretations, my later results and their survey [8], corrections 
to proofs of some results cited [4]. Also last years some colleagues 
exhibited an interest in my old results [4]. I am very obliged to 
professor Alekseevsky for useful discussions on this matter. Hopefully, 
all this serves as enough motivation to present a modified, renewed, 
relatively short (with omission of well-known definitions), version of 
some statements [4] and [8].

Locally Compact Homogeneous Spaces with Inner 
Metric

Let us remind main definitions. A path in a topological space X 
is a continuous map of some closed bounded interval of the real line 
to the space X. A metric space is called the space with inner metric, if 
the distance between any two its points is equal to the infimum of the 

length of paths joining these points. A metric space is homogeneous if 
its isometry group acts transitively, i.e., for any two points in the space 
there is an isometry (motion) of the space moving one of these points 
to the other.

The Cohn-Vossen theorem [9] states that every locally compact 
complete space (M, ρ) with inner metric is finitely compact, i.e., any 
closed bounded subset in (M, ρ) (in particular, any closed ball B(x, r) 
of radius r with the center at x) is compact; moreover, the space (M, ρ)
is geodesic. The last statement means that any two points of the space 
can be joined by a segment or shortest arc, i.e., a curve (path) of length 
which is equal to the distance between these points.

Further we suppose that (M, ρ) is an arbitrary locally compact 
homogeneous space with inner metric, and G=I(M) is its motion 
group with compact-open topology with respect to its action on (M, 
ρ),G0 is a connected component of the unit in the group G. In view of 
homogeneity and the local compactness, the space (M, ρ) is metrically 
complete, the Cohn-Vossen theorem holds, and so we can use a shorter 
term “locally compact homogeneous geodesic space”.

The Busemann metric [10],
( , )( , ) sup ( ( ), ( )) , ,ρδ ρ −

∈
= ∈p x

p
x M

f g f x g x e where p M

is introduced on the group G.

The following results are proved in [11]. The metric δp depends on 
the choice of the point p ϵ M, but it is bi-Lipschitz equivalent to the 
metric δp for any point q ϵ M, and thus, independently on the point 
p ϵ M, defines a topology τ, which coincides with the compact-open 
topology on G with respect to its action on (M, ρ). Let us remind 
that the subbasis of the compact-open topology consists of sets

( ; ) : { | ( ) }= ∈ ⊂G K U g G g K U , where K is a compact and U is an open 
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subset in M. The metric δp is invariant under the left translations by 
elements of the group G and under the right translations by elements of 
its compact subgroup H, the stabilizer of the groups G at a point p; for 
natural identification of G/H with M; defined by formula σ(gH)=g(p), 
the quotient metric Δp on G/H, induced by the metric δp, is equivalent 
to the metric ρ, the metric space (G, δp) is locally compact, complete, 
and separable. The pair (G,τ) is a topological group acting continuously 
and properly on the left on (M, ρ) by isometries. The subgroup G0 is 
transitive on M. 

The following interesting problem is still open.

Problem 1. Is it true, that in the general case, the connected group G0 
or another transitive on M closed connected subgroup of the group G is 
locally connected or, which is equivalent, locally arcwise connected? [12].

Observe in relation with this, that the paper [12] gives a very short 
proof of a new (at that time) result, that is a global form of a theorem on 
the local representation of a group as a direct product coming from the 
Iwasawa-Gleason-Yamabe theory [13-15] for locally compact groups.

Theorem 1. Let G be a connected locally compact (Hausdorff) 
topological group. Then there exists a compact subgroup ,⊂K G  
a connected, simply connected Lie group L, and a surjective local 
isomorphism π: K x L → G Furthermore, if G is locally connected, then 
K is connected and locally connected, and π is a covering epimorphism.

The following characterization of locally compact homogeneous 
geodesic spaces as homogeneous spaces of topological groups [12] 
holds.

Theorem 2. Every locally compact homogeneous geodesic space 
is isometric to some locally compact locally connected quotient space 
G/H of a connected locally compact topological group G with the 
first countability axiom, by a compact subgroup H, endowed with a 
G-invariant geodesic metric.

Conversely, every locally connected, locally compact homogeneous 
quotient space G/H of a connected locally compact topological group 
G with the first countability axiom by a compact subgroup H admits a 
G-invariant geodesic metric ρ.

