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Introduction
Singular systems, also called descriptor systems, arise naturally in 

chemical processes, mechanical systems, and so on. Therefore, since 
the last seventies, singular systems have attracted intensive attention. 
Linear quadratic regulator (LQR) problems play an important role 
in the field of control engineering. Therefore the LQR problems for 
descriptor systems have been investigated in the literature. The earliest 
papers on this problem are those of [1] and [2]. This problem were 
also addressed in ref. [3,4], where a generalized Riccati equation is 
shown to result directly from the necessary conditions for the existence 
of an optimal control. The generalized Riccati equation proposed in 
[3] may not have solutions, which was shown in ref. [5]. Bender and
Laub [5] approached this problem by performing a singular value
decomposition (SVD) to isolate the dynamics from non-dynamic
portion, and four equivalent Riccati equations were derived in the SVD 
coordinate system. [6] investigated that the robust properties of the
LQR for singular systems with single input. A parametrization of the
optimal feedback gains was used to show that certain robust properties 
can be achieved by an appropriate choice of the feedback gain. The
LQR problem for linear time-varying singular systems was addressed
in ref. [7]. [8] derived a Riccati equation formulated in the original
state parameters under which the problem has a solution. The LQR
problem for non-regular singular systems was solved by converting a
non-regular singular system into a regular one with index one in ref. [9].

It is worth pointing out that all the results on the LQR problem for 
singular systems mentioned above were obtained with an assumption 
that the singular systems are impulse controllable, that is, the impulsive 
modes can be removed by applying a state feedback. However, many 
practical systems, especially constrained mechanical systems (see 
Example 1), can not be modelled by an impulse controllable singular 
system. Therefore, the LQR problem for impulse uncontrollable 
singular systems is not only theoretically interesting but also practically 
important [10].

In this paper, the LQR problem for impulse uncontrollable singular 
systems is addressed. In order to guarantee the existence of the cost 
function, solutions to the singular systems should contain no impulse, 
which can be achieved by a feedback if the systems are impulse 
controllable or by choosing initial conditions properly for impulse 
uncontrollable cases [11]. Moreover, the final conditions should be 
properly chosen as well to guarantee that the optimal solution to the 
LQR problem is impulse-free. In order to facilitate the analysis, the 

singular system is assumed to be in the Weierstrass form [12].

Problem Formulation
Consider the problem of finding u(t) to minimize

( ) ( ) ( ) ( ) ( )0 0

1 1, , =
2 2
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with the constraint

( ) ( ) ( ) ( )
.
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Where = > 0TR R , = 0TQ Q ≥ , ( ) nx t R∈ , ( ) nx t R∈ , ( ) mu t R∈ ,
and E is a square matrix of rank q n≤ . The pencil (sE-A) is assumed to 
be regular, that is, ( )det 0E Aλ − ≠  for some λ. Let ( )( )= deg det E Aρ λ − . 
Assume that there exist invertible matrices U and V so that

11

2

0 0
= , = , =

0 0
BI A

UEV UAV UB
BN I
    
    

     
,

1 1 11 121

2 2 21 22

= , = , =T Tx p Q Q
V x U p V QV

x p Q Q
− −     

     
     

,

11 12 101 1
0

21 22 20

= , =f fT
f

f f

Q Q x
U Q U V x

Q Q x
− − −   

   
  

,

where p is the costate variable defined in (7) or (14), ( )1x t Rρ∈ , 
( )2

nx t R ρ−∈ , ( )2
np t R ρ−∈ , ( )2

np t R ρ−∈ , 
1A Rρ ρ×∈ , 

1
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f fQ Q R ρ ρ− × −∈ , ( ) ( )n nN R ρ ρ− × −∈  is a nilpotent matrix 
of the nilpotency v. Without loss of generality, assume that N takes a 
Jordan normal form of { }1N=diag ,...,N Nγ  with the Jordon block Ni being 
a shift matrix of size i iv v×  and 1 1 11 1 2 2

> = = = 1v v v v v v vγ γ γ γ γ+ +≥ ≥ ≥ ≥ ≥ ≥   , 
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 with Ij being a j×j identity matrix. Note that the 

first λ2 Jordon blocks are nontrivial with the nilpotency greater than 1 
and the rest are trivial with the nilpotency equal 1.
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The following assumptions are sufficient for solutions to the costate 
equation of the LQR problem to be impulse-free.

