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Abstract
In this paper, we introduce a novel genome assembly optimization tool named LOCLA. It identifies reads aligned locally with high quality on gap 
flanks or scaffold boundaries, and assembles them into contigs for gap filling or scaffold connection. LOCLA enhances the quality of an assembly 
based on reads of diverse sequencing techniques, either 10x Genomics (10xG) Linked-Reads, PacBio HiFi reads or both. For example, with 10xG 
Linked-Reads, the long-range information provided by barcodes allows LOCLA to recruit additional reads belonging to the same gDNA molecule, 
resulting in accurate gap filling and increased sequence coverage. 

In our experiments, we started by creating a preliminary draft assembly for each dataset using assembly tools such as Supernova and Canu 
assembler based on the type of sequencing reads. The preliminary draft assembly could either be a de novo assembly or a reference-based 
assembly. Then, we performed LOCLA on the assembly generally in the order of gap filling and then scaffolding. We validated LOCLA on four 
datasets, including three human samples and one non-model organism. For the first human sample (LLD0021C) and the non-model organism 
(B. sexangula), draft assemblies were generated with Supernova assembler using only 10xG Linked-Reads. We showed that LOCLA improved 
the draft assembly of LLD0021C by adding 23.3 million bases, which covered 28,746 protein coding regions, particularly in pericentromeric and 
telomeric regions. As for B. sexangula, LOCLA enhanced the assembly published by Pootakham W, et al. and by decreasing 41.4% of its gaps.

For the second human sample, the HG002 (NA24385) cell line, we mainly utilized PacBio HiFi reads. In contrast to the first human sample, we 
experimented on reference-based assemblies instead of de novo assemblies. We employed the RagTag reference-guided scaffolding tool to 
generate two draft assemblies and then filled gaps with LOCLA. The results indicated that LOCLA's candidate contig detection algorithm on gap 
flanks was robust, as it was able to recover a number of contigs that RagTag had not utilized, which were 27.9 million bases (22.26%) and 35.7 
million bases (30.93%) for the two assemblies respectively. To evaluate the accuracy of the LOCLA-filled assemblies, we aligned them to the 
maternal haploid assembly of HG002 published by the Human Pan-genome Reference Consortium. We demonstrated that 95% of all sequences 
filled in by LOCLA have over 80% of similarity to the reference.

The third human dataset included 10x G Linked-Reads and PacBio HiFi reads of the CHM13 cell line. By utilizing reads of both sequencing 
techniques through gap filling and scaffolding modules of LOCLA, we added 46.2 million bases to the Supernova assembly. The additional content 
enabled us to identify genes linked to complex diseases (e.g., ARHGAP11A) and critical biological pathways.
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Introduction
Since the advent of genome-sequencing technology, resolving the assembly 

of the human genome has been repeatedly attempted for over 20 years. In 2003, 
the publication of the first near-complete human reference genome marked a 
triumph in biomedical research [1]. Advances in sequencing techniques, from the 
initial Sanger Sequencing to Next-Generation Sequencing (NGS), have enabled 
the high-throughput generation of sequencing data; TGS platforms characterized 
by long read sequences have paved the way to accomplishing accurate human 

genome sequencing [2]. The first version of the representative human genome, 
GRCh38, was released in 2013. The GRCh38 reference genome has hitherto 
been the basis of human genomic studies for identifying functional genetic 
regions, defining regulatory elements, comparing genomic diversity, conducting 
population genomics analyses, and searching for disease-causing mutations [3]. 
Moreover, the cost of sequencing has decreased, and a substantial amount of 
human genomes have thus already been sequenced. These sequences have 
been compared against the human reference genome to identify genetic factors 
associated with health and disease [4]. The existing practice in genomic analysis 
is to align the reads generated by sequencers with the GRCh38 reference 
genome to determine the location of the reads and thus construct the individual’s 
genome.

An alternative to alignment-based assembly is de novo assembly. By 
rejecting the bias from the reference genome, de novo assembly can benefit 
the genotyping process in two ways: 1) new sequence assemblies for previously 
unreported genomic regions can be gained, and 2) an individual’s genome can 
be characterized in a reference-unbiased fashion [5,6]. Consequently, gaps in 
the individual’s genome, relative to the reference, can be resolved and individual 
variants can be identified rather than being discarded. Increasing the content of 
personal genomes would enable the identification of unforeseen variants and 
facilitate disease association tests.
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Technologies that provide long-range genomic information with acceptable 
accuracy should be incorporated into the characterization of large structural 
mutations in disease diagnosis. Although barcodes are employed to provide 
long-range information in some synthetic long-read techniques, such as 10x 
Genomic sequencing (10xG), these techniques inherit the similar limitations 
as NGS for highly repetitive genomic regions [7]. One possible solution is to 
incorporate optical mapping (OM) into the sequencing pipeline. If integrated with 
other sequencing reads, OM indicates the order and orientation of sequence 
fragments, identifies and corrects potential chimeric joins, and estimates the size 
of the gap between adjacent reads [8].

The 10xG Linked-Reads technique uses molecular barcodes to tag reads 
generated from high-molecular-weight DNA [9]. The key concept is to introduce 
a unique barcode to every short read derived from a few individual molecules. 
By tracing the same barcodes, short reads in different fragments can be linked. 
A genome assembler designed with 10xG, the Supernova assembler, uses read 
pairs to cover short gaps. Barcodes are also informative for filling in large gaps. 
If the physical locations of two scaffolds are actually close, multiple molecules 
in the partitions would be highly likely to bridge the gap between two scaffolds. 
Linked-Reads can provide long-range information at a length of 100 kbp, which 
is a major improvement compared with Illumina short-read sequencing with the 
range information at a length of 300 bp.

In Bionano OM, specific 6-mer sequence motifs are set as markers to 
provide a blueprint of the genome structure [8]. The Bionano optical map may 
be used to order and orient sequence fragments, identify potential chimeric joins, 
and help estimate the size of the gap between adjacent sequences. To further 
provide long-range information for disentangling complex genomes, Mostovoy 
and colleagues [10] proposed a hybrid method combining Illumina sequencing, 
10xG, and Bionano OM to resolve end-to-end, chromosome-level human genome 
assembly. However, according to their published results, numerous N-base gaps 
were interspersed in the scaffolds; thus, numerous contigs remained. The hybrid 
method was applied to assemble 17 human genomes from five populations in 
another study, and the comprehensiveness of the assembled genome resulted 
in the discovery of thousands of non-reference unique insertions [11]. These 

results challenged the representative human genome, indicating that it did 
not include some common genomic structures. By considering more than 300 
human samples collected from diverse populations, Wong and colleagues [4] 
constructed a Human Diversity Reference genome (HDR) by using the same 
hybrid pipeline with the addition of PacBio assemblies, which incorporates non 
reference unique insertions into the linear reference genome structure. The HDR 
has considerably improved annotations and interpretation of structural variants 
that were not previously approachable due to fragmented scaffolds. It has also 
increased the accuracy of the alignment-based variant caller while retaining 
high efficiency due to the linear genome structure. On the basis of the reviewed 
studies, we are convinced that the complementarity of Linked-Reads and optical 
maps has high potential to make the production of higher quality genomes more 
routine and economical.

