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Abstract

We study the problem whether CR functions on a sufficiently pseudoconcave CR manifold
M extend locally across a hypersurface of M . The sharpness of the main result will be
discussed by way of a counter-example.
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1 Introduction

It is a very classical fact that for a strictly (pseudo)convex real hypersurface H in Cn, n ≥ 2,
holomorphic functions extend from the concave side across H. In the present note we will study
the corresponding question for CR functions on embedded CR manifolds from a strictly local
point of view.

All manifolds will be assumed to be C∞-smooth. Recall that a submanifold M of Cn is
called CR manifold if the dimension of the complex tangent space T c

pM = TpM ∩ JTpM does
not depend on p ∈ M (J = Jp denoting multiplication by the complex unit of TpCn). In this
case, the complex tangent spaces form a bundle T cM ⊂ TM , whose complex rank m is called
CR dimension of M , shortly m = CRdimM . A CR manifold M ⊂ Cn is called generic if its
CR dimension is as small as real/complex linear algebra allows, i.e. if m = n − codimM . A
C1-function f on M is called CR function if df |T cM is J-linear. Locally one may express this
by a system of m independent linear first-order differential equations, allowing to interpret the
CR property in distributional sense. The space of continuous CR distributions on M will be
denoted by CR(M).

The nonintegrability of T cM is measured by the nonvanishing of the Levi form. ForX ∈ T c
pM

define the vector-valued Levi form by L(X) = [JX̃, X̃] mod T c
pM , where X̃ is an arbitrary

smooth section of T c
pM extending X. It is easily verified that the expression is tensorial and

yields a well defined mapping L : T c
pM → TpM/T c

pM . Let Σp = (T c
pM)⊥ = {η ∈ T ∗pM :

η|T c
p M ≡ 0} be the fiber of the characteristic bundle Σ of M . For nonzero η ∈ Σp, we define

the directional Levi form by L(η,X) = 〈η,L(X)〉. Now a generic CR manifold M is called
strictly/weakly q-concave if for every nonzero η ∈ Σ the hermitian form L(η, ·) has at least q
negative/nonpositive eigenvalues. Finally M is called strictly pseudoconvex if L(η, ·) is strictly
definite for some nonzero η ∈ Σ (see [9] for more on CR geometry).

Throughout we will work in the following setting: M will denote a smooth generic CR
manifold passing through the origin and H a smooth real hypersurface of Cn intersecting M
transversally in the origin. Hence HM = H ∩M is a smooth hypersurface of M near 0. For
simplicity we will assume that the intersection is even J-generic, meaning that T c

0M and T c
0H are

transverse, or equivalently, that HM is itself a generic CR manifold near 0. For a distinguished
local side H+ of H, we will consider subdomains U+ of M ∩H+ whose boundary ∂U+ contains
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a neighborhood of 0 in HM . We ask whether CR functions on U+ extend to a uniform M -
neighborhood of 0.

Such extension cannot hold for strictly pseudoconvexM . In this case M can be, after a conve-
nient holomorphic coordinate change, locally imbedded into some strictly convex hypersurface.
This gives us plentiful functions with isolated peak points, destroying any hope for extension
(independently of the shape of H). If we assume H to be strictly pseudoconvex, a similar reason
excludes extension from domains U+ lying on the convex side. Our aim is to strive for weak
assumptions on M guaranteing extension under the hypothesis H is strictly pseudoconvex and
U+ lies on the concave side.

It can be seen that M is weakly 1-concave precisely if it is nowhere strictly pseudoconvex [4].
It is known that in this case one has extension phenomena for certain Dirichlet-type problems
[3, 4, 10]. Interestingly, weak 1-concavity of M is not enough for our Cauchy-type problem (see
Section 3). Our main result is the following.

Theorem 1.1. Let M ⊂ Cn be a smooth generic weakly 2-concave CR manifold of CR dimension
m intersecting a smooth strictly pseudoconvex hypersurface H ⊂ Cn J-generically in the origin.
Let U+ ⊂ M be a relative domain, lying on the pseudoconcave side of H and containing in its
closure a neighborhood of the origin in HM . Then there is an open neighborhood V of the origin
in M such that every continuous CR functions on U+ uniquely extends to a continuous CR
function on U+ ∪ V .

