

LncRNAs: Disease Regulators, Biomarkers, and Therapeutics

Yusuf Al-Karim*

Department of Cancer Genomics, Al Noor Institute of Biomedical Research, Amman, Jordan

Introduction

Long non-coding RNAs (lncRNAs) are fundamental regulators of gene expression, operating at epigenetic, transcriptional, and post-transcriptional levels, and are extensively involved in the pathogenesis of human diseases. Their dysregulation is strongly linked to a diverse array of conditions, spanning various cancers, cardiovascular diseases, neurological disorders, and metabolic syndromes. This review aims to delineate the pivotal roles of key lncRNAs and elucidate their specific mechanisms in driving disease progression, with a keen focus on their potential as diagnostic biomarkers and therapeutic targets. [1]

The intricate molecular roles of lncRNAs in the complex landscape of cancer development and progression are being increasingly appreciated. Certain lncRNAs can function as potent oncogenes or critical tumor suppressors by precisely modulating gene expression, thereby influencing fundamental cellular processes such as proliferation, apoptosis, and metastasis. A deep understanding of these intricate mechanisms is therefore paramount for the successful development of novel, targeted therapeutic interventions. [2]

Furthermore, lncRNAs are deeply implicated in the complex pathogenesis of cardiovascular diseases. They significantly influence key physiological processes within the heart, including cardiac hypertrophy, the development of fibrosis, and chronic inflammation. The identification of disease-specific lncRNAs holds substantial promise for the advancement of improved diagnostic tools and the refinement of effective therapeutic strategies for various heart conditions. [3]

Within the intricate architecture of the brain, lncRNAs orchestrate critical neuronal functions. These essential roles include the regulation of neuronal development, cellular differentiation, and the dynamic processes of synaptic plasticity. Aberrant expression patterns of these molecules have been unequivocally linked to a spectrum of debilitating neurological disorders, such as Alzheimer's disease, Parkinson's disease, and schizophrenia, presenting novel avenues for therapeutic intervention. [4]

Metabolic diseases, encompassing prevalent conditions like diabetes and obesity, are also significantly influenced by the regulatory actions of lncRNAs. These remarkable molecules exert their effects by modulating key molecular pathways that govern glucose and lipid metabolism, insulin sensitivity, and the fundamental process of adipogenesis. Their profound involvement highlights their considerable potential as viable therapeutic targets for the management of metabolic syndrome. [5]

lncRNAs have also emerged as versatile regulators within the intricate systems of immunity and inflammation. Their direct involvement in the pathogenesis of autoimmune diseases and their critical role in modulating inflammatory responses

underscore their fundamental significance in maintaining immune system homeostasis and in the broader context of disease pathogenesis. [6]

The diagnostic and prognostic potential of lncRNAs across a wide spectrum of human diseases represents an exceptionally active and rapidly advancing area of scientific research. Their inherent stability in biological fluids, coupled with their distinct and often disease-specific expression profiles, positions them as highly promising candidates for robust biomarkers. [7]

Emerging therapeutic strategies that specifically target lncRNAs are rapidly gaining traction as a novel and promising approach for the effective treatment of a growing number of human diseases. These innovative strategies encompass a range of interventions designed to modulate lncRNA expression, alter their stability, or disrupt their critical interactions with other essential cellular molecules. [8]

Moreover, lncRNAs play a crucial and often multifaceted role in regulating cellular senescence, a fundamental biological process that is intrinsically linked to aging and the development of various age-related diseases. The dysregulation of lncRNA expression can exert opposing effects, either promoting or inhibiting senescence, thereby significantly impacting the overall progression of these diseases. [9]

Finally, the role of lncRNAs in the fundamental processes of stem cell biology and their potential applications in regenerative medicine constitute a rapidly expanding and exciting field of scientific inquiry. These molecules are instrumental in maintaining cellular pluripotency and in directing the precise differentiation of stem cells, thereby offering considerable promise for future therapeutic applications. [10]

Description

Long non-coding RNAs (lncRNAs) are pivotal players in the pathogenesis of human diseases, acting as crucial regulators of gene expression at multiple levels, including epigenetic, transcriptional, and post-transcriptional modifications. Their dysregulation is implicated in a wide spectrum of conditions, such as various cancers, cardiovascular diseases, neurological disorders, and metabolic syndromes. This review highlights key lncRNAs and their specific mechanisms of action in driving disease progression, emphasizing their potential as diagnostic biomarkers and therapeutic targets. [1]

The intricate roles of lncRNAs in cancer development and progression are increasingly recognized. Specific lncRNAs can function as oncogenes or tumor suppressors by modulating gene expression, impacting cellular processes like proliferation, apoptosis, and metastasis. Understanding these mechanisms is essential for

developing novel targeted therapies. [2]

lncRNAs are involved in the pathogenesis of cardiovascular diseases, influencing processes such as cardiac hypertrophy, fibrosis, and inflammation. Identifying disease-specific lncRNAs can lead to improved diagnostic tools and therapeutic strategies for heart conditions. [3]