In our study, we designed a genome assembly optimization tool that 
depends primarily on long-range genomic information to iteratively fill gaps and 
extend scaffold lengths. We hereby introduce LOCLA, short-hand notation for 
“Local Optimization for Chromosome-Level Assembly” The tool suite comprises 
four main modules: (1) local-contig-based (LCB) gap filling, (2) global-contig-
based (GCB) gap filling, (3) GCB scaffolding, and (4) LCB scaffolding. The basic 
concept of each method is presented in Figure 1. In (1), contigs generated from 
short reads with long-range information, i.e., contigs assembled from 10xG 
Linked-Reads, which are named “local-contigs” here, are used to fill the gaps in 
a scaffold. In (2), TGS long reads or scaffolds, which are named “global-contigs” 
here, produced using other sequence assemblers are used to fill gaps in a 
scaffold. In (3) and (4), the reads are used to further extend the existing scaffolds 
to span a much wider range.

The 10xG official assembler Supernova was used as a benchmark to 
demonstrate the efficacy of LOCLA on three human samples, LLD0021C [Data 
Citation 1] and CHM13 [12]. For LLD0021C, we adopted the aforementioned 
hybrid method of 10xG Linked-Reads and Bionano Genomics OM and discovered 
that the N50 value of the Supernova assembly increased from 45 to 59 Mbp. 
LOCLA added an additional 23 Mbp and closed 9,700 gaps in the Supernova 
assembly. With these additional bases, we identified 136 functional genes 

Figure 1. Core concept of the four main LOCLA modules. a) “Local-Contig-Based (LCB) Gap Filling”: First, we align all barcoded linked-reads to the scaffolds and de novo assemble 
Local-contigs using the reads belonging to barcodes mapped within gap flanks. Then, we map these contigs onto the scaffolds and determine the best hit to fill in gaps. b) “Global-
Contig-Based (GCB) Gap Filling”: We align Global-contigs to all scaffolds and find the best hit to fill in gaps. c) “Local-Contig-Based (LCB) Scaffolding”: We align all barcoded linked-
reads to the head and tail of scaffolds and pair up scaffolds with shared barcodes. Then we construct Local-contigs from the barcoded-reads and connect scaffolds with the optimal 
L-contig. d) “Global-Contig-Based (GCB) Scaffolding”: Identical to LCB Scaffolding, we align linked-reads to the ends of scaffolds and pair up scaffolds with shared barcodes. Global-
contigs are then mapped onto all scaffold pairs and connected with the most ideal G-contig.
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related to complex diseases and biological pathways that were obscured in the 
Supernova assembly. For CHM13, LOCLA successfully increased N50 from 39 
to 44 Mbp and increased the total genome size by 38 Mbp. We improved the 
resolution of 145 functional genes associated with pathological findings on the 
Supernova assembly and discovered 10 exclusive genes. We also observed that 
LOCLA performed well in the assembly of regions that are considered difficult 
to solve or involve repetitive sequences (i.e., higher resolution was achieved 
for 3,768 noncoding transcripts and 2,996 pseudogenes). For HG002, LOCLA 
successfully filled in a large number of gaps in the RagTag assemblies, with 
2,877,149 and 2,346,125 gaps filled respectively. Furthermore, LOCLA was able 
to retrieve a significant number of contigs that RagTag did not use, with 22.26% 
for the GUA assembly and 30.93% for the GMA assembly. This highlights the 
effectiveness of LOCLA's candidate contig detection algorithm on gap flanks. 
The GMA assembly contains more information than the GUA assembly due to 
its retention of multiple-aligned sequences, which allowed LOCLA to locate and 
recruit more candidate contigs for further gap filling.

LOCLA has also demonstrated its effectiveness in improving the quality 
of genome assembly by utilizing 10xG Linked-Reads in another example, the 
B. sexangula dataset. Pootakham W, et al. [13] performed the assembly of the 
B. sexangula genome, which contains 260,518,658 base pairs and 1,627,214 
gaps. LOCLA filled in 674,896 gaps, which is equivalent to 41.4% of the total 
gaps in the initial assembly. In addition, LOCLA enhanced the draft assembly 
by incorporating an additional 7,404,783 bases using 10xG Linked-Reads. As a 
result, the BUSCO score increased from 97.90% to 98.10%.

Results
In the following text, we demonstrate how LOCLA was used to improve the 

assembly quality of four genome samples. The first three are human samples, 
i.e., LLD0021C, CHM13 and HG002 data sets, respectively. The fourth is a non-
model organism, B. sexangula. 

LOCLA is an optimization tool that improves the quality of draft assembly by 
iteratively filling gaps and extending scaffolds. From the results, we prove that 
an increase in gene content leads to a clearer view of genetic information and 
enables further insight into functional genes, especially those related to diseases. 
We also demonstrated that LOCLA is flexible using either 10xG Linked-Reads or 
TGS sequencing reads.

LOCLA assembly of LLD0021C compared with supernova 
assembly 

The LLD0021C data set comprises the results of 10xG Linked-Reads and 
Bionano OM. A draft was generated by Supernova and was then input to the 
Bionano Hybrid Scaffold pipeline. The LOCLA submodules were run in order, i.e., 
GCB gap filling, LCB gap filling, LCB scaffolding and finally GCB scaffolding, to 
produce the final assembly. For LLD0021C (Table 1), LOCLA filled in 23,319,370 
new base pairs in the 9777 gaps that were present in the Supernova draft 
(Supplementary Table 5). Among these gaps, 5785 were completely filled, and 
3992 were partially filled. In our experiment, the mean length of the completely 
filled gaps was 113.73bp, and the mean length of the partially filled gaps was 
4,274.27 bp. In addition, the largest gap size for each type of gap was 59,608 and 

100 kbp, respectively, indicating that LOCLA is capable of mending large gaps. We 
also raised N50 from 45,208,438 bp to 59,229,662 bp, an increase of 14 Mbp. The 
maximum scaffold length was increased to approximately 130 Mbp, longer than 
12 pairs of human chromosomes and approximately the length of chromosome 
11 (135,186,938 bp). To demonstrate that LOCLA can achieve higher resolution 
than previous methods in functionally important genomic regions, we extracted 
sequences that were filled exclusively by LOCLA. The LOCLA-filled sequences 
were then annotated on the basis of GENCODE in GRCh38 coordinates [14]. 
We classified the LOCLA-filled sequences into four main GENCODE biotypes: 
coding sequences, noncoding transcripts, pseudogenes, and others (Table 2). 
We discovered that LOCLA retained sequences in more than 28,000 protein 
coding regions, indicating that these sequences with direct functional impact 
were missing in the Supernova assembly. Specifically, LOCLA significantly 
improved the genome content of genes located in pericentromeric and telomeric 
regions, including sequences in exons and transcripts (Table 3).

For noncoding transcription, 3552 additional sequences in lncRNA were 
identified in the LOCLA assembly. lncRNAs have long been regarded as key 
regulatory elements for gene expression. LOCLA could resolve three sequences 
encoding rRNA, which are the most difficult-to-solve regions in genome 
assembly problems. LOCLA also improved the genome content of approximately 
3000 pseudogenes. Pseudogenes are sequences generated through genome 
duplication and retrotransposition in the evolutionary process. Therefore, 
pseudogenes comprise duplicated and repeated sequences that are considered 
difficult to assemble. In general, LOCLA outperformed Supernova in multiple 
functional classes.