In the strictly 2-concave case, this was proved in [8] by means of adapted integral formulas.
Our approach will be very different, focusing on the geometry of related envelopes of holomorphy.
In the weakly 2-concave case, Theorem 1.1 is even new for hypersurfaces. Here the reader may
consult [10] for refinements for J-degenerate intersections.

In Section 3 we will see that Theorem 1.1 fails if M is only weakly 1-concave. Note that
the CR orbits of M near 0 may be very complicated (see [9]). It is worth observing that in
our situation we need no assumption on CR orbits. Compare this to global results in [2, 10],
where the situation is very different. Finally we remark that it should be a subtle task to
sharpen the condition on HM significantly. Our arguments extend to the case where H is weakly
pseudoconvex but satisfies a certain finite-type condition at 0 (see Remark 2.1). However, even
for extendability of holomorphic functions from a given side of a real hypersurface of Cn, finding
a geometric characterization is a long-standing open problem.

2 Proof of the main result

After a quadratic holomorphic coordinate change, we may assume that H is strictly convex
near the origin. After a unitary rotation, M writes as a smooth graph y′′ = h(z′, x′′), where
z′ = (z1, . . . , zm), z′′ = (zm+1, . . . , zn) = (xm+1 + iym+1, . . . , xn + iyn), h(0) = 0, dh(0) = 0. The
strategy is first to prove an extension result for holomorphic functions, and to conclude then by
approximation techniques.

Part 1: Holomorphic extension. First we assume that we are to extend functions holo-
morphic in a thin ambient domain V + ⊂ Cn containing U+. Let (X,π) be the envelope of
holomorphy of V +. Recall that X is an n-dimensional complex manifold, π : X → Cn a locally
biholomorphic map, and V + can be viewed as a subdomain of X via a canonical embedding
α : V + ↪→ X satisfying the lifting property π ◦ α = idV + . The fact that X is the maximal
domain over Cn to which all holomorphic functions on V + extend simultaneously translates as
follows: (i) f 7→ f ◦ α is a topological isomorphism from O(X) onto O(V +) (extension) and
(ii) X is a Stein manifold (maximality). Since X is Stein there is a strictly plurisubharmonic
function ρ ∈ C∞R (X) such that {ρ < r} is relatively compact in X for all r ∈ R (see [6], [7] [9]
for envelopes). Holomorphic extension from V + to a neighborhood of 0 is the content of the
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following claim: The mapping α extends as a lifting to an M -neighborhood V of the origin whose
size depends on U+, but not on the particular shape of V +.

Let h(z) be a complex linear defining function of T c
0H such that T0H = {Re(h) = 0} and

Re(h) increases along the direction pointing into the convex side. For ε > 0 small, we consider
the family Bc = {h(z) = c, |z| < ε}. If δ > 0 is very small, then convexity of H and J-genericity
of M ∩H yield for |c| < δ: (i) Mc = Bc ∩M is a weakly 1-concave generic CR submanifold of
Bc of CR dimension m− 1 > 0 (topologically an (dimM − 2)-ball), (ii) Mc\U+ is either empty,
an isolated point or a compact ball. The latter means in particular that the boundaries of Mc

stay in U+. We may furthermore assume Mc ⊂ U+ for −δ < c < 0. The idea is now to use a
version of the continuity principle for subfamilies of the Mc.

To prove the claim it suffices to show that, for |ĉ| < δ, the union
⋃

c∈[−δ/2,ĉ]Mc lifts to X
([−δ/2, ĉ] denoting the straight segment in C between −δ/2 and ĉ). If this is not the case, then
there is a maximal half-open segment [−δ/2, c̃), where c̃ < ĉ, such that

⋃
c∈[−δ,c̃)Mc lifts to X.

Maximality of c̃ implies that sup ρ ◦ α|Mc → ∞ if [−δ, c̃) 3 z → c̃. Since the distance of the
boundaries of the Mc to ∂X is positive, this implies that ρ ◦ α|Mc is nonconstant and has a
maximum in the interior whenever c is close to c̃. This contradicts the subsequent maximum
principle, and the claim follows.

Lemma 2.1. Let D be a relatively compact domain in a smooth generic weakly 1-concave CR
manifold M⊂ Cn. If φ is a smooth strictly plurisubharmonic function defined near D, then we
have maxD φ ≤ max∂D φ.

