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Abstract

Kinematic synergies in human hand movements have shown promising applications in dexterous control of 
robotic and prosthetic hands. We and others have previously derived kinematic synergies from human hand grasping 
movements using a widely used linear dimensionality reduction method, Principal Component Analysis (PCA). 
As the human biomechanical system is inherently nonlinear, using nonlinear dimensionality reduction methods to 
derive kinematic synergies might be expected to improve the representation of human hand movements in reduced 
dimensions. In this paper, we derived linear and nonlinear kinematic synergies from linear (PCA), globally nonlinear 
(Isomap, Stochastic Proximity Embedding (SPE), Sammon Mapping (SaM), and Stochastic Neighbor Embedding 
(SNE)) and locally nonlinear (Local Linear Embedding (LLE), LaplacianEigenmaps (LaE), and Local Tangent Space 
Alignment (LTSA)) dimensionality reduction methods. Synergies derived from linear PCA and nonlinear SaMwere 
able to capture multiple functional postures and physiological patterns. Results from natural hand grasping movements 
indicated that PCA performed better than all nonlinear dimensionality reduction methods used in the paper. Results 
from ASL postural movements indicated that PCA, SaM, and SPE better generalized over ASL postural movements 
when compared to other methods. Overall, our results show that PCA derived synergies offer qualitative and 
quantitative advantages over nonlinear methods as a limited number of kinematic synergies begin to be implemented 
in human prosthetics. 
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Introduction
The hand is tasked with creating a multitude of postures in everyday 

life in order to grasp, use, and manipulate objects. With more than 25 
degrees of freedom (DoF) [1], the hand is well equipped to dexterously 
achieve these tasks. It is hypothesized that the central nervous system 
(CNS) calls upon a few key movement patterns when controlling the 
hand; this has been supported by neural [2], muscle [3,4], and kinematic 
studies [5,6,7] of reach and grasp movements [8]. For example, a cup is 
often grasped with a similar hand motion irrespective of position or 
size. These few movement patterns are known as synergies. 

Synergies, or movement primitives, are viewed as fundamental 
building blocks of movement [9,10]. Using synergies, the CNS can 
simplify control of high DoF limbs: instead of controlling individual 
DoF, the CNS controls a few synergies that each encodes multiple 
DoF. Synergies, especially in the human hand present a unique testing 
environment for two reasons: (1) the human hand has the most DoFs 
in the body and (2) we and others have observed that hand movements 
in activities of daily living (ADL) involving hand grasping can be 
reconstructed with 90% accuracy using six synergies [7,11]. These six 
synergies were computed using principal component analysis (PCA) 
and accommodated for more than 90% of the variance in the joint 
kinematics. This means that high dimensional control (25 DoF) control 
can potentially be reduced to low dimensional control (6 functional 
DoF).

In the above example, PCA was used as a form of dimensionality 
reduction in order to determine synergies. A comparison of performance 
was made between PCA and unsupervised linear discriminant analysis 
(ULDA) we found that PCA outperformed ULDA [12]. There are other 

dimensionality reduction methods, both linear and nonlinear, that may 
extract the functional patterns of human hand motion. While a number 
of dimensionality reduction techniques have been comparatively 
evaluated on extraction of muscle synergies [13], their efficiency in a 
different task space, kinematics, has not been evaluated. Inspired by 
the above studies, in this paper, linear and nonlinear dimensionality 
reduction methods were used to derive kinematic synergies in hand 
movements. The aims of this paper were twofold (i) To compare the 
performance of linear synergies (i.e., synergies derived from linear 
dimensionality reduction methods) with the performance of nonlinear 
synergies (i.e., synergies derived from nonlinear dimensionality 
reduction methods) in representing and generalizing hand movement 
kinematics. To this end we used linear (PCA), globally nonlinear 
(Isomap, Stochastic Proximity Embedding (SPE), Sammon Mapping 
(SaM), and Stochastic Neighbor Embedding (SNE)) and locally 
nonlinear (Local Linear Embedding (LLE), LaplacianEigenmaps (LaE), 
and Local Tangent Space Alignment (LTSA)) dimensionality reduction 
methods. (ii) To see whether the subtle nonlinearities of human hand 
grasping kinematics can be captured by nonlinear methods with 
increased precision when compared to linear methods. Comparatively 
exploring multiple dimensionality reduction methods allows us to 
determine which techniques are appropriate for identifying patterns 
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in experimental datasets. The analysis also highlights important 
physiological patterns based on the assumptions of each method.