Assumption 4: 21 = 0T i
iN Q  for 1 2= 1,...,i γ γ+ , 22 = 0T ij

iN Q  for 
1 2= 1,...,i γ γ+ , = 1,...,j γ .

Assumption 5: 21 = 0T i
i fN Q  for 1 2= 1,...,i γ γ+ , 22 = 0T ij

i f jN Q N  for 

1 2= 1,...,i γ γ+ , = 1,...,j γ .

In addition, in order to make the cost function finite for the case of 
an infinite horizon, the following assumption is necessary.

Assumption 6: The finite modes of (2) are stabilizable, that is, 
( )1 1,A B  is stabilizable.

Necessary Conditions
The necessary conditions for J to be minimized are
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form, can be written as
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where = 1,...,i γ . It follows from (6)-(8) that

( ) ( ) ( )=Ex t Ax t Bu t+ 				                (13)

( ) ( ) ( )=T TE p t Qx t A p t− −  				               (14)

( ) ( )0 = TB p t Ru t+  				                   (15)
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where = 1,...,i γ .

Solutions of the LQR Problem
This section is devoted to finding a solution to the two-point 

boundary value problem described by (16)-(20) with the boundary 
conditions (9)-(12). Before doing this, first let us examine the 
implication of Assumptions 2-3.

With the special structure of Ni in mind, the following lemma can 
be verified using Assumption 2.
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i

j
B  is the j-th row of 2

iB .
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In the Weierstrass form, (2) can be expressed as

( ) ( ) ( ) ( )1 1 1 1 1 10= , 0 =x t A x t B u t x x+  			                  (3)

( ) ( ) ( ) ( )2 2 2 2 20= , 0 =i i i i i
i i iN x t x t B u t N x N x+  		                   (4)

with = 1,...,i γ . The solution to (4) is given by

( ) ( ) ( ) ( ) ( )1 11
2 2 2=1 =0

= 0v vj ji j i j ii i
i ij j

x t t N x N B uδ− −−− −∑ ∑ 	                  (5)

with I = 1, …,γ. (3)-(4) is impulse controllable (controllable at ∞) if 
and only if the rows of B2 corresponding to the bottom rows of the 
nontrivial Jordan blocks (vi > 1) of N are linearly independent [9]. The 
LQR problem for impulse controllable singular systems have been 
solved, so we assume that (3)-(4) is not impulse controllable. Without 
loss of generality, the following assumption is made.

Assumption 1: 1
2B̂ , ..., 1

2B̂γ  are linearly independent and the matrix 
composed of the rows of B2 corresponding to the bottom rows of the 
Jordan blocks 1, …, γ2 has rank of γ1.

Assumption 1 means that only impulsive modes corresponding to 
the nontrivial Jordon blocks 1, …, γ1 are controllable and impulsive 
modes for the Jordon blocks 1 21,...,γ γ+  are uncontrollable. With 
this assumption, any impulses caused by the initial conditions can be 
removed by a feedback for subsystems corresponding to the Jordon 
blocks 1, …, γ1.

The following assumptions are made so that solutions to subsystems 
corresponding to the Jordon blocks γ1 + 1, ..., γ2 are impulse-free.

Assumption 2: 2 = 0i
iN B  for 1 2= 1,...,i γ γ+ .

Assumption 3: 20 = 0i
iN x  for 1 2= 1,...,i γ γ+ .
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Proof. A simple calculation shows that
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



for 1 2= 1,...,i γ γ+ , from which the conclusion of the lemma can be 
directly drawn.

Assumptions 2-3 are sufficient for solutions of the subsystems 
corresponding to the Jordon blocks 1 21,...,γ γ+  to be impulse-free, 
which will be proved in the following lemma.

Lemma 2: If Assumptions 2 and 3 are satisfied, then ( )2 = 0ix t  for 
1 2= 1,...,i γ γ+ .

Proof. Note that Assumption 3 implies ( )2 200 = = 0i i
i iN x N x  for 

1 2= 1,...,i γ γ+ . Applying this and Assumptions 2 to (5) gives
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which, according to Lemma 1, means that ( )2 = 0ix t  for 1 2= 1,...,i γ γ+ .

Similar to the proof of Lemma 1, it is straightforward to prove the 
following lemma.

Lemma 3: If Assumption 4 is satisfied, then ( )21 = 0i

k
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k
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i

k
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k
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iQ  and 22

ijQ , respectively.