Corollary 1. A locally compact topological group (G, τ) admits some 
left-invariant geodesic metric if and only if (G, τ) is connected, locally 
connected, and satisfies the first countability axiom.

Theorem 3. Any neighbourhood U of the unit e in a connected locally 
compact topological group G contains closed (even compact) normal 
subgroups N=NU with the quotient group G/N, which is a (connected) 
Lie group [15].

Lemma 1. If N1 and N2 are normal subgroups of a locally compact 
topological group G such that G/N1 and G/N 2 are Lie groups, then

1 2/ ( )∩G N N  is also a Lie group [16].

We need the following definition in order to formulate other 
structural results on locally compact homogeneous geodesic spaces.

Definition 1. A map of metric spaces f : M → N is said to be submetry, 
if for any point x ϵ M, and any number r > 0, we have f(BM (x, r))=BN 
(f(x), r). Here B denotes the closed ball of corresponding radius in the 
corresponding space [17].

Theorem 4. Any Riemannian submersion of complete smooth 
Riemannian manifolds is a submetry. Conversely, a submetry of smooth 
Riemannian manifolds is the Riemannian submersion of class C1, 1 [17]

On the ground of theorems 2, 3, lemma 1, and definition 1, we 
prove the following

Theorem 5. A metric space (M, ρ) is a locally compact homogeneous 
geodesic space, if and only if, it can be represented as the inverse 
metric limit of some sequence (Mn=(G/Nn)/(HNn/Nn), ρn), where Nn is 
non-increasing sequence of compact normal subgroups of G such that 

1 { }∞
=∩ =n nN e , of homogeneous geodesic manifolds bound by the proper 

(the preimage of a compact set is compact) submetries Pnm: (Mm, ρm) 
→(Mn, ρn), n ≤ m, and pn: (M, ρ ) → (Mn, ρn), where pn=pnm o pm and 
pns=pnm o pms if n ≤ m ≤ s [4,6].

This means that (non-decreasing) functions ρn o (pn x pn) uniformly 
converge to the metric ρ. Under this condition, pnm ϵ C∞, and one can 
assume that the fibers of these submetries are connected.

In some sense, Theorem 5 reduces the study of locally compact 
homogeneous geodesic spaces to the case of homogeneous geodesic 
manifolds.

Let us recall, that the Hausdorff distance dH (A, B) between two 
bounded subsets of an arbitrary metric space M is the infimum of 
positive numbers r, such that A is contained in the r-neighbourhood of 
the set B, and B is contained in the r-neighbourhood of the set A. The 
pair (K(M), dH ) is a metric space where K(M) is the family of all closed 
bounded subsets of the metric space M. It is complete if the space M is 
complete [18].

Definition 2. The Gromov-Hausdorff distance dGH (A, B) between 
compact metric spaces is defined as the infimum of all distances dH(f(A), 
g(B)) for all metric spaces M, and for all isometric embeddings f : A 
→ M, and g : B → M. By definition, a sequence ((Xn, xn), ρn) of finitely 
compact complete spaces with metrics ρn and chosen points xn Gromov-
Hausdorff-converges to a similar space ((X, x), ρ), if for any number r > 
0, the distance

( ( , ), ( , )) 0,→
nGH X n Xd B x r B x r

as n → +∞.

Definition 3. The distance dBGH between finitely compact metric 
spaces with chosen points (X, x) and (Y, y) is equal by definition to

0
(( , ),( , )) sup ( ( , ), ( , )) −

≥
= r

BGH GH X Y
r

d X x Y y d B x r B y r e .                (1)

As a consequence of S. E. Cohn-Vossen theorem, cited above, this 
definition is applicable to locally compact complete spaces with inner 
metric, in particular, to locally compact homogeneous spaces with 
inner metric. It is clear that in the latter case the distance dBGH does not 
depend on the choice of points x ϵ X and y ϵ Y .

Let ∑ and Θ be respectively the classes of all finitely compact metric 
spaces and locally compact complete inner metric spaces with chosen 
points, and let Ω be a class of all locally compact homogeneous spaces 
with inner metric.