Evaluating LOCLA assembly of LLD0021C with respect to 
the standard human reference, GRCh38

For evaluation, we aligned the Supernova assembly of LLD0021C before 
and after performing LOCLA to the latest representative human genome, 
GRCh38.p13, using minimap2 [15]. We kept the mapped sequence alignments 
first, then applied two filter criteria on the alignments: Mapping Quality (MQ) 
equal to 60 and mapping identity (MI) over 70%. A score of 60 in MQ represents 
the accuracy of the alignment position, while a score of 70% in MI exhibits the 
high resemblance between sequences, for it is calculated by dividing the length 
of sequence matches by the sum of the lengths of the query and deletions. From 
the results shown in Table 5, we see that the number of scaffolds and percentage 
applying each filter criterion increased after performing LOCLA. At the same time 
we proved that among the 23 Mbp LOCLA added to the Supernova assembly, 
around 20 Mbp has high quality, i.e., MQ=60 and MI >=70%.

Only 8 out of the 2975 scaffolds in the LOCLA assembly were not mapped 
onto the reference; 155 out of 3171 scaffolds were not mapped in the Supernova 
assembly. Because LLD0021C is the genome sample of a Taiwanese person 
whereas GRCh38 originates from 11 other individuals (approximately 70% of 
GRCh38 is from just one man), we speculate that the lack of diversity in the 
reference may be the reason for these unmapped sequences. We believe that 
these unmapped scaffolds might lead to new findings. Thus, we employed 
AUGUSTUS [16] for gene prediction and subsequently used protein BLAST [17] 
to investigate whether the predicted sequences are conserved in organisms. 
Consequently, we identified 11 inferred genes in the sequences. Among these 
genes, two genes were homologs of the existing genes PTZ00395 and DUX4. 

Stages of the LLD0021C assembly Supernova 2.0 
(pseudohaploid)

Supernova 2.0 (pseudohaploid) + 
BioNano Solve Hybrid Scaffold DLE1

Supernova 2.0 (pseudohaploid) +BioNano Solve 
Hybrid Scaffold DLE1 +LOCLA

Number of Scaffolds 3,171 3,097 2,975
Average Scaffold Length (bp) 912,751 1,002,491 1,056,656
Minimum Scaffold Length (bp) 10,004 10,004 10,004
Maximum Scaffold Length (bp) 129,447,325 129,495,469 129,828,839

N50 (bp)/L50 45,208,438/20 59,131,973/19 59,229,662/18
N75 (bp)/L75 25,871,734/40 33,116,889/36 35,702,589/36
N90 (bp)/L90 8,536,495/67 15,174,849/57 16,533,218/54

Total bases in scaffolds (bp) 2,894,333,848 3,104,713,165 3,143,552,207
Number of N (bp) 45,171,720 271,070,709 252,044,861

N % 1.56% 8.73% 8.02%
Increased bases without N compared to Supernova 2.0 

pseudohaploid (bp) 0 -15,519,672 23,319,370

Total bases without N (bp) 2,849,162,128 2,833,642,456 2,891,507,346

Table 1. Assembly statistics show notable increase especially in N50 and total base length on sample LLD0021C after LOCLA.
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Specifically, DUX4 is located within a repeat array in the sub-telomeric region of 
chromosome 4q; a similar repeat array is present on chromosome 10.

LOCLA outshines supernova in masked regions (N in 
reference genome) and repeat regions of the GRCh38 
reference

Genomic regions marked with a gap of “N” still exist in the GRCh38 human 
reference genome, especially in homologous centromeres and genomic repeat 
arrays. These regions with repeated sequence are notorious for their poor 
resolution in alignment-based short-read de novo assembly techniques. For the 
human sample LLD0021C, LOCLA was able to extend the scaffolds to fill genomic 
contents in gap regions, accounting for 462,705 bp in 12,046 gap regions, and 
was discovered to perform significantly better than Supernova did. Assembling 
contigs and scaffolds in highly repeating regions has been prone to error in de 
novo genome assembly. However, repeat elements comprise a considerable 

percentage (approximately 45%) of the Homo sapiens genome. Therefore, we 
assessed the performance of LOCLA with the human sample LLD0021C in these 
repeat regions. We used RepeatMasker [18], which is based on Repbase, to 
identify repeat regions. Compared with the Supernova assembly, the LOCLA 
assembly contained 11,031,487 additional bases masked and identified as 
repeat elements; 1,138,402 and 5626 bp were classified into the short and long 
interspersed nuclear element categories, respectively (Supplementary Table 6). 
Surprisingly, 218 repeat patterns were identified in the LOCLA assembly but not 
in Supernova.

LOCLA on the CHM13 cell line

Unlike LLD0021C, the CHM13 data set comprises only 10xG Linked-Reads; 
the Bionano Hybrid Scaffold pipeline [8] is not included. The LOCLA assembly 
contained 46,287,195 more base pairs than were present in the initial Supernova 
haplotype and reduced the number of gaps from 35,124,040 to 25,648,758 
(Tables 4 and 5). Moreover, the maximal scaffold length and N50 had increased 

Table 2. LOCLA-filled content in the Supernova assembly categorized by GENCODE biotype (sample: LLD0021C). 

Biotype Counts of Filled Genomic Regions

Coding Sequence
Protein coding 28,746

Immunoglobin and T cell receptor 115

Coding Sequence Total 28,861

Non-coding Transcript

Long non-coding RNA (lncRNA) 3,552
Non-coding RNA (ncRNA) 206

tRNA 7
rRNA 3

Non-coding Transcript Total 3,768

Pseudogene

Unprocessed pseudogene 2,328
Processed pseudogene 504

Unitary pseudogene 78
rRNA pseudogene 9
Other pseudogene 77

Pseudogene Total 2,996

Others To be Experimentally Confirmed (TEC) 44

Table 3. LOCLA significantly improves genome contents in protein coding genes located in pericentromeric, telomeric regions, and difficult-to-solve regions (sample: LLD0021C).

Gene Name Filled Gene Length (bp) Filled Transcript Count Filled Exon Count Genomic Position
TPTE2P6 76,390 9 3 Chr13  pericentromeric

PARP4 63,621 12 34 Chr13 pericentromeric
MAD1L1 62,662 45 13 Chr7 telomeric

PLD5 58,127 37 10 Chr1 telomeric
PKD1 38,435 32 46 Chr16 telomeric

PDPK1 38,232 26 14 Chr16 telomeric
TRIM16 36,321 19 12 Chr17 pericentromeric
DDX11 30,947 60 27 Chr12 pericentromeric

RASA4B 35,309 10 21 Chr7 Overlap POLR2J3
POLR2J3 25,522 24 7 Chr7 Overlap RASA4B

Table 4. LOCLA effectively expands total genome size and reduces gaps on CHM13 assembly.

Stages of the CHM13 Assembly Supernova 2.1 (pseudohaploid) Supernova 2.1 (pseudohaploid) + LOCLA
Number of Scaffolds 4,999 4,809

Average Scaffold Length (bp) 583,041 613,731
Minimum Scaffold Length (bp) 10,000 10,000
Maximum Scaffold Length (bp) 91,225,906 102,752,858

N50 (bp)/L50 39,045,223/25 44,037,625/23
N75 (bp)/L75 18,387,696/51 19,878,974/48
N90 (bp)/L90 1,578,658/108 1,799,962/101

Total bases in scaffolds (bp) 2,914,622,463 2,951,434,376
Number of N (bp) 35,124,040 25,648,758

N % 1.21% 0.87%
Increased bases without N compared to Supernova 2.1 pseudohaploid (bp) 0 46,287,195

Total bases without N (bp) 2,879,498,423 2,925,785,618
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by 11.5 and 5 Mbp, respectively. Upon further examination, we filled in 18,636 
of the 23,349 gaps; 10,768 were completely filled and 7868 were partially filled 
(Supplementary Table 7). Similar to the results for LLD0021C, the lengths of 
the completely filled gaps were mostly <1 kbp; however, the largest completely 
filled gap was of approximately 100 kbp. In summary, even without Bionano OM, 
LOCLA could still produce useful results and enhance the assembly quality.