The brain is a complex organ where lncRNAs regulate crucial neuronal functions, including development, differentiation, and synaptic plasticity. Their aberrant expression is linked to neurological disorders such as Alzheimer's disease, Parkinson's disease, and schizophrenia, presenting opportunities for therapeutic intervention. [4]

Metabolic diseases, including diabetes and obesity, are also influenced by lncRNAs. These molecules can affect key pathways involved in glucose and lipid metabolism, insulin sensitivity, and adipogenesis. Their role highlights their potential as therapeutic targets for metabolic syndrome. [5]

lncRNAs function as versatile regulators of immunity and inflammation. Their involvement in autoimmune diseases and inflammatory responses underscores their significance in immune system homeostasis and disease pathogenesis. [6]

The diagnostic and prognostic potential of lncRNAs in various human diseases is an active area of research. Their stable presence in biological fluids and distinct expression profiles in disease states make them promising biomarkers. [7]

Therapeutic strategies targeting lncRNAs are emerging as a novel approach for treating human diseases. This includes strategies to modulate lncRNA expression, stability, or their interactions with other molecules. [8]

lncRNAs are crucial in regulating cellular senescence, a process implicated in aging and age-related diseases. Their dysregulation can either promote or inhibit senescence, impacting disease progression. [9]

The role of lncRNAs in stem cell biology and regenerative medicine is a rapidly expanding field. They are involved in maintaining pluripotency and directing differentiation, offering potential for therapeutic applications. [10]

Conclusion

Long non-coding RNAs (lncRNAs) are critical regulators of gene expression involved in the pathogenesis of numerous human diseases, including cancer, cardiovascular disorders, neurological conditions, and metabolic syndromes. Specific lncRNAs can act as oncogenes or tumor suppressors, influencing cellular processes and disease progression. They also play roles in immunity, inflammation, and cellular senescence. Due to their stable presence in biological fluids and distinct expression patterns, lncRNAs are promising diagnostic and prognostic biomarkers. Emerging therapeutic strategies are being developed to target lncRNAs for disease treatment. Furthermore, their involvement in stem cell biology and regenerative medicine highlights their broad therapeutic potential.

Acknowledgement

None.

Conflict of Interest

None.

References

- Ali, Sayed A., Al-Mubarak, Husam, Al-Qahtani, Abdullah A.. "Long non-coding RNAs: key players in human disease." *J Genet DNA Res* 14 (2023):1-15.
- Sun, Mingyu, Qiu, Xinjian, Ji, Piu. "Long noncoding RNAs in cancer: mechanisms and therapeutic implications." *Nat Rev Cancer* 22 (2022):479-492.
- Wang, Kuan, Tang, Rui, Ma, Xiaohui. "Long noncoding RNAs in cardiovascular disease." *Circ Res* 128 (2021):1130-1147.
- Pang, Aihua, Yang, Lei, Sun, Bo. "Long noncoding RNAs in neurological disorders." *Nat Rev Neurosci* 24 (2023):157-174.
- Hu, Kai, Ren, Shuting, Zhang, Jing. "Long noncoding RNAs in metabolic diseases." *Cell Metab* 34 (2022):1056-1073.
- Li, Jian, Zhou, Ying, Wang, Fei. "Long noncoding RNAs in immunity and inflammation." *Immunity* 54 (2021):733-749.
- Bhat, Shaheen, Kumar, Nalin, Chhabra, Divya. "Long noncoding RNAs as potential biomarkers for disease diagnosis and prognosis." *Trends Mol Med* 29 (2023):193-206.
- Gong, Chen, Wang, Jia, Li, Wei. "Therapeutic targeting of long noncoding RNAs." *Mol Ther* 30 (2022):757-770.
- Zhang, Xiaobo, Li, Yong, Wang, Peng. "Long noncoding RNAs in cellular senescence." *Aging Cell* 22 (2023):e13765.
- Chen, Lin, Wang, Chao, Zhang, Yuan. "Long noncoding RNAs in stem cell biology and regenerative medicine." *Stem Cell Reports* 17 (2022):1124-1140.

How to cite this article: Al-Karim, Yusuf. "lncRNAs: Disease Regulators, Biomarkers, and Therapeutics." *J Genet DNA Res* 09 (2025):286.

***Address for Correspondence:** Yusuf, Al-Karim, Department of Cancer Genomics, Al Noor Institute of Biomedical Research, Amman, Jordan, E-mail: y.alkarim@alnoo.jo

Copyright: © 2025 Al-Karim Y. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Received: 01-Sep-2025, Manuscript No. jgdr-26-179199; **Editor assigned:** 03-Sep-2025, PreQC No. P-179199; **Reviewed:** 17-Sep-2025, QC No. Q-179199; **Revised:** 22-Sep-2025, Manuscript No. R-179199; **Published:** 29-Sep-2025, DOI: 10.37421/2684-6039.2025.09.286