Researchers mimicking the CNS in various applications like 
brain-computer interfaces (BCI) [14], humanoid robotics [15,16], and 
neuroprosthetics [17] have turned to synergies as a means of operating 
high-DoF machines with simpler control. This is accomplished by 
identifying common patterns of joint velocities, or kinematic synergies, 
which can be invoked using a single control signal. However, the useful 
application of kinematic synergies for biomimetic prosthesis control 
relies on their correct derivation. This derivative analysis further 
establishes which synergies, or properties of synergies, should be 
implemented in biomimetic prosthesis.

Materials and Methods
Experiment and materials

Ten healthy, right handed subjects participated in this experiment 
after signing the consent forms approved by the institutional review 
board (IRB) of the University of Pittsburgh. The experiment consisted 
of three phases. In the first phase, subjects were instructed to rapidly 
grasp 50 objects, one at a time. Objects were placed 40 cm in front of the 
subject. This was repeated for the same 50 objects, and thus the whole 
training phase obtained 100 rapid grasps. A typical task consisted of 
grasping an object. Start and stop times of each task were signaled by 
computer-generated beeps. In each task, the subject was in a seated 
position, resting his/her right hand at a corner of a table and upon 
hearing the beep, grasped the object placed on the table. At the time 
of the start beep, the hand was in rest posture, and then the subject 
grasped the object and held it until the stop beep. In the second phase, 
subjects were instructed to grasp 50 objects naturally (slower than the 
rapid grasps) twice each. The same setup as Phase I was used. In the 
third phase, to test the generalizability of the synergies over a broad 
range of postures, subjects were also asked to pose 36 (10 numbers and 
26 alphabets) American Sign Language (ASL) postures. Here, subjects 
started from an initial posture and stopped at one ASL posture. The 100 
rapid grasps from phase 1 were used in deriving synergies using linear 
and nonlinear dimensionality reduction methods. The 100 natural 
grasps from phase 2 and the 36 ASL postures from phase three were 
used to evaluate the derived synergies.   

In the experiment we used a CyberGlove (CyberGlove Systems 
LLC, San Jose, CA, USA) equipped with 22 sensors that captured 
hand movements at a sampling frequency of 86 Hz. In this paper, we 
only considered 10 of the sensors which measure the angles of the 
metacarpophalangeal (MCP) and interphalangeal (IP) joints of the 
thumb and the MCP, and proximal interphalangeal (PIP) joints of the 
other four fingers. Distal interphalangeal joint angles are approximately 
2/3 of PIP joint angles [18]. Since its relationship can be estimated, 
when looking for overall hand patterns, DIP joints can be omitted.  
The CMC joint, although necessary for grasping movements, is a 
complex multi-dimensional joint that is often simplified in prosthetic 
applications. We therefore, omitted it from this analysis, focusing on 
flexion and extension in all fingers. Abduction/adduction angles for 
application reasons were also not included. The palm arch sensor was 
omitted as it is not a naturally controlled DoF. Wrist sensor was not 
included as the current study focused on hand grasping and shaping 
and not orientation. Thus, the remaining 10 joints capture most variable 
characteristics of the hand in grasping tasks. We used several objects 
of different shapes (spheres, circular discs, rectangles, pentagons, nuts, 
and bolts) and different dimensions (spheres: 1–5 cm in radius; discs: 
2–10 cm in radius; rectangles and pentagons: 1–3 cm each side; nuts 

and bolts: 2–5 cm in length) in the grasping tasks. This allowed us to 
test the general shapes and sizes of objects encountered is activities of 
daily living. Real objects, although used in some experimental setups, 
require increased precision using individual joint movements; this 
would diminish the generalizability of derived synergies.

Preprocessing
Rapid grasping movements from the first phase were used in 

deriving synergies. We assume that these synergies are a result of direct 
impulses from the CNS. By minimizing reaction time and continuous 
sensory feedback, the resulting task space is driven by synchronous 
weighted synergies [7]. The natural movements and ASL postural 
movements were reconstructed using the derived synergies.