Evaluating LOCLA assembly of CHM13 on the complete 
human reference genome

To perform an evaluation, we aligned both the Supernova and LOCLA 
assemblies with the reference genome CHM13v1.1 [12] by using minimap2 [15]. 
It is the complete sequence of a human genome constructed by the Telomere-
to-Telomere (T2T) Consortium; the genome is available from the National 
Center for Biotechnology Information (NCBI) as GenBank assembly accession: 
GCA009914755.3. We applied the same criteria used on LLD0021C to filter 
alignments. The results presented in Table 6 reveal that the 118 unmapped 
scaffolds of the Supernova assembly were mapped onto the reference genome 
after we performed LOCLA, this manifests LOCLA’s capability to correct 
sequences. It is also evident that the number of scaffolds and covered bases of 
the assembly all increased with the aid of LOCLA.

The LOCLA results were evaluated with the aforementioned pipeline of 
annotations and identification of repeat elements. Again, LOCLA had higher 
performance in all functional classes and repeat elements than did Supernova; 
LOCLA achieved 9.1% higher genomic content than Supernova in CHM13. 
Notably, LOCLA achieved a 37.73% increase in exon regions in CHM13 and 
6.69% increase in ncRNA regions. The CHM13 genome is an effectively haploid 
genome and has a relatively high proportion of disease-related mutations. We 
discovered that the LOCLA assembly was a considerable improvement over the 
Supernova assembly for CHM13.

LOCLA’s contribution in functional analysis of LLD0021C 
and CHM13

The LOCLA assembly can significantly improve the quality of functional 
analysis of an individual human genome and thus provide insights regarding 

health care. Filling gaps increases gene content related to complex diseases 
or involved in important biological pathways, including functions such as DNA 
repair, DNA replication, cell cycle checkpoints, cell signaling transduction, and 
telomere regulation. These genes are related to cell over-proliferation and 
tumor development, and they may enable an explicit interpretation of disease 
mechanisms. LOCLA was discovered to increase the content for each of these 
genes by hundreds to thousands of base pairs for both LLD0021C and CHM13.

For LLD0021C, LOCLA improved the resolution of 136 genes that were 
unclear on the Supernova assembly. Regarding DDX11, LOCLA filled an 
additional 31 kbp compared with the Supernova assembly. DDX11 is involved 
in DNA replication [19], DNA repair [20], heterochromatin organization [21], and 
cell cycle regulation and interacts with genes related to meiosis and cell cycle 
checkpoints [22], including STAG1 [23], STAG2 [24], SMC1A [25], CHTF18 [26], 
and DDX11-AS1 [27] (Supplementary Table 15). These genes have been reported 
to be direct disease-causing factors for several cancers, including breast, 
colorectal, prostate, and gastric cancers. The LOCLA assembly process also 
enabled us to distinguish the reads of their paralogs. Compared with Supernova, 
LOCLA increased the gene content in RTEL1, one of DDX11’s paralogs. RTEL1 
is functionally important in telomere regulation during tumor development and is 
located in the telomere region of chromosome 16. Chromosome telomeres are 
difficult to analyze not only by using alignment-based methods but also when 
using de novo genome assemblers [28,29]. We inferred that because reads of 
DDX11 and its paralogs are largely identical in short genomic ranges, LOCLA 
may have assembled them accurately. Moreover, in the analysis based on the 
GRCh38 human reference genome, LOCLA identified more than 0.4 Mbp of 
novel sequences in gap regions and found an additional 11,031,487 bp of repeat 
sequences in 1168 repeat patterns identified with the Repbase database [30]. 
Specifically, 218 repeat patterns were not identified with Supernova.

For CHM13, LOCLA increased the content of 155 genes; 145 of these were 
present in the Supernova assembly, but 10 were exclusively present in the LOCLA 
assembly (Supplementary Table 16). These genes are related to not only complex 
diseases but also the fundamental mechanisms of the human body. For example, 
the ARHGAP11A gene encodes a member of the Rho GTPase-activating protein 
family, which causes cell cycle arrest and apoptosis. Studies have demonstrated 

Table 6. Evaluation of CHM13 on the reference genome CHM13v1.1   

Sample: CHM13
Supernova Supernova & LOCLA

Total # of scaffolds = 4,999 Total # of scaffolds = 4,809
Filter criterion # of scaffolds % # of scaffolds %

Mapped 4,881 97.64% 4,809 100.00%
Mapped & MI >=70% 4,792 95.86% 4,773 99.25%

Mapped & MQ=60 4,647 92.96% 4,647 96.63%
Mapped & MQ=60 & MI >= 70% 4,127 82.56% 4,394 91.37%

CHM13 genome size = 3,054,815,472
Filter criterion # of covered bases # of covered bases

Mapped 2,760,410,686 2,772,645,222
Mapped & MQ=60 2,752,639,235 2,764,284,192

Mapped & MI >=70% 2,499,701,092 2,503,596,073
Mapped & MQ=60 & MI >= 70% 2,492,069,585 2,496,327,998

Table 5. Evaluation of LLD0021C on the reference genome GRCh38.   

Sample: LLD0021C
Supernova Supernova & LOCLA

Total # of Scaffolds = 3,171 Total # of Scaffolds = 2,975
Filter criterion # of scaffolds % # of scaffolds %

Mapped 3,016 95.11% 2,967 99.73%
Mapped & MI >=70% 2,935 92.56% 2,818 94.72%

Mapped & MQ=60 2,651 83.60% 2,496 83.90%

Mapped & MQ=60 & MI >= 70% 1,828 57.65% 1,945 65.38%

GRCh38 genome size = 3,088,269,832
Filter criterion # of covered bases # of covered bases

Mapped 2,766,116,964 2,777,111,205
Mapped & MQ=60 2,758,921,006 2,770,480,690

Mapped & MI >=70% 2,581,041,585 2,601,238,371
Mapped & MQ=60 & MI >= 70% 2,574,397,173 2,595,100,934
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that the disruption of apoptosis may increase cancer invasiveness during tumor 
progression, stimulate angiogenesis, deregulate cell proliferation, and interfere 
with differentiation [31]. ARHGAP11A is highly expressed in colon cancers and 
a human basal-like breast cancer cell line. The gene is also known to be directly 
linked to Chromosome 15Q13.3 Deletion Syndrome and Prader–Willi syndrome; 
an intronic variant of this gene may be associated with sleep duration in children.

LOCLA outperforms other gap-filling methods

Among the plethora of existing gap-filling methods, we demonstrate that 
LOCLA can mend larger sequence gaps than some well-known gap-filling tools 
using paired-end reads. One experiment comparing the gap closure results of 
GapFiller [32] and SOAP denovo [33] (Supplementary Table 8) revealed that 
the average gap lengths closed by the two methods are 264.87 and 148.39 bp, 
respectively, on GRCh37 chromosome 14. By comparison, the average gap length 
closed by GABOLA was found to be 1,812.52 bp on LLD0021C (Supplementary 
Table 5) and 2162.67 bp on CHM13 (Supplementary Table 7). The percentage 
of the total gap length closed by LOCLA on CHM13 was 84.37%, which exceeds 
those of both GapFiller and SOAP denovo by a large margin.