Theorem 6. The pair (∑ , dBGH ) is a complete metric space. The 
convergence of sequences in this metric space is equivalent to the 
Gromov-Hausdorff convergence. So Θ and Ω are closed subspaces of (∑, 
dBGH). Moreover, the subclass M of homogeneous manifolds with inner 
metric is everywhere dense in (Ω, dBGH).

Homogeneous Manifolds with Inner Metric
Theorem 7. The following statements for locally compact 

homogeneous space with inner metric (M, ρ ) are equivalent:
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(1) M is a (connected) topological manifold; 

(2) M has finite topological dimension; 

(3) M is locally contractible; 

(4) (M, ρ) is isometric to (G/H, d); where G is a connected Lie 
group, H is a compact Lie subgroup of G, and d is some inner metric on 
G/H; invariant relative to the canonical left action of G on G/H. 

Let us give some explanations. Evidently, (1) implies (2) and (3); 
(4) implies other statements. Now (2), theorems 2 and 5 imply that 
M=G/H; where G is a locally compact, connected topological group 
such that some neighborhood U of e contains no nontrivial normal 
subgroup, and H is a compact subgroup of G. Then theorem 3 implies 
that G is a connected Lie group, H is a compact Lie subgroup of G; 
which proves (4).

The statement (3) together with theorem 2 would imply the 
statement (4) by  Szenthe's claim in [19]: let a σ-compact locally 
compact group G, with a compact quotient G/G0; acts continuously (and 
properly) as a transitive and faithful transformation group on a locally 
contractible space X. Then X is a manifold and G is a Lie group.

However, it was discovered in 2011 by Antonyan [20], that Szenthe's 
proof of this claim contains a serious gap. Independently Szenthe's 
claim was proved by Antonyan and Dobrowolski [21], by Homann and 
Kramer [22], see also the book by Hoffmann and Morris [23].

Theorem 7 gives topological characterization of homogeneous 
manifolds with inner metric. Now we shall describe their metric 
structure.

Let M=G/H be the quotient manifold of a connected Lie group G by 
its compact Lie subgroup H; g=Ge, h=He be Lie algebras of Lie groups 
G, H: Let us set the following objects:

(a1) Le is Ad(H)-invariant vector subspace of g such that ⊂ eLh  
and g is the least Lie subalgebra of g which contains Le;

(a2) DH=dp(e)(L0); where p: G → G/H is the canonical projection 
and dp is its differential;

(a3) FH is a norm on DH which is invariant relative to the (linear) 
isotropy group of G/H at H ϵ G/H;

(a4) D is G-invariant distribution on G/H such that D(H)=DH ;

(a5) F is G-invariant norm on the distribution D such that F (H)=FH.

Theorem 8. Let M=G/ H be the quotient space of a connected Lie 
group G by its compact Lie subgroup H, (D, F) is a pair with conditions 
(a1) (a5) [4,5,7].

Then the formula
1

0
( , ) inf ( ( )) ,= ∫ c c

d x y F c t dt                  (2)

where c=c(t), 0 ≤ t ≤ 1, are arbitrary piecewise smooth paths in 
G/H, tangent to distribution D and joining points x and y from G/H; 
defines some G-invariant geodesic metric dc on G/H (compatible with 
the standard topology on G/H).

Remark 1. Conditions (a1), (a2), and (a4) imply that the distribution 
D from theorem 8 is completely nonholonomic [24]. Therefore any two 
points x and y from G/H can be joined by some piecewise smooth path 
by Rashevsky-Chow theorem [24,25], so dc(x, y) is finite. If D=TM 
(respectively, D ≠ TM) then dc is said to be (sub-)Finslerian and (sub-)
Riemannian if additionally FH is an Euclidean norm on DH : Note that a 

norm || · ||on a vector space V is Euclidean if and only if
2 2 2 2|| || || || 2(|| || || || ) , .+ + − = + ∈a b a b a b for every a b V

Theorem 9. Every G-invariant inner metric on a homogeneous 
manifold G/H of connected Lie group G by its compact subgroup H is 
sub-Finslerian or Finslerian. In addition, the Lie group G admits a left-
invariant sub-Finslerian or Finslerian (sub-Riemannian or Riemannian 
if is sub-Riemannian or Riemannian) metric ρ0 such that the canonical 
projection p: (G, ρ0) → (G/H, ρ) is submetry [5,7].