First, we calculated angular velocities using the derivative of joint 
angle profiles collected in the experiment. Flexion is positive and 
extension is negative; subjects started in a flat hand resting position. 
We preserved only the relevant projectile movement about 0.45 second 
or 39 samples under a sampling rate of 86 Hz. This time segment 
represents movement onset to grasp completion, detected by a constant 
zero velocity at all digits. Second, we constructed an angular-velocity 
matrix, V, for each subject. Angular velocity profiles for the ten joints 
recorded during one grasp trial were concatenated into the same row. 
Each row, therefore, represented one object grasp, g, in time. The matrix 
had 100 rows (corresponding to 100 rapid grasping tasks from first 
phase) and 39 × 10 = 390 columns:

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1 1
1 1 10 10

1 1 10 10

100 100 100 100
1 1 10 10

1 39 1 39
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where ( )g
iv t  represents the angular velocity of joint ( )1, ,10i i = ¼ at 

time ( )  1, ,39t t = ¼ in the g-th grasping task (g = 1, ..., 100). 

Dimensionality Reduction
We then performed linear and nonlinear dimensionality reduction 

on the above angular velocity matrix, V, to derive linear and nonlinear 
kinematic synergies. For PCA, Statistics Tool Box in MATLAB was 
used, and for all other global and local nonlinear methods drtoolbox by 
van der Maaten LJP was used [19]. All the methods used in the paper 
are briefly described [20,21].

Linear method: Principal Component Analysis: We first began 
with linear method PCA. We implemented PCA using SVD [20].The 
angular velocity matrix V was factorized to three matrices U, Σ and S 
as shown below.

                  V U S= S
where U is a 100-by-100 matrix, which has orthonormal columns so 

that U ′U  = I100×100 (100-by-100 identity matrix); S is a 100-by-390 matrix, 
which has orthonormal rows so that  SS′  =  I100×100;  and  Σ  is  a  100-by-
100 diagonal  matrix:  diag{λ1, λ2, ..., λ100} with

1 2 100 0l l l³ ³¼³ ³
Matrix V can be approximated by another matrix  Ṽ  with reduced rank 
m by replacing Σ with Σm, which contains only the m largest singular 
values, i.e., λ1, ..., λm (the other singular values are replaced by zeros). 

(1)

(2)
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The approximation matrix  Ṽ  can be written in a more compact form: 


1V   ,  ... { },m m mU diag Sλ λ=                              (3)

where Um is a 100-by-m matrix containing the first m columns of U and 
Smis a m-by-390 matrix containing the first m rows of S. Then each row 
of Sm is called a principal component (PC), and the product Umdiag{λ1, ... , 
λm} is called the weight matrix.

For easy comparison, the elements of Sm, in a way similar to (1), 
were written as:

( ) ( )

( ) ( )

( )

( )

( )

( )

1 1 1 1
1 1 10 10

1 1 10 10

1 39 1 39
         

1 39 1 39
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ê ú
ê úë û

  

      

  

               (4)

The angular-velocity profiles (obtained by rearranging all joints 
row-wise for the PCs)
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can be viewed as synergies.

To decide m, the number of PCs or synergies that we want to use in 
reconstruction of the testing movements, we consider an index defined 
as 

2 2 2
1 2
2 2 2

1 2 100

  
  

ml l l
l l l

+ +¼+
+ +¼+

This index indicates the fraction of total variance of the data 
accounted by the PCs. Here 95% variance was achieved with six PCs in 
all subjects (Table 1).

Global nonlinear methods: Global dimensionality reduction 
methods try to retain the global properties of the data. PCA and classical 
multidimensional scaling (MDS) are such global linear methods. The 
difference between these methods and nonlinear methods comes from 
nonlinear transformations of high-dimensional data to low dimensions. 

a) Sammon mapping: Classical MDS maps high-dimensional 
space to low-dimensional space by preserving the pairwise inter-point 
distances of the data [22]. The cost function, also known as stress 
function, is the Euclidean distance between high-dimensional data 
points. This projection can be represented as a linear combination of 
original variables. Sammon Mapping (SaM) is very similar to classical 
MDS but this method preserves the structure of inter-point distances 
using a nonlinear stress function [23],ψ, as shown below.