This follows from [5]. For the sake of completeness we provide a short argument: If maxD φ >
max∂D φ, the same holds for a generic Morse perturbation ψ, which we may choose such that
ψ has no critical points on M and ψ|M is also Morse. Then ψ|D has somewhere a quadratic
maximum z0. Thus M touches the strictly pseudoconvex hypersurface {ψ = ψ(z0)} in z0 from
the convex side and is therefore itself strictly pseudoconvex near z0. The lemma follows.

In the sequel, we will need a simple a-priori estimate: Pick η > 0 such that the intersection
B+ of Bη(0) with the concave side of M is contained in U+ and that (∂B+\HM ) ⊂ U+.
Applying the claim to the points of ∂B+ ∩HM , we see that the restriction of any f ∈ O(U+)
to B+ is bounded. Applying the claim with B+ instead of U+, we obtain extension from U+ to
U+∪V together with an estimate supV |f̃ | ≤ supB+ |f | (f̃ denoting the extension). The estimate
immediately follows from the inclusion f̃(V ) ⊂ f(B+). In fact, if we had c ∈ f̃(V )\f(B+), then
(f(z)− c)−1 would still be holomorphic near B+ without being extendable along V .

Part 2: Approximation. CR extension will now be derived by an application of the
Baouendi-Treves approximation theorem ([1], see also [11]). Since HM is generic near the origin,
there is a smooth totally real n-dimensional submanifold R ⊂ HM . We may include R into a
smooth foliation Rŝ = {s1 = ŝ1, . . . , sm = ŝm} of an M -neighborhood of the origin such that
(i) s1, . . . , sm are smooth real functions with independent differentials, (ii) the parameter ŝ
ranges over some ball Us around the origin in Rm and (iii) s1 is a local defining function
of HM positive on the (+)-side of HM . Supplementing functions, we obtain real coordinates
s1, . . . , sm, t1, . . . , tn on an M -neighborhood of 0. By [1], there are arbitrarily small open balls Us

and B1 ⊂⊂ B2 ⊂ Rm, all centered in 0, such that continuous CR functions on {s1 > 0}×B2 can
be approximated by the restrictions of polynomials in z1, . . . , zn, locally uniformly on compact
subsets of {s1 > 0} ×B1.

For U+ given as in Theorem 1.1, we may arrange that {s1 > 0}×B2 ⊂ U+. Pick furthermore
a slightly smaller ball U ′s ⊂⊂ Us. The constructions in Part 1 depend continuously on the data.
If λ > 0 is sufficiently small, we can find an M -neighborhood V of 0 such that every function
f holomorphic near {s ∈ U ′s : s1 > λ} × B2 possesses a holomorphic extension f̃ to an ambient
neighborhood of V ∪ {s ∈ U ′s : s1 > λ} ×B2 satisfying supV |f̃ | ≤ sup{s1>λ}×B1

|f |.
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Let now Pj be polynomials approximating g ∈ CR(U+). Then Pj |{s∈U ′s:s1>λ}×B1
converges

uniformly, hence also its restriction to V by the a-priori estimate. Thus the limit defines a
continuous CR function gV on V . Since Pj approaches g locally uniformly on {s ∈ U ′s : s1 >
0} × B1, g and gV glue into the desired extension. Uniqueness follows from general structure
theorems [11] or from a closer inspection of the approximation process. The proof of Theorem
1.1 is complete.

Remark 2.1. a) It is not very essential to work with continuous CR functions. If g is a CR
distribution on U+, we may use a method from [1], [11], to represent it on {s ∈ U ′s : s1 > 0}×B2

as g = ∆k
Mf , where f is a continuous CR function on {s ∈ U ′s : s1 > 0} × B2, ∆M is a CR

variant of the Laplace operator and k is a sufficiently large integer. Now one first extends f by
Theorem 1.1 and obtains the desired extension as ∆k

M f̃ . We omit the details.
b) The argument still works if H is only weakly pseudoconvex but possesses a supporting

holomorphic hyperplane touching it (from the concave side) with finite-order contact at the
origin. But, as mentioned in the introduction, it should be hard to obtain a sharp result.

c) One can reduce the number of strictly pseudoconvex directions required for H if one
assumes weak q-concavity for M with q > 2 (compare [8]).