LOCLA improves the HG002 assembly based on PacBio 
HiFi reads

We showed that LOCLA delivers great results even without using 10xG 
Linked-Reads. We chose the HG002 dataset on account of the abundant data 
made publicly available by The Genome in a Bottle Consortium (GIAB) [34]. 
First, we generate a draft assembly via Canu [35] using the entire PacBio HiFi 
dataset (255 Gbp with 85.1 × coverage) released by the Human Pangenome 
Reference Consortium (HPRC) [36] and we obtained a draft assembly containing 
1,602 scaffolds (Supplementary Table 17). Afterwards, we performed RagTag on 
the Canu assemblies with CHM13 v1.1 as reference first. Due to the fact that 
the default settings of RagTag discards contigs that have multiple alignments 
on the reference genome, we adopted two approaches for this step. The first is 

done by following the default settings (minimum mapping quality threshold=10) 
of RagTag, while the second is done by eliminating the minimum mapping quality 
threshold so that multiple-aligned sequences could be recruited. This process 
yields two RagTag assemblies which we termed the “Globally-Unique-Aligned 
(GUA)” assembly and the “Globally-Multiple-Aligned (GMA)” assembly. We then 
filled gaps via LOCLA on both assemblies with the contigs that weren’t utilized 
by RagTag for scaffold construction. From Table 7, we see that LOCLA filled in 
2,877,149 gaps of the GUA assembly and 2,346,125 gaps of the GMA assembly. 
During the gap filling process, LOCLA retrieved 22.26% of the contigs unused by 
RagTag for the GUA assembly, while retrieving even more for the GMA assembly 
(30.93%) as shown in Table 8. This outcome indicates that the candidate contig 
detection algorithm on gap flanks is the main advantage of LOCLA. By retaining 
multiple-aligned sequences, the GMA assembly holds more data compared to the 
GUA assembly. This enables LOCLA to identify and locate candidate contigs for 
additional gap filling. 

Evaluating LOCLA assembly of HG002 on the HPRC 
reference genome

For validation, we compared the GUA and GMA assemblies before and after 
undergoing LOCLA with the maternal haploid assembly published by HPRC. As 
shown in (Supplementary Figure 6), all assemblies have over 91 percent of the 
genome aligned perfectly to the reference genome, while the percentages of GMA 
assemblies exceeds the GUA assemblies by a margin. (Supplementary Figure 7) 
illustrates that LOCLA increased the percentage of highly-matched alignments 
(over 75% of the alignment is matched to the reference) from 93.52% in the 
RagTag GUA assembly to 96.12% on the GMA LOCLA-optimized assembly. To 
verify that the sequence LOCLA had filled in are accurate, we performed local 
alignment on all filled-in sequences, which we will term “patch” in the following 
text. Figure 2a shows that among the 129 patches, 123 of them are highly similar 
(mapping identity over 80%) to the reference genome. We selected chromosome 
1 as an example for a closer look. In Figure 2b, we see that there are two patches 

Table 7. Status of the HG002 GUA and GMA assemblies after each stage of process.

Assembly Name GUA GMA

Process RagTag RagTag & LOCLA RagTag RagTag & LOCLA
Number of Scaffolds 23 23 23 23

Minimum Scaffold Length 39,760,224 39,760,339 41,606,408 42,815,186
Maximum Scaffold Length 257,977,679 259,715,312 266,182,842 267,323,777

N50 (bp) 155,468,333 157,514,529 141,664,663 146,222,511
L50 8 8 8 8

N75 (bp) 109,686,031 110,063,149 114,977,456 118,349,064
L75 14 14 14 14

N99 (bp) 39,760,224 39,760,339 41,606,408 42,815,186
L99 23 23 23 23

Total size (bp) 3,112,823,811 3,123,350,734 3,163,409,713 3,186,199,263
Number of N (bp) 14,780,415 11,903,266 27,480,021 25,133,896
Percentage of N 0.47% 0.38% 0.86% 0.78%

Total size without N (bp) 3,098,043,396 3,111,447,468 3,135,929,692 3,161,065,367

Table 8. Remaining contigs after the process of RagTag and LOCLA (sample: HG002). 

Assembly Name GUA GMA

Process RagTag RagTag & LOCLA RagTag RagTag & LOCLA
Number of Contigs 1,129 1,020 1,015 894

Minimum Contig Length 11,123 11,123 11,123 11,123
Maximum Contig Length 4,305,119 4,305,119 4,305,119 3,800,585

N50 (bp) 1,025,760 975,686 1,023,263 458,034
L50 40 34 30 31

N75 (bp) 201,809 164,856 138,160 77,169
L75 125 118 117 136

N99 (bp) 14,135 13,971 13,898 13,579
L99 1,014 925 927 832

Number of decreased bases 0 27,964,477 0 35,784,312
Percentage of decreased bases 0.00% 22.26% 0.00% 30.93%

Total size (bp) 153,591,966 125,627,489 115,705,670 79,921,358
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Figure 2. Evaluating the accuracy of HG002 assembly based on local alignments of patch sequences on the HG002 reference. a) The distribution of local alignment Mapping Identity 
and patch lengths. b) The dotplot on the left shows the alignment between scaffold 1 of the gap-filled GMA assembly and chromosome 1 of the HPRC maternal haploid assembly. The 
illustration on the right represents the location of the two patches on chromosome one. c) BLAST results of the first patch with a high global MI (91%) on chr1. d) BLAST results of 
the second patch with a low global MI (22%) on chr1.
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on chromosome 1. The first one is 5901 base pairs long and located within a 
global alignment with a high mapping identity score (91%). The other is located 
near the centromere region of chromosome 1 and is within an alignment with 
a lower score (22%). Figure 3c and 3d are the local alignment results of these 
two patches using BLAST. We see that the first patch is perfectly aligned to its 
reference sequence. While the second one has repeatedly aligned to the target 
sequence, their identities are all above 76%. This outcome indicates that even 
in genomic regions containing numerous repeats, LOCLA could still fill in high 
quality sequences. In Figure 2a, we also noticed that 13 patches are longer 
than 100kbp and are interested in the accuracy of these patches. Therefore, we 
zoomed in on these patches (Figure 3a). All 13 patches have a mapping identity 
over 79% while 6 of them are over 90%. These findings exhibit the stability in the 
performance of LOCLA without 10xG Linked-Reads.

Optimization of B. Sexangula genome assembly by 
LOCLA

The B. sexangula genome assembly by Pootakham W, et al. [13] has the 
size of 260,518,658 base pairs containing 1,627,214 gaps. LOCLA filled in 
674,896 gaps (41.4% of the number of gaps in the initial assembly) and increased 
7,404,783 additional bases to the draft assembly using the 10xG Linked-Reads 
(Table 9). The BUSCO score was also raised from 97.90% to 98.10%. 