( )1 2 i j i j
i ji jij

i j

x x l l
x x

x x
y

¹

- - -=
-

-
åS

 





 





                         (5)

Where xi and xj are the original data points and li and lj are data 
points in the low dimensional space. indicates the Euclidian 
distance between the data. The minimization of the stress function was 
performed using an iterative gradient descent method in this paper. 

b) Isomap: Isomap is similar to multidimensional scaling (MDS) 
[19]. Although Isomap does linear estimations in the data point 
neighborhoods, the synergies extracted are nonlinear because these 

small neighborhoods are stitched together without maintaining 
linearity. The following were the steps involved in estimating nonlinear 
synergies using Isomap [23] (i) Define neighbors for each data point 
(ii) Find D, a matrix of inter-point distances (iii) Find eigenvectors of 
τ(D), where τ(D) / 2,HSH=- ( )2

ij ijS D=  and 1/ij ijH d N= - , where N is number 
of data points and d is Kronecker delta function.

c) Stochastic embedding: Stochastic Proximity Embedding (SPE) 
by Agrafiotis [24] is a self-organizing algorithm that attempts to generate 
low-dimensional euclideanembeddings, similar to classical MDS and 
Sammon mapping. The method iteratively refines by selecting pairs of 
random data points and adjusts their coordinates to optimize the stress 
function that is similar to𝜓 in SaM.

d) Stochastic neighbor embedding (SNE): SNE is also similar to 
MDS. The difference is the distance measure and stress function that is 
optimized [25]. The similarities of nearby points contribute to the stress 
function, thus the method preserves local properties of the data. 

Local nonlinear methods

Local methods preserve the properties of high-dimensional data 
in small neighborhoods around the data points. Three methods were 
considered in this category.

a) Local linear embedding: Locally Linear Embedding (LLE), 
as the name suggests, tries to find a nonlinear manifold by stitching 
together small linear neighborhoods [26]. This is very similar to 
Isomap. The difference between the two algorithms is in how they 
interpolate the small linear neighborhoods. Isomap does this by doing 
a graph traversal by preserving geodesic distances while LLE does it 
by finding a set of weights that perform local linear interpolations that 
closely approximate the data. The following were the steps involved in 
estimating nonlinear synergies using LLE [2]: (i) Define neighbors for 
each data point (ii) Find weights that allow neighbors to interpolate 
original data accurately (iii) Given those weights, find new data points 
that minimize interpolation error in lower dimensional space.

b) Laplacian eigenmaps: LaplacianEigenmaps (LaE) is a 
geometrically motivated algorithm, similar to LLE. This method 
is widely used in locality preserving and clustering applications. 
The following cost function of pairwise distances is defined as an 
eigenproblem using spectral graph theory [19]:

2
ij i j ijl ly w=S -                                                 (6)

whereli and ljare data points in the low dimensional space. 𝜔ij 

corresponds to weights assigned to them. Large weights correspond 
to nearest original data points, and thus, near-by points in the high 
dimensional space are placed as close as possible in the low dimensional 
space.

Method Natural grasps ASL postures
PCA 0.0964 ± 0.0144 0.1813 ± 0.0250
SaM 0.1259 ± 0.0200 0.2071 ± 0.0262
SPE 0.1452 ± 0.017 0.2354 ± 0. 0232

Isomap 0.4330 ± 0.022 0.4400 ± 0.0361
SNE 0.3837 ± 0.0209 0.3949 ± 0.0258
LLE 0.3892 ± 0.0266 0.4106 ± 0.0248
LaE 0.2992 ± 0.0179 0.3014 ± 0.0357
LTSA 0.3960 ± 0.0266 0.4472 ± 0.0458

Table 1: Mean reconstruction errors (± standard deviation) for all methods (using 
six synergies) for all subjects in natural grasps and ASL postural movements.
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where cjk is the weight of the j-th synergy with a shift of tjk. The matrix 
B can be viewed as a bank or library of template functions with each 
row of B as a template. The following optimization problem was used 
in selection of synergies in reconstruction of a particular movement.