Proof. The conclusion can be drawn from the relations.
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The following lemma indicates that the final values for 2
ip  are zeros 

for 1 2= 1,...,i γ γ+  if Assumption 5 is satisfied.

Lemma 4: If Assumption 5 is satisfied, then ( )2 = 0i
fp t  for 

1 2= 1,...,i γ γ+ .

Proof. Due to Assumption 5, (12) can be rewritten as
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2

0 0
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f
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p t
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∑

The following lemma shows that solutions to the costate subsystems 
corresponding to the Jordon blocks 1 21,...,γ γ+  are impulse-free if 
Assumptions 4-5 are satisfied.

Lemma 5: If Assumptions 4-5 are satisfied, then ( )2 = 0ip t  for 

1 2= 1,...,i γ γ+ .

Proof. It can be proved that solutions to (19) is given by
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1 2= 1,...,i γ γ+ . It follows from Lemma 4 that ( ) ( )2 = 0T i
i fN p t−  for 

1 2= 1,...,i γ γ+ . As a result, with Assumption 4, ( )2
ip t  can be simplified as
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which, together with Lemma 3, implies that the lemma holds.

A simple manipulation shows that for 1= 1,...,i γ , (17) and (19) can 
be expressed as

.

2 11 2 12 2 2ˆ=
i

i i i i ix A x A x B u+ +  				                  (21)

21 2 2
ˆ0 = i i iA x B u+ 	  				                   (22)

And

( )1 1
21 1 22 2 22 2 22 2 12 2=1 =1 = 11

ˆ ˆ ˆˆ0 =
Ti ij j ij j ij j i i

j j j
Q x Q x Q x Q x A pγ γ γ

γ +
− − − − −∑ ∑ ∑



            (23)

( ) ( )
.

1 1
21 1 22 2 22 2 22 2 11 2 21 22 =1 =1 = 11

ˆ ˆ=
i T Ti ij j ij j ij j i i i i

j j j
p Q x Q x Q x Q x A p A pγ γ γ

γ +
− − − − − −∑ ∑ ∑   (24)

where [ ] ( )1 1
12 = 1 0 0 vTi iA R − ×

∈ , [ ] ( )1 1
21 = 0 0 1 vi iA R × −

∈ , 

( ) ( )1 12
11

0
=

0 0

T
v vvi i ii

I
A R − × −− 

∈ 
  

.

It follows from Lemma 3 and Lemma 5 that ( )2 = 0i
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 and 
( )2 = 0T i

iN p t  due to ( )2 = 0ix t  and ( )2 = 0ip t  for 1 2= 1,...,i γ γ+ . As a 
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due to = 1iv  for 2= 1,...,i γ γ+ . (18) and (20) can be described as
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+ + + +∑ ∑ ∑       (28)

The initial conditions (10) can be expressed as

( )2 20 10 = , = 1,...,i ix x i γ 	  			                (29)

Similarly, the final conditions (11) and (12) can be written as

( ) ( ) ( ) ( )1
1 11 1 21 2=1

=
Tj j

f f f f fj
p t Q x t Q x tγ

+∑  		                (30)

( ) ( ) ( )1
2 21 1 22 2=1

=i i ij j
f f f f fj

p t Q x t Q x tγ
+∑  			                (31)

for 1= 1,...,i γ , where ( )2 = 0j
fx t  due to ( )2 = 0jx t  for 1 2= 1,...,j γ γ+  and 

21 = 0T j
j fN Q  due to = 1jν  for 2= 1,...,j γ γ+  are used.

To simplify expressions, define the following matrices 22 1 2
ˆ =Q Q Q  

  ,

10 1 1 1 1
1 1 1 1 1 1
20 2 11 12 2 2

10 1 11 12 1 1

1 1 1 1 1 1
20 2 11 12 2 2

0 0 0 0 0 0
0 0 0 0 0ˆ ˆ ˆˆ ˆ ˆ, , , , ,

0 0 0 0 0

x x A B p
x x A A B p

x x A A B p

x x A A B pγ γ γ γ γ γ

         
         
         = = = = = =         
         
                 

  

  

             

  

 
 
 
 
 
  

( ) ( )
1 1 1
2 2 21

1 1
11 21 21

1 11 11 11 1 2 2 2121 22 2211 2 2 211 11 1
2 2

11 1 1 1
21 22 22

2 2

ˆ ˆ 0 0

ˆ ˆ 0 0ˆ ˆˆ ˆ= , , ,
0 0 0

0 0

TT
x x A

Q Q Q

x x AQ Q QQ x x A
x x

Q Q Q
x x

γ

γ γ γγ

γ γ

γ γ γ γ

γ γ

+ +

   
    
    
    
     = = =
    
    
         
   



 

   







   

   

 



1
2

1
2

2 11
2

2

ˆ

ˆˆ,

0

B

BB
B

B

γ

γ

γ

+

  
  
  
  
   =
  
  
  
     







, 
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Lemma 6: If Assumption 1 is satisfied, then the matrix 1
2̂b  has full 

row rank.