Computational costs and hardware configuration of 
LOCLA

Our experiments were mostly performed on servers with a 96-core or a 160-
core CPU. The detailed hardware configuration and software information are 
presented in (Supplementary Table 10). During the experiment on LLD0021C, 
we analyzed the runtime of each LOCLA module on the 96-core server 
(Supplementary Table 11). Both LCB gap filling and LCB scaffolding require 
significantly more computing time than GCB gap filling or GCB scaffolding do. A 
closer inspection revealed that the most time-consuming process for both LCB 
modules was the contig assembly (Supplementary Table 12 and Supplementary 
Figure 9). We speculated that our barcode selection strategy could be responsible 
for this result; although poorly aligned barcodes were filtered through gap flanks, 
numerous reads belonging to the chosen barcodes were still recruited. Thus, the 
massive number of input reads increased with the total runtime of the SPAdes 
assembler. To overcome this problem, assembling tasks were run in parallel 
instead of sequentially. This strategy was tested with eight Microsoft Azure 
virtual machines (VMs; each with 72 vCPUs and 144 GB of RAM); 14 gaps were 
assembled simultaneously on each VM. This technique successfully reduced 
the total runtime to approximately 15.5 hours, improving the time efficiency 
substantially (Supplementary Table 13). For CHM13, all processes were run on 

Figure 3. A closer examination on the patch sequences longer than 100 kbp. a) The distribution of local alignment Mapping Identity and patch lengths of patches longer than 100 kbp. 
b) Dotplots of local alignments of three patches with Local Mapping Identity over 92%. 
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a 160-core CPU server. (Supplementary Table 14) reveals that using more CPU 
cores and increasing the task parallelism considerably reduces the runtime.

Discussion
We propose a de novo genome assembly optimization tool that combines 

the advantages of state-of-the-art sequencing platforms to improve quality by 
enhancing genomic content. For the human samples LLD0021C and CHM13, 
LOCLA successfully increased the total genome size of both assemblies. The 

additional content improved the resolution of functionally important regions 
and duplicated sequences; abundant LOCLA-filled sequences were identified 
in protein coding regions, lncRNA, and pseudogenes. Furthermore, LOCLA 
identified additional repeat sequences in an analysis based on the GRCh38 
human reference genome.

Despite our efforts, unresolved intra-scaffold gaps remained in the LOCLA 
assemblies. Some of these were too large to be crossed with a single contig, 
resulting in the partial filling of these regions. During LCB and GCB gap filling, 
only the contig with the highest alignment score was used to fill the gap to 
avoid excessive computational costs. Thus, the gap-filling processes could be 

Table 9. LOCLA improves the B. Sexangula genome assembly through LOCLA.

Steps 10xG & RagTag Scaffolding 10xG & RagTag Scaffolding & LOCLA
Number of Scaffolds 20,644 20,644

Average Scaffold Length (bp) 12,620 12,946
Minimum Scaffold Length (bp) 300 300
Maximum Scaffold Length (bp) 17,482,559 17,854,050

N50 (bp)/L50 11,020,310/10 11,501,059/10
N75 (bp)/L75 7,984,485/17 8,321,598/17

Total bases in scaffolds (bp) 260,518,658 267,248,545
Number of N (bp) 1,627,214 952,318

Reduced number of N (bp) 0 -674,896
N % 0.62% 0.36%

Increased bases without N in scaffolds (bp) 0 7,404,783
BUSCO score (v5.2.1 embryophyta_odb10) 97.90% 98.10%

Total bases without N in scaffolds (bp) 258,891,444 266,296,227

Figure 4. Workflow of experiments on the three human individuals. a) The entire pipeline of LLD0021C. Initially, we generated a pseudo haploid assembly with the Supernova 
assembler (v2.0). Bionano Optical Mapping (OM) only takes scaffolds over 100kbp as input, thus, we fill in gaps on a subset of scaffolds longer than the L99 length. Afterwards, we 
obtained a hybrid assembly and a subset of unused scaffolds: those that were in conflict with the Bionano OM cmap or shorter than 100kbp. Next, we conducted GCB Gap Filling on 
the hybrid assembly with the unused scaffolds. Subsequently, we merged the filled hybrid assembly and unused scaffolds into one. Next, LCB Gap Filling and LCB Scaffolding were 
then performed on our assembly. Finally, we conducted GCB Gap Filling to reach our final assembly. b) The pipeline of CHM13. We first produced a pseudo haploid assembly using 
the Supernova assembler v2.1. Then, we performed LOCLA modules in the order of GCB Gap Filling, LCB Gap Filling, LCB Scaffolding and GCB Scaffolding. Besides Supernova, we 
didn’t adopt any other existing assembling tools for the purpose of validating the performance of LOCLA. c) The pipeline of HG002. Initially, we utilized Canu to compile the PacBio 
HiFi reads. After that, we utilized a reference-guided scaffolding tool called RagTag to align the Canu-assembled contigs with CHM13v1.112 as the reference. Finally, we used LOCLA 
to fill in any gaps, using the PacBio HiFi reads that were not included in the Canu assembly.
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iterated to further shorten the partially filled gaps and maximally exploit the 
local and global contigs. We also considered aligning both the Linked-Reads 
and draft assembly with the reference genome to position the barcodes more 
precisely (e.g., by eliminating barcodes whose reads are scattered on different 
chromosomes).

Moreover, functional annotation on structural variants remains vital. The 
linear structure of the reference genome is unable to represent the diversity of 
human populations [37]. The structure of the graph genome has been developed 
and continues to improve. By using the graph genome [38-41], novel variants 
identified in LOCLA assemblies can be included in the genome presentation at 
the family or population scale. This genomic data can be further mapped to a 
graph reference genome and then be subjected to variant analysis with up-to-
date variant callers, such as GATK [42] and DeepVariant [43].

This procedure provides precision and personalized investigations into 
not only common variants but also difficult-to-detect variants. In our analysis, 
pervasive repetitive elements spanning approximately 45% of the genome 
were identified; their functional importance remains unclear. Among these, 
218 repeat patterns were identified by our assembly exclusively; most of these 
were simple tandem repeats. Several disorders, such as neuron degenerative 
diseases, are known to be strongly linked to the repetitive structure of particular 
genomic segments [44,45]. Moreover, repetitive elements have been exploited 
and developed into genetic markers [46-48]. On the population level, patterns of 
repeat sequences could be a useful link for tracing demographic changes [49,50]. 
These patterns can be used as markers or even be causal variants for disease 
discovery and ancestry tracing.

In spite of the discontinuation of 10xG Chromium Genome and Exome 
product lines, LOCLA doesn’t lose its value. There are still a myriad of genomes 
assembled primarily using 10xG Linked-Reads on international databases such 
as NCBI. LOCLA could help optimize these assemblies.   

Methods and Materials
In the following, we introduce the methods and materials used in the 

experiments. The datasets employed were the LLD0021C, CHM13, HG002 and 
B. Sexangula. The methods included Supernova assembly, Canu assembly, 
Bionano Hybrid Scaffold, RagTag Scaffolding, LOCLA algorithms, and functional 
analysis. We also summarize our evaluation of the LOCLA assemblies on all 
samples.

LLD0021C, CHM13 and HG002 data sets

LLD0021C data set: The LLD0021C data set comprises two subsets: Linked-
reads available in NCBI SRA SRX7889242 and Bionano optical consensus maps 
for a sample from a Taiwanese human provided by Kwok PY, et al. [11] of the 
Institute of Biomedical Sciences, Academia Sinica. The 10xG Linked-Reads were 
sequenced on the Illumina NovaSeq 6000 instrument and yielded approximately 
60 × coverage of 151 bp × 151 bp paired reads (i.e., PE sequences with a length 
of 151 bp and sequencing depth of 60), with the total size being 191.9 Gbp. The 
Bionano single-molecule maps were de novo assembled into consensus genomic 
maps following the Bionano Solve Single-Enzyme Hybrid Scaffold Pipeline [8] 
using DLE-specific parameters.