Using this theorem, it is not difficult to prove the following addition 
to theorem

Theorem 10. The class L G of connected Lie groups with left-
invariant Finslerian metric is everywhere dense in ( Ω, dBGH ) [8].

The last statement of theorem 9 implies that the search of geodesics 
and shortest arcs of invariant (sub-) Finslerian or (sub-) Riemannian 
metric on homogeneous manifolds reduces in many respects to 
the case of Lie groups with left-invariant (sub-) Finslerian or (sub-) 
Riemannian metric.

Any shortest arc, parametrized by the arc-length, on (G, ρ0) 
from theorem 9 is a solution of a time-optimal problem; so it 
necessarily satisfies the Pontryagin maximum principle (PMP) [4,26]. 
Unfortunately, this principle is useful only for so-called normal 
shortest arcs and geodesics, when a maximum, supplied for them by 
PMP, is positive. Every normal geodesic on (G, ρ0) is smooth if ρ0 is 
sub-Riemannian metric; moreover, if any geodesic on (G, ρ0) is normal 
(which is always true if ρ0 is Riemannian) then any geodesic on (G/H, 
ρ) is smooth.

Let us note that using PMP, the author found in paper [27] all 
geodesics and shortest arcs of arbitrary left-invariant sub-Finslerian 
metric on three-dimensional Heisenberg group.

Tangent Cones and Carnot Groups
Definition 4. A bijection of metric space (M, ρ) onto itself is called 

a (metric) a-similarity, if ρ (f(x), f(y))=a ρ(x, y) for all points x, y ϵ M, 
where a ϵ  , a > 0. The a-similarity is called nontrivial, if a ≠ 1.

Theorem 11. A locally compact homogeneous space with an inner 
metric (M, ρ) admits nontrivial metric similarities if and only if (M, ρ) 
is isometric to a finite-dimensional normed vector space or to a Carnot 
group, i.e. connected, simply connected, (noncommutative) nilpotent 
stratified Lie group C with the Lie algebra 1== =⊕m

k kLC L L  (of 
nilpotentness depth m>1), which is a direct sum of vector subspaces 

⊂kL L  under the conditions Li+1=[Li, L1]; Lk=0 if k>m; with left-
invariant sub-Finslerian metric dcc, defined by a left-invariant norm Fc 
on the left-invariant distribution Δ, where Δ (e)=L1. Moreover, (M, ρ) 
admits a-similarities for all positive a ϵ  [28,29].

Theorem 12. If (M, ρ) is a homogeneous manifold with inner metric 
then at any point x ϵ (M, ρ) there exists the tangent cone τxM to the 
manifold (M, ρ) (in the Gromov's sense) as the Gromov-Hausdorff limit 
of spaces ((M, x) αρ ) when α →+ ∞. Let suppose that (M, ρ) is (M=G/H, 
dc) as in theorem 8. If dc is Finslerian metric, defined by the norm F0 
on DH=THM, then τxM is isometric to the normed vector space (TH M, 
F0); otherwise τxM is isometric to a Carnot group (C, dcc); where normed 
vector spaces (L1, Fc) and (DH, F0) are isometric [30,31].

Let us note that it follows from theorem 6 and the first statement 
of theorem 12 that τxM is a locally compact homogeneous space with 
inner metric which has a-similarities for every positive number a. Now 
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other statements of theorem 12 could be deduced from theorem 11.

Homogeneous Finsler Manifolds
Theorem 13. A metric space (M, ρ) is isometric to a homogeneous 

Finslerian manifold if and only if (M, ρ) is locally compact homogeneous 
space with inner metric of finite topological dimension which is equal to 
its Hausdorff dimension [28].

Proof. The necessity of these conditions is well-known.

Sufficiency. By theorems 7, 9, every locally compact homogeneous 
space with inner metric (M, ρ) of finite topological dimension is a 
(sub-)Finslerian homogeneous manifold, defined by conditions from 
theorem 8.

If FH from theorem 8 is not Euclidean, then we can find an 
Euclidean norm F1H on DH , invariant relative to the (linear) isotropy 
group of G/H at H ϵ G/H. Then there is a constant c > 1 such that (1/c)
F1H ≤ FH ≤ cF1H.Now let ρ1=d1c be G-invariant (sub-)Riemannian metric 
on G/H defined by formula (2), where F is G-invariant norm on D such 
that F (H)=F1H : Then it is easy to see that (1/c) ρ1 ≤ ρ ≤ cρ1 and therefore 
(M, ρ)and (M, ρ1) have equal Hausdorff dimensions.