Proof. This lemma can be easily verified by applying Assumption 1.

Assumption 7: ( ) 12 22 12 11 12 2
2 22 22 22 22 2

ˆ ˆˆ ˆ ˆ ˆ= > 0T TR R b q q q q b
− − − +  

  and 11
22ˆ > 0q .

Lemma 7: If Assumptions 1 and 7 are satisfied, then R  is invertible.

Proof. Note that

( ) ( )
( ) ( )

1 122 12 11 12 12 11
1 22 22 22 22 22 22

1 111 12 11 12 11
22 22 22 22 22

12 22
22 22

ˆ ˆ ˆ ˆ ˆ ˆ
0 0

ˆ ˆ ˆ ˆ ˆ0 = 0
ˆ ˆ 0 0

T T

T

q q q q q q II
q q q q q

I q q I

− −
−

− −

 − + −  
   −  
      Thus, Assumption 7 implies that

1
2

12 2 2
2 211 12

22 22 11 12
22 2212 22

22 22 12 22
22 222

2

ˆ0 0 ˆ ˆ0 0
ˆ ˆ0 0

ˆ ˆ= 0 0 0 =
ˆ ˆ 0

ˆ ˆ0 0
ˆ 0 0

T

T
T

T

I b
b I b

q q
R q q R

I q q
I q q

b R

−

− 
      
      −       
            



is invertible. Therefore, according to Lemma 6, R  is invertible.

Therefore, ( )2x̂ t , ( )2p̂ t , and u(t) can be uniquely determined 
from (33), (35), and (36) as

( )
( )
( )

( ) ( )
2

1 1
2 1 1

ˆ
ˆ ˆ ˆ= T T

p t
x t R S x t R B p t
u t

− −

 
  − − 
  

		              (39)

This can then be substituted back into (32) and (34), which results 
in a usual two-point boundary value problem of linear-quadratic 
optimal control with ( )1̂x t  and ( )1p̂ t  as the state and costate instead 
of x(t) and p(t).

(32) and (34) becomes

( )

( )

( )
( )

.

1 1
.

1
1

ˆ ˆˆ ˆ
=

ˆ ˆ ˆˆ
T

x t x tA R
p tQ Ap t

     −       − −      

			                 (40)

with the boundary conditions of (37) and (38) where 1
11

ˆ ˆ= TA A BR S−− , 
1ˆ = TR BR B− , and 1

11
ˆ ˆ= TQ Q SR S−− .

The solutions to the two-point boundary value problem (40) can be 
solved by computing its back-time state transition matrix

( )
( )

( ) ( )
( ) ( )

( )
( )

11 12 11

1 21 22 1

ˆ, ,ˆ
=

ˆ ˆ, ,

f f f

f f f

t t t t x tx t
p t t t t t p t

   Ω Ω          Ω Ω     
		                 (41)

By following the approach proposed by Bender and Laub [5], the 
optimal feedback gain can be determined by solving the equation

( ) ( ) ( )=U t K t X t 				                  (42)

for ( )K t  with ( ) ( )
( )

1

2

ˆ
= ˆ

X t
X t

X t

 
 
  

. The general solutions is

( ) ( ) ( ) ( ) ( ) ( )=K t U t X t Y t I X t X t+ + + −  		               (43)

where ( ) m nY t R ×∈  is an arbitrary real matrix and U can be determined 
from

212

1
2 21 12 1

1

ˆˆ 0
ˆ ˆˆ ˆ=

ˆ0

T

T

AP
I

X R Q A X
P

U B

−

  
    

−     
    
     

			                   (44)

 

( ) ( )

( ) ( ) ( ) ( )