3 Weakly 1-concave counter-example

Our example will be a modification of the weakly but not strongly 1-concave hypersurface

M0 = {(z1, z2, z3) ∈ C3 : y3 = |z2|2}

Note that M0 is foliated by complex lines and the Levi form2 L has one zero eigenvalue at every
z ∈M0. Pick a smooth function g : R→ R+

0 which vanishes identically for t ≤ 0 and is strictly
convex for t > 0. We claim that the hypersurface

M = {(z1, z2, z3) ∈ C3 : y3 = |z2|2 − g(x1 − |z2|2)}

is weakly 1-concave in a neighborhood of the origin. To see this, we observe first that the term
|z2|2 implies that the Levi form3 of y3−|z2|2− g(x1−|z2|2) is positive in the z2-direction, which
is contained in T c

0M . Hence we have a positive direction at any z ∈ M close to the origin.
Secondly, we note that the slices

Mc = {(z1, z3) ∈ C2 : y3 = |c|2 − g(x1 − |c|2)} ∼= M ∩ {z2 = c}

are concave graphs over the real (z1, x3)-hyperplane in C2
z1,z3

. Consequently the Levi form of
y3 − |z2|2 − g(x1 − |z2|2) must have a nontrivial nonpositive eigenvector tangent to M at any
z ∈M . This implies the claim.

Next we verify that the hypersurface HM = M ∩{x1 = |z2|2} can be embedded into a strictly
pseudoconvex hypersurface H transverse to M . Note that the simplest candidate H0 = {x1 =
|z2|2} is only weakly pseudoconvex. Instead we try to construct H as a graph x1 = h(y1, z2, z3)
satisfying dh(0) = 0. The desired h is hence prescribed along πy1,z2,z3(HM ). These partial
data already imply that H will have positive Levi curvature in the z2-direction. But now it is
standard that we can produce a strictly pseudoconvex H by bending H0 near the origin strongly
enough along the y3-direction into the pseudoconvex side (without changing HM ).

2For hypersurfaces the characteristic bundle is one-dimensional. Hence the total and the directional Levi forms
coincide essentially.

3The Levi form of a function is Lφ(X) = i
2
∂∂φ(X, X). The Levi form of a regular level set M = {φ = c} is

the restriction of Lφ to T cM ∼= T 1,0M .



244 E. Porten

As a matter of fact, the complex hyperplanes Et = {z3 = it}, t < 0, do not intersect
M+ = M ∩ {x1 < |z2|2}. On the other hand, the intersection Et ∩ M contains points in
an arbitrarily given neighborhood of the origin, if t < 0 is sufficiently close to 0. Hence the
functions ft = (z3− it)−1, t < 0, show that there is no local CR extension from M+ to a uniform
neighborhood of the origin.

We conclude with a remark on the envelope of V +.

Remark 3.1. Fix a domain U+ ⊂M as in Theorem 1.1, and consider ambient open neighbor-
hoods V + of U+. We observe that there is always holomorphic extension from V + through some
part of H. To this end, we construct small Bishop discs attached to the generic CR manifold
HM (see [9] for the disc method). Because of the strict pseudoconvexity of H the interior of the
discs will lie in the pseudoconvex side of H. If we deform HM together with the attached discs
into V +, we obtain a one-sheeted part of X (the envelope of holomorphy of V +) which passes
through H into the pseudoconvex side and contains the origin in its closure.

Note that the size of this part of X depends sensitively on the thickness of V +. However the
disc argument shows that for every V + the projection of the envelope to Cn contains points on
the pseudoconvex side of distance to H bounded from below by some uniform positive constant.
Of course the above arguments show that there is no M -neighborhood of the origin lifting
simultaneously to all possible X. Intuitively speaking, the trouble is that the X lose the contact
to M at the origin.
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[8] C. Laurent-Thiébaut and J. Leiterer. Andreotti-Grauert Theory on Real Hypersurfaces. Quaderni,

Scuola Normale Superiore, Pisa 1995.
[9] J. Merker and E. Porten. Holomorphic extension of CR functions, envelopes of holomorphy, and

removable singularities. IMRS Intern. Math. Res. Surv. 2006.
[10] E. Porten. Geometric Methods in the Study of CR Functions and Their Singularities. Habilitations-

schrift, Berlin, 2004.
[11] F. Treves. Hypoanalytic Structures: Local Theory. Princeton Univ. Press, 1992.

Received January 10, 2007
Revised March 27, 2008