The space (M, ρ) is Finslerian if and only if (M, ρ1) is Riemannian. 
To finish proof it is enough to apply for (M, ρ1) theorems 12, 11, 
and known facts that so-called equiregular connected smooth sub-
Riemannian manifold M and any its tangent cone τxM have equal 
Hausdorff dimensions, while the Hausdorff dimension of the Carnot 
group (C, dcc) from theorem 11 is equal to

1 1
dim( ) dim( ) dim( ( / )), 1.

= =

> = >∑ ∑
m m

k k H
k k

k L L T G H m

Theorem 14. Every Lie group with bi-invariant (i.e. with left- 
and right-invariant) inner metric is the Lie group with bi-invariant 
Finslerian metric [4,5].

Homogeneous (sub-)Riemannian Manifolds
Theorem 15. A metric space (M, ρ) is isometric to a homogeneous 

Riemannian manifold if and only if (M, ρ) is a locally compact 
homogeneous space with inner metric of finite topological dimension 
which has the curvature ≥ K in A. D. Alek sandrov's sense for some K 
ϵ  [12].

Notice that there are different equivalent definitions of Aleksandrov 
spaces of curvature ≥ K [32,33]. The following definition belongs to the 
author.

Definition 5. A space M with an inner metric and with the local 
ex-istence of shortest arcs is called the Aleksandrov space of curvature ≥ 
K if locally any quadruple of points in M is isometric to some quadruple 
of points in a simply connected complete Riemannian 3-manifold of 
some constant sectional curvature k ≥ K, where the number k depends 
on considered quadruple of points [12,34].

Remark 2. There are infinite dimensional compact homogeneous 
spaces with inner metric of Aleksandrov curvature ≥ 0 [12]. A smooth 
Riemannian manifold has Aleksandrov curvature ≥ K if and only if its 
sectional curvatures ≥ K. The definition 5 is local, but every quadruple 
of points in geodesic Aleksandrov space of curvature ≥ K in a sense of 
this definition satisfies conditions from definition 5 [33]. Some other 
conditions, in terms of orbits of 1-parameter subgroups of isometries, 
characterizing homogeneous Finsler and Riemannian manifolds, are 
given in papers [4,7].

I don't know simple metric conditions, characterizing homogeneous 
sub-Riemannian manifolds, aside as the Gromov-Hausdorff limits of 
homogeneous Riemannian manifolds, when limits have different finite 
topological and Hausdorff dimensions.

It is interesting that there is a probabilistic approach to solve this 
problem, at least in the case of left-invariant inner metrics on Lie 
groups.

Theorem 16. Left-invariant (sub-)Riemannian metrics on a 
connected Lie group are in 1-1 correspondence with symmetric Gaussian 
1-parameter convolution semigroups of {e}-continuous, absolutely 
continuous with respect to left-invariant Haar measure, probability 
measures on it [8,35].

Omitting details, we reference to exact definitions and theorem 
6.3.8 in book [35] which characterizes generating infinitesimal (hypo-)
elliptic operators of such semi-groups. Notice that there is no mention 
to left-invariant (sub-)Riemannian metrics on Lie groups [35].

Problem 2. It would be desirable to get a generalization of theorem 
6.3.8 in [35] to the case of homogeneous manifolds G/H and use it for 
(sub-)Riemannian geometry.

Homogeneous Manifolds with Integrable Invariant 
Distributions

In this section we consider very natural problem: describe 
connected homogeneous manifolds such that every invariant inner 
metric on any of them is Finslerian.

Theorem 17. Every G-invariant inner (geodesic) metric on the 
homogeneous space G/H of a connected Lie group G with a compact 
stabilizer H⊂  G is Finslerian if and only if [4,7]

(A) Every G-invariant distribution on G/H is integrable.

This is equivalent to the condition

(B) Every Ad(H)-invariant vector subspace c in g containing h is a 
Lie algebra. 

If H is connected, in particular, if G/H is simply connected, then the 
Ad(H)- invariance of the space c is equivalent to the inclusion [h, c]⊂ c.