1 1
11 21 21

11 11 1
21 22 2222 11

11 1 1 1
21 22 22

11 1 1
21 21 21 21

1 111 1
22 22 2212

0 0 0 0

0 0 0 0ˆ ˆ, ,
0 0 0

0 0 0

ˆ ˆ

ˆ

TT

f f f

f f ff

f f f

T TT T

Q Q Q

Q Q QA Q
I

Q Q Q
I

Q Q Q Q

Q Q QQ

γ

γ

γ γ γ γ

γ γ γ

γ γ

+

 
  
  
  
 = = 
  
  
      

=

 



     

 



 

   

     



 

 

 

 ( )( ) ( )( )

( ) ( )

11 11 1
21 22 22

11 1 1 1
21 22 22

1 11
22 1 1 1121 1 1 11

21 22 22

1 11 1 1 1 1 1
22 22 22 22

1 1
21 22 22

ˆ

ˆ
ˆ, T T

TT

Q Q Q

Q Q Q
Q Q Q Q Q

Q Q Q Q

Q Q Q

γ

γ γ γ γ

γ
γ γ γγ

γ γ γ γ γ γ γ

γ γγ γ

+

+ ++

+

 
 
  
  
  
   =   
  
     
 
  

 



   

 







     

 
   

 



with

( )( ) ( )( )

( ) ( )

( )

( )

( )( ) ( )

( )

111 1 1 1 122 22 1
22 22

11 1 1
122 22 1 1 1

22 22
1 1 11 21 1 1 1 1 11 1 122 22

22 22

11 11
22 2222 22

ˆ ˆ ˆ ˆ

ˆ ˆ
ˆ ˆ

= , =ˆ ˆ

ˆ ˆ

T T

TT

Q Q Q Q

Q Q
Q Q

Q QQ Q Q Q

Q QQ Q

γ
γ γ

γ γ γ
γ γ γ γ

γ γ γ
γ γ γ γ

γ γγ γ γγγ

+

+

+ +
+ + +

+

                             





  

  





 





     












, 

It is straightforward to prove that 12 21
ˆ ˆ= TQ Q .

Combining (16) and (21) yields

( ) ( ) ( )
.

1 11 1 12 2 1
ˆ ˆ ˆˆ ˆ ˆ=x t A x t A x t B u+ + 			               (32)

and combining (22) and (25) produces

( ) ( )21 1 22 2 2
ˆ ˆ ˆˆ ˆ0 = A x t A x t B u+ + 				                 (33)

Similarly, (27), and (24) can be combined to get

( ) ( ) ( ) ( ) ( )
.

11 1 12 2 11 1 21 21
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ= T Tp t Q x t Q x t A p t A p t− − − − 		                 (34)

and (23) and (26) can be put together to obtain

( ) ( ) ( ) ( )21 1 22 2 12 1 22 2
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ0 = T TQ x t Q x t A p t A p t− − − − 		                (35)

In addition, (28) can be rewritten as

( ) ( ) ( )1 1 2 2
ˆ ˆˆ ˆ0 = T TB p t B p t Ru t+ + 			                (36)

The initial conditions (9) and (29) can be written as

( )1 10ˆ ˆ0 =x x 					                  (37)

The final conditions (30) and (31) can be described as

( ) ( )1 11 1
ˆˆ ˆ=f f fp t Q x t 				                (38)

It will prove convenient to define the following matrices

22 2

21 12 12 1 22 22

2

ˆ ˆ0
ˆ ˆ ˆ ˆ ˆˆ0 , 0 , 0

ˆ 0

T T

T

A B

S A Q B A B R A Q

B R

 
 

   = = =       
  

 

with 

1
21

2 1
22 2 22

2 1
2

ˆ
ˆ0 0 ˆˆ ˆ, ,
ˆ0

ˆ

B
b

A B b
I b

Bγ

 
    

= = =    
     

 



( ) ( )

( ) ( )

1 1 1 11 111 11 21 2
22 22 22 22 22 2211 12

11 1222 22
22 22 2212 22

22 22 1 1 11 1 1 1 1 1 21 2 122 22 22 22 22 22

ˆ ˆ ˆ ˆ ˆ ˆ
ˆ ˆˆ ˆ ˆ, ,
ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ
T

Q Q Q Q Q Q
q q

Q q q
q q

Q Q Q Q Q Q

γ γγ γ γ

γ γ γ γ γ γ γγ γ γ γ

+ +

+ +

  
   
 = = =  
    
    

  

        



 

( ) ( )

( ) ( )

( )( ) ( )

( )

( )( ) ( )

( )