2
1 row 2

1 Minimize   c   c v+ −
λ

B                                                                 (8)

where 1 || · ||  represents the l1 norm, 2 || · ||  represents the l2 norm or 
Euclidian norm of a vector and λ is a regulation parameter. 

Results
Linear and nonlinear (globally nonlinear and locally nonlinear) 

dimensionality reduction methods presented in Section II-C were 
used to derive kinematic synergies from preprocessed hand kinematics 
measured from Phase 1 of the experiment. Ten synergies were used to 
observe performance in reconstruction (Figures 1 and 2).

The kinematic synergies derived in this study characterize joint 
angular velocity patterns over grasp time.  An example of the first six 
synergy profiles for subject 1 are shown in Figures 3 and 4 and the 
corresponding end postures are shown in Figure 5. The best performing 
methods, PCA and SaM, shown in rows 1 and 2, respectively, have 
synergies that cover a range of postures ending in flexion and/or 
extension across all digits. This performance could be attributed to 
capturing such physiological and functional movements. SPE, also 
performed relatively well; however, the method preserved only flexion 
and it lacked variability across synergies. As the weights of each 
synergy may be adjusted during reconstruction, capturing inherent 
physiological patterns of the hand is very important. For example, in 
the third synergy, LaE was able to capture an index-finger led flexion at 
all MCP joints. Extreme or nonphysiological movements were captured 
by synergies from other nonlinear methods. This might have led to 
their poor performance. 

An example reconstruction of a naturally grasped object (wooden 
triangle) is shown in Figure 6. Each subfigure shows reconstruction 

c) Local tangent space alignment: Local Tangent Space Alignment 
(LTSA) describes local properties of data using local tangent space of 
each data point. The assumption behind choosing local tangent space 
is when the manifold is unfolded, the tangent hyperplanes become 
aligned. LTSA assumes a linear mapping between LTS and original 
high dimensional data and a linear mapping between LTS and low 
dimensional data. The linear mapping between high dimensional 

data and LTS, Өi is calculated by PCA. Linear mapping from LTS to 
computed low dimensional space is assumed to be Ki. The cost function 
to be minimized is given by the following equation [2]: 

 2
i i i iL J Ky q=S -                                                                       (7)

Where Li represents low dimensional data representation to be 
computed. J represents the mean centering matrix.

Reconstruction of Natural and ASL Postural 
Movements

Ten synergies extracted from linear and nonlinear dimensionality 
reduction methods were used in reconstruction of natural and ASL 
movements. l1-norm minimization was used to optimally and sparsely 
select the synergies. This was similar to the methods in  Dimensionality 
reduction in control and coordination of human hand  [7]. Briefly, 
these were the steps involved in l1-norm minimization algorithm. Let 
us assume m synergies with a duration of ts samples (ts = 39 in this 
study) were obtained for a subject. Natural grasping movements, which 
are to be reconstructed, are longer. Consider a natural grasp’s angular-
velocity profile ( ){v , 1, , }t t T= ¼ where ( )82in this studyT T = represents 
the movement duration (in samples). This profile can be rewritten as a 
row vector, denoted vrow:

( ) ( ) ( ) ( )row 1 1 10 10v 1 , , , , 1 , ,v v T v v Té ù= ¼ ¼ ¼ë û

Similarly, a synergy ( )·js  can be written as the following row 
vector:

( ) ( ) ( ) ( )1 1 10 101 , , ,0, ,0, , 1 , , ,0, ,0 .j j j j
s ss s t s s té ù¼ ¼ ¼ ¼ ¼ê úë û

We add sT t- zeros after each ( )( ) 1, ,1 0j
i ss t i = …  in the above 

vector in order to make the length of the vector the same as that of vrow. 
If the synergy is shifted in time by ( ) jk jk st t T t≤ −  samples, then we 
obtain the following row vector:

( ) ( )1 1[0, , 0, 1 ,  , ,0,  , 0, ,j j
ss s t… … … …

( ) ( )10 10                                                    0, ,0, 1 , , ,0, ,0] j j
ss s t… … …

with jkt  zeros added before each ( ) 1j
is  and s jkT t t− − zeros added 

after each j
is                                                                                                 (9).