Definition 6. The homogeneous manifold G/H of a connected Lie 
group G with a compact stabilizer H is called homogeneous manifold 
with integrable invariant distributions, shortly, HMIID, if it satisfies any 
of the equivalent conditions (A) or (B) from theorem 17.

Theorem 18. The following conditions for a connected Lie group G 
with the Lie algebra g are equivalent:

1) Every left-invariant inner metric on the Lie group G is 
Finslerian; 

2) Every vector subspace of the Lie algebra g is a Lie subalgebra in g; 

3) g is one-dimensional or any two-dimensional vector subspace 
in g is a Lie subalgebra of g;

4) For any two elements X, Y in g, the bracket [X, Y ] is a linear 
combination of elements X and Y [4,7].

Theorem 19. If a Lie algebra g satisfies condition 4) from theorem 
18 then

1) there exists a linear map l : g→ R such that  

 [X, Y]=l(X)Y - l(Y )X, X, Y ϵ g;                 (3)
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2) the kernel of the linear map l is the maximal commutative 
ideal in g; 

3) l=0 if and only if g is commutative Lie algebra;

4) if l ≠ 0 then, up to an isomorphism, the Lie algebra g has the form 

Ln = +φ 
n-1 , n ≥ 2

i.e. semidirect sum, prescribed by homomorphism φ:  → End (n-1)  
Such that ϕ(1)=En-1 is the unit matrix.  

Theorem 20. Let Gn be n-dimensional Lie group G with the Lie 
algebra g, satisfying condition 4) from theorem 18 [36]. Then 

1) Gn is commutative or 

2) Gn is isomorphic to the group of real (n n) block matrices 

1

0 1
− 

 
 

naE b                     (4)

where En-1 is the unit (n-1) x (n-1)-matrix, a is any positive number, b is 
any (n-1)-vector-column, and 0 is the zero (n-1)-vector-row.

Theorem 21. Noncommutative Lie group G has the Lie algebra g 
satisfying condition 4) from theorem 18 if and only if any left-invariant 
Riemannian metric on G has constant negative curvature [36].

Theorem 22. Let M be a connected Riemannian symmetric space, 
G be the maximal connected Lie group of isometries for M with the 
stabilizer H⊂G at a point x ϵ M: Then any G-invariant inner metric 
on G/H is Finslerian [4,7].

Theorem 23. Let assume that M=G/H (where G is a connected 
Lie group and H is its compact subgroup) be isotropy irreducible 
homogeneous spaces, i.e. G/H has irreducible linear isotropy group. Then 
any G-invariant inner metric on G/H is Finslerian [4,7].

Theorem 24. For any (compact) simply connected effective 
homogeneous space G/H of a connected compact Lie group G with closed 
stabilizer H the following conditions are equivalent [37-39]:

1) all G-invariant distributions on G/H are integrable; 

2) the homogeneous space G/H is isomorphic to a direct product 
of compact simply connected isotropy irreducible homogeneous spaces; 

3) the space G/H has normal type by Berard-Bergery [40], i.e. 
any G-invariant Riemannian metric on G/H is normal homogeneous in 
M.Berger's sense; 

4) all G-invariant Riemannian metrics on G/H have positive 
Ricci curvature; 

5) all G-invariant Riemannian metrics on G/H have positive 
scalar curvature. 

Simply connected irreducible (Riemannian) symmetric spaces 
G/H with connected Lie group G and compact subgroup H have been 
classiffed by  Cartan [41]. They are (automatically) strictly isotropy 
irreducible, i.e. H0 has irreducible isotropy representation; non-compact 
strictly isotropy irreducible homogeneous spaces are symmetric [42]. 
Manturov [42] and Wolf [43] classified strictly isotropy irreducible 
homogeneous spaces; one needs to combine their results to get full 
classification [41].

The author used no classification when he proved his results stated 
in this paper. It follows from previous statements that there is a full 
classification of compact simply connected HMIID.

Gorbatsevich [8,44] studied general homogeneous spaces with 
connected stabilizer subgroup from the class HMIID in detail. He 
described corresponding transitive Lie groups and stabilizer subgroups 
in the case when the transitive group is semisimple or solvable, and 
partly, in the case of general transitive Lie groups.
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