CHM13 data set: The 10xG Linked-Reads and PacBio HiFi reads of the 
human sample CHM13htert cell line were obtained from the GitHub website of 
the T2T Consortium [12] in the format of raw FASTQ files. A NovaSeq instrument 
was used to generate 41x 150 bp × 150 bp paired 10xG reads with a total size 
of approximately 180 Gbp. For PacBio HiFi reads, 100 Gbp of data (32.4× 
coverage) in 20 kbp libraries (NCBI SRA Accession: SRX7897685-SRX7897688) 
and 76 Gbp of data (24.4 × coverage) in 10 kbp libraries (NCBI SRA Accession: 
SRX5633451) were generated from PACBIO_SMRT (Sequel II) instruments.

HG002 data set: The PacBio HiFi reads of HG002 were obtained from 
the GitHub website of the Human Pangenome Reference Consortium (HPRC) 
[36]. SMRTbell libraries were prepared and size-selected with SageELF to the 
targeted length (15 kb, 19 kb, 20 kb, or 25 kb). The total size of the dataset is 
approximately 255 Gbp with 85.1 × coverage.

Supernova assembly and bionano hybrid scaffolds

Supernova assemblies of LLD0021C and CHM13: The Supernova 
assembler first demultiplexes molecules and then adopts a de Bruijn graph 

strategy to produce an initial genome graph [51]. Supernova also uses read 
pairs to cross short gaps and uses molecules in the 10x partitions to bridge gaps 
between two scaffolds. We used Supernova v2.0 [10] to produce a draft assembly 
of LLD0021C containing 3171 scaffolds and Supernova v2.1 to produce a draft 
assembly of CHM13 containing 4999 scaffolds. Both drafts were generated in the 
form of pseudo haploids. The commands used to run this process are provided 
in the Supplementary Notes.

Merging bionano consensus maps and the supernova 
assembly of lld0021c into hybrid scaffolds

The Bionano Solve Single-Enzyme Hybrid Scaffold Pipeline, named the 
Bionano Pipeline for short, suggests that input scaffolds should be at least 
100 kbp in length to produce high-quality hybrid scaffolds. Thus, a subset of 
the Supernova draft assembly (258 scaffolds were longer than 100 kbp) and 
the Bionano consensus map assembly were merged. A total of 68 scaffolds 
containing conflicting junctions were removed during this process. Conflicting 
junctions are loci at which the labels, marked by the Bionano enzyme DLE-1, 
in the two input assemblies are inconsistent. Consequently, 116 hybrid scaffolds 
were used. The commands used to run this process are also provided in the 
Supplementary Notes.

Preprocessing of 10xG Linked-Reads by LOCLA

LOCLA comprises one preprocessing module and four main modules. 
The first step of LOCLA is processing of the raw reads generated by the 10x 
Genomics Chromium system. The preprocessing module comprises two parts:

Classifying and purifying FASTQs: First, Linked-Reads are classified by 
their barcode. Barcode information is extracted from each read and appended to 
the read name in the FASTQ files by using Longranger [52]. These FASTQ files 
are then split into Read 1 and Read 2 (R1 and R2). Redundant bases attached 
to the 10xG reads are removed. Specifically, a 16 bp 10xbarcode, 6 bp random 
primer, and 1 bp of low-accuracy sequences are trimmed from an N-mer oligo 
in the R1 reads, and Illumina adapter contaminants are cut from each read 
pair by using Trim Galore. Because polymerase chain reaction amplifies DNA 
fragments during Illumina sequencing, read pair duplication is inevitable [53]. 
Although duplicated read pairs are known to commonly induce false positive 
calls in variant calling, the results of our pilot study revealed that they could also 
affect barcode selection and further negatively influence the method’s gap-filling 
performance (Supplementary Note 2). Therefore, the removal of duplicated read 
pairs is critical during data preprocessing to ensure that every read pair is unique. 
The output of the preprocessing module is a list of barcodes, each containing 
redundancy-trimmed and non duplicated read pairs.

Aligning and filtering the read pairs: The read pairs are then mapped 
to the genome scaffold set using BWA in the end-to-end mode BWA mem [54]. 
Secondary, duplicated, supplementary, and chimeric alignments are filtered out 
using sambamba to maintain the properly aligned read pairs [55]. Later, reads 
with mapping identity>0.7 and mapping quality=60 are retained. Mapping Quality 
Scores quantify the probability that a read is misplaced and are usually reported 
on a Phred scale67. Therefore, a Phred Score of 60 in MQ would be equivalent 
to an accuracy of 99.9999% in the alignment. MI is calculated by dividing the 
length of sequence matches by the sum of the lengths of sequence matches, 
mismatches, insertions, and deletions. It demonstrates the closeness between 
two sequences. This filtering step ensures that the remaining read pairs are 
aligned with high quality, which contains convincing mapping information for 
subsequent work. Barcodes are then selected from this high-quality read set for 
use in the four main modules of LOCLA.

LOCLA algorithms

The four main modules are LCB gap filling, GCB gap filling, LCB scaffolding, 
and GCB scaffolding. The basic concept of each method is presented in Figure 2.

LCB gap filling

Barcode selection: Selection of barcodes plays a crucial role in LCB gap 
filling. Among the three partition strategies (Supplementary Note 3), our pilot 
study revealed that the most effective and efficient method of assembling contigs 
is by selecting barcodes on the basis of each gap. First, barcodes in the high-
quality read set with a sufficient number (default of three) of read pairs aligned to 
each scaffold are gathered. Then, barcodes with a sufficient number of read pairs 
(default of two) mapped within the gap flanks are collected. The flank size varies 
depending on the gap length as shown in the following equation:
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min( 5000,20000)
5000

gapsizeflanksize  = ×  
De novo assembling of contigs: After a barcode has been selected into the 

barcode list, all reads of the barcode are used to fill gaps regardless of whether 
the reads are in a high-quality mapped set. We use SPAdes assembler [56] to 
construct contigs. SPAdes is a genome assembly algorithm based on graph-
theoretical operations on k-mer patterns for constructing multisized de Bruijn 
graphs. We denote these contigs as local contigs or “L-contigs” for short.

Filling gaps in scaffolds: The gap-filling algorithm comprises three steps. 
In the first step, the expanded mapping segments of an L-contig are identified. 
In the second step, each gap on a scaffold is marked as fully covered, partially 
covered, or unfillable simply by looking at its distance with respect to the 
expanded mapping segments of the L-contigs. The fully covered and partially 
covered gaps are then further examined using the alignment information to 
decide whether they can be filled by the corresponding expanded mapping 
segments. L-contigs with length>1 kbp and at least 2 × coverage are aligned to 
the target scaffold under processing by using BWA-mem. The alignment of an 
L-contig to its target scaffold usually requires more than one aligned segment. 
The longest putative continuing mapping range is denoted the expanded 
mapping segment; the remaining segments of an L-contig are trimmed on the 
basis of the alignment result. Beginning from the longest aligned segment with 
the highest alignment score, the two ends of this segment are checked and 
neighboring segments are iteratively merged if they are both in the right order and 
at a small distance. Segments far away from the main longest aligned segment 
are processed independently. Thus, a mapping range of the L-contig is defined; 
this is denoted the contig’s expanded mapping segment. For each L-contig, each 
gap on the target scaffold is then classified in accordance with the gap’s location 
with respect to the L-contig’s expanded mapping segment. If a gap is located 
within the segment, it is marked as fully covered. If one end of a gap is located 
outside the segment but within a small distance (default 50 bp), the gap is marked 
as partially covered. Gaps that are not covered by any contig are marked as 
unfillable. Some gaps can be marked as both fully covered and partially covered 
by different L-contig’s expanded mapping segments. These gaps are marked as 
fully covered. To fully fill a gap with an expanded mapping segment, the mapping 
identity must be greater than 80 on both flanks of the gap. For partially covered 
gaps, the gap is filled on each flank by using the expanded mapping segment with 
the highest score among those segments with more than 300 matched base pairs 
and mapping identity>90. Note that a gap with both flanks comprising duplicated 
sequences is not considered a candidate for gap filling.