1 1 1 1 1 1 1 1 1 11 11 2 1 1 1 1 1 12
22 22 22 22 22 22 22 22

12 22 22
22 22 22

1 1 1 11 1 1 2 1 11 2 1
22 22 22 22 22 22 22 22

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ, ,

ˆ ˆ ˆ ˆ

Q Q Q Q Q Q Q Q
q q q

Q Q Q Q Q Q Q Q

γ γ γ γ γ γ γ γ γ γγ γ

γ γ γ γ γ γ γ γγ γ γ γ γγ γγ

+ + + + + + + +

+ + + +

    
    
   = = =
   
       

   

           

   




 
 
 

,
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With P being the solution of the following Riccati equation

( )1
11

ˆ ˆ ˆ ˆˆ= , =T
f fP PA A P Q PR P P t Q−− + + − 		                (45)

The main results can be summarized by the following theorem.

Theorem 1. Assume that the singular system is in the Weierstrass 
form. If Assumptions 1-7 are satisfied, then

(1) there exists a unique, impulse-free solution of the necessary
conditions (16)-(20), together with the boundary conditions (9)-(12), 
which can be found from (39) and (40);

(2) the optimal feedback gain can be determined by (43);

(3) the optimal cost J from (1) is given by ( )10 10
1 ˆ ˆ= 0
2

TJ x P x .

Examples
Example 1. Consider a simple example of a planar manipulator 

constrained so that the end effector can only move along a straight line. 
The equations of motion [10] is given by

1 1 1=q u f+

2 2 2=q u f+

with a constraint equation of 1 22 = 1q q+ .

Thus, the forces of constraint are 1 =f λ  and 2 = 2f λ . Set 

1 1 2= 2x q q− , 2 1 2= 2x q q−  , 3 = 5x λ , 4 1 2= 2x q q+  , 5 1 2= 2 1.x q q+ −  

Then, the manipulator can be expressed as the form of (3)-(4) with 

1

0 1
=

0 0
A  

 
 

, 
1

0 0
=

2 1
B  

 − 
, 

1

0 1 0
= 0 0 1

0 0 0
N

 
 
 
  

, 1
2

1 2
= 0 0

0 0
B

 
 
 
  

. This 

system is not impulse controllable with 1 2= 0, = = 1γ γ γ . It can be verified 
that Assumptions 1-7 are satisfied with initial conditions 10 202 1 = 0,q q+ −

10 202 = 0q q+  , and matrices 11

1 0
=

0 1
Q  

 
 

, 12

0 0 5
=

0 0 6
Q  

 
 

, 

22

0 0 0
= 0 0 0

0 0 3
Q

 
 
 
  

, 22 22=fQ Q , 21 12= TQ Q , and 21 21 12= =T
f fQ Q Q . It is simple 

to verify the following: 1 1
ˆ =B B , 1

2 2
ˆ =B B , 21 21

ˆ =Q Q , 22 22
ˆ =Q Q , 22 22

ˆ = ,Q Q

11 1
ˆ =A A , 11 11

ˆ =Q Q , 11 11
ˆ =fQ Q , and 

12

0 0 0ˆ =
0 0 0

A  
 
 

, 
21

0 0
ˆ = 0 0 ,

0 0
A

 
 
 
  

22

1 0 0
ˆ = 0 1 0

0 0 1
A

 
 
 
  

. Set 11 21

21 22

=
p p

P
p p

 
 
 

. Then, the Riccati equation (45) 

for the case of =ft ∞  has a unique positive definite solution of 
1 110 5 25 5
5 5=

1 15 2 5 5
5 5

P

 + 
 
 +  

. It follows from (44) that ( )2
ˆ = 0X t  

and ( ) ( )1 1
ˆ=U t K X t  with 1

2 25 2 5 5
5 5= .

1 15 2 5 5
5 5

K

 − − + 
 
 +  

 According to 

(42), the feedback [ ]1 2=K K K  can be found with K2 being arbitrary.

Conclusion
In this paper, the linear quadratic regulator problem has been 

solved for a linear time-invariant singular systems which may not be 
impulse controllable. The impulse controllable and uncontrollable 
subsystems have been separated by transforming the singular system 
into the Weierstrass form. The sufficient conditions have been proposed 
so that the impulse uncontrollable subsystems and their corresponding 
costate subsystems admit a unique impulse-free solution. The necessary 
conditions for the minimization of the quadratic cost function have 
been converted to the Riccati equation.
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