Then we construct a matrix consisting of the row vectors of the 
synergies and all their possible shifts with 1  .jk st T t≤ ≤ −

With the above notation, we are trying to achieve a linear 
combination of synergies that can reconstruct the velocity profiles as in 
the following equation.

rowv cB=

where c denotes

[ ]10 11 1 20 2    , , , , , , , ,K K mKc c c c c c… … …

Figure 1: The reconstruction errors (averaged across 10 subjects and 100 
natural tasks) for all dimensionality reduction methods using up to 10 synergies 
are shown. The reconstruction errors using synergies derived from PCA were 
less than those by other nonlinear methods. The performance of nonlinear 
methods SaM and SPE was close to PCA.
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Figure 2: The reconstruction errors (averaged across 10 subjects and 36 
ASL tasks) for all dimensionality reduction methods using up to 10 synergies 
are shown. The reconstruction errors using synergies derived from PCA were 
less than those by other nonlinear methods. Nonlinear methods SaM and 
SPE performed equally well.

Figure 3:  Six kinematic synergies obtained for subject 1 using globally linear 
PCA and globally nonlinear Sammon Mapping, SPE, Isomap, and SNE as 
indicated by the legend at the bottom of the figure. Each synergy is about 0.45 
s in duration (39 samples at 86 Hz). Abbreviations: T, thumb; I, index finger; M, 
middle finger; MCP, metacarpophalangeal joint; IP, interphalangeal joint; PIP, 
proximal IP joint. Only 6 of the 10 joints are illustrated.

using synergies derived from a particular method.  The normalized 
reconstruction errors were calculated by the ratio of the difference 
between the sums of squared errors of recorded and reconstructed joint 
angular velocities to the sum of squared recorded joint angular velocities 
at each sampled point. Figure 5 shows the mean reconstruction errors 
and standard deviations for 100 natural movements for 10 subjects 
across 10 synergies. Similarly, Figure 6 shows the mean reconstruction 

 

Figure 4: Six kinematic synergies obtained for subject 1 using locally linear LLE, 
LaE and LTSA as indicated by the legend at the bottom of the figure. Each 
synergy is about 0.45 s in duration (39 samples at 86 Hz). Abbreviations: T, 
thumb; I, index finger; M, middle finger; MCP, metacarpophalangeal joint; IP, 
interphalangeal joint; PIP, proximal IP joint. Only 6 of the 10 joints are illustrated.

 
Figure 5: End postures of six synergies derived from linear and nonlinear 
methods for Subject 1.
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errors and standard deviation for 36 ASL postural movements for 10 
subjects across 10 synergies. As shown in Figures 1 and 2 all nonlinear 
methods (with the exception of SaM and SPE) performed poorly when 
compared to PCA. Table 1 shows an example of the mean reconstruction 
errors (with standard deviations across 10 subjects) during 100 natural 
grasps and 36 ASL postural movements for all the eight methods 
using six synergies. PCA has the best overall performance with mean 
reconstruction errors of 0.0964 and 0.1813 for natural and ASL postural 
movements, respectively. In the nonlinear methods, SaM and SPE 
performed nearly close to PCA. 

Discussion
Linear vs. nonlinear synergies 

The prime objective of this study was to determine if nonlinear 
methods should be further explored in order to determine human 
movement synergies. We applied linear and nonlinear dimensionality 
reduction methods to derive linear and nonlinear kinematic synergies 
from human hand grasping movements. We then used these synergies 
to reconstruct natural hand grasping movements that were similar to 
activities of daily living. To broaden the applicability of synergies we 
also tested them on ASL postural movements that were different from 
natural grasps. The results indicate that the kinematic synergies were 
efficiently represented by linear PCA when compared to nonlinear 
methods. The nonlinear methods used in the paper suffered from 
their own methodological weaknesses as discussed in the following 
sections. It is important to recognize that even though linear kinematic 
synergies were efficiently linearly combined in task space, execution of 
these synergies is most likely neither exclusively linear nor exclusively 
nonlinear, but a combination of both [27]. Furthermore, the hierarchy 
of motor control involves not only the motor cortex, sensorimotor 
cortex, cerebellum and spinal cord, but the end effectors as well 
including muscles and joints, which are all non-linear. Not only does 
this add to the dimensionality of the task space, but the relationship 