GCB gap filling

This module is an alternative for LCB gap filling. Instead of being filled with 
de novo assembling contigs, gaps are filled with global contigs (G-contigs), which 
serve the sole purpose of filling gaps in earlier assemblies. G-contigs are foreign 
TGS long reads or foreign scaffolds produced by the sequence assembler. 
Initially, gaps of foreign long reads or scaffolds that are longer than a specific 
length (default 20 bp) are detected, and the G-contigs are then broken into 
smaller fragments. These G-contig fragments are then aligned with the entire 
assembly by using minimap2 and used to fill gaps with the same algorithm as 
for LCB gap filling.

LCB scaffolding

Defining candidate scaffold pairs from the barcode distribution on 
scaffolds: On the basis of the filtered read-to-scaffold alignment obtained in the 
preprocessing module, the algorithm tallies and records all barcodes of the reads 
that were mapped onto the head and tail of each scaffold (default of 20 kbp). For 
each scaffold end, the two scaffold ends of other scaffolds that share the largest 
number of barcodes with it are kept. This list of scaffold end pairs is denoted the 
list of candidate scaffold pairs (CSPs).

De novo assembly of L-contigs: All reads with the same barcodes are 
used to construct contigs for each CSP by using the SPAdes assembler.

Concatenating scaffolds with high-quality contigs: L-contigs are aligned 
to the CSP with BWA-mem, and those L-contigs with mapped length>1000 bp 
and mapping identity>0.7 within 20 kbp of both CSP ends are kept. Finally, each 
CSP is connected with the L-contig with the highest mapping identity.

GCB scaffolding: The algorithm is fundamentally the same as that for LCB 
scaffolding but with a few alterations. First, instead of L-contigs, G-contigs are 

used as the input. Second, the alignment tool is minimap2 rather than BWA-mem.

Functional analysis of LOCLA

Useful genes as well as repeated elements were discovered in the additional 
genomic content identified by LOCLA.

Gene annotation: Genome assemblies were aligned to GRCh38 and 
CHM13 reference genomes to compare their genomic content and the sizes 
of gap regions. We employed minimap2 to perform alignment and identify the 
increased genome content with direct comparisons based on the two reference 
coordinates. The increased genome content was then annotated on the basis of 
GENCODE v29 [14].

Repeat element identification: To evaluate the performance of different 
assembly pipelines in the repeat regions, RepeatMasker was applied to identify 
the repeat elements and their corresponding repeat patterns. RepeatMasker was 
run with the species human option in settings. The outputs of RepeatMasker were 
further processed using the Perl script onecodetofindthemall.pl to categorize 
the repeat elements into several repeat patterns and generate copy number 
estimates [57].

Gene prediction for unmapped scaffolds: To investigate whether the 
unmapped scaffolds actually existed in the genome, we applied AUGUSTUS [16] 
for gene predictions. We assumed that if inferred genes were located in these 
scaffolds, these scaffolds may exist in the genome. Augustus was run with the 
--species=human --UTR=on settings. To further validate these inferred genes, 
we performed protein BLAST [17] to determine whether the predicted sequences 
were conserved in organisms.

Summary of the LOCLA assembly of the three human datasets: The 
entire workflow for LLD0021C is presented in (Figure 3a). The initial draft 
containing 3,171 scaffolds was generated by Supernova v2.0. We then performed 
LCB gap filling on 1171 scaffolds longer than 22 kbp. A subset of 258 gap-filled 
scaffolds with length>100 kbp were then merged with the optical consensus 
maps of Bionano Genomics to create 116 hybrid scaffolds. After retrieving the 
68 scaffolds unused by Bionano Solve and the 2913 scaffolds shorter than 100 
kbp, we applied the LOCLA modules to the whole assembly in the following order: 
GCB gap filling, LCB gap filling, LCB scaffolding and finally GCB Scaffolding. For 
CHM13, a draft assembly containing 4,999 scaffolds was produced by Supernova 
v2.1. Using 10xG Linked-Reads, we applied GCB gap filling, LCB gap filling and 
LCB scaffolding to the Supernova draft (Figure 3b). Lastly, we performed GCB 
Gap Filling and GCB Scaffolding with PacBio HiFi reads. For HG002 (Figure 
3c), We assembled the PacBio HiFi reads by Canu [35] first, then employed 
a reference-guided scaffolding tool RagTag [58]  using CHM13v1.1 [12]  as 
reference and the Canu-assembled contigs as query. We finalize this workflow 
by filling gaps using the Canu-assembled contigs discarded by RagTag. Detailed 
descriptions of both workflows are presented in the Supplementary Notes (Figure 4).

Evaluation on the three human datasets: For LLD0021C, we compared 
our assembly to the reference genome GRCh38.p13.  For CHM13, we took the 
version of CHM13 v1.1 as our reference. As for HG002, the HPRC maternal 
haploid of HG002 was chosen as our benchmark, on account that it comprises 
the same chromosomes (chr1-22 and chrX) as our reference used in RagTag 
[58]. The tool used to align the assemblies with the reference genomes is 
minimap2 [15]. One of the presets for full-genome alignment, asm5, is employed 
for sequences with divergence<1%. For the validation of global whole genome 
alignment, we filtered mapped alignments based on two indicators: Mapping 
Quality (MQ) equal to 60 and Mapping Identity (MI) greater than 70%. MI is 
calculated by dividing the length of sequence matches by the sum of the lengths 
of the query and deletions. As for the validation of local alignment, BLAST is 
used for comparison on sequences shorter than 100kbp. On the other hand, 
minimap2 is used for alignment between sequences longer that 100kbp. The 
tool for generating alignment plot is D-GENIES [59] (Dot plot large Genomes 
in an Interactive, Efficient and Simple way), which is an online tool designed to 
compare two genomes.

B. Sexangula genome dataset and optimization of assembly via 
LOCLA: Illumina sequencing data from the 10x Genomics library and RNA-seq 
data (MGISEQ) were submitted to the NCBI Sequence Read Archive (SRA) 
database under BioProject accession number PRJNA734123 (DNA short-read 
data: SRX12279148; RNA-seq data: SRX12119193) [13,58].
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Conclusion
The B. Sexangula genome assembly published by Pootakham W, et al. was 

deposited in the DDBJ/ENA/GenBank database under the accession number 
JAHLGP000000000. It was constructed with RagTag, taking the Supernova 
assembly of B. Sexangula genome as a query and B. parviflora genome as 
reference. We then performed LCB Gap Filling and LCB Scaffolding on this draft 
genome. 

Code Availability

A docker image of LOCLA is freely available on our DockerHub page (https://
hub.docker.com/r/lsbnb/locla), and the source code is accessible on our GitHub 
page (https://github.com/lsbnb/locla).

Data Citation

Pui Kwok’s lab, IBMS SINICA. (2020). LLD0021C. https://www.ncbi.nlm.nih.
gov/bioproject/626976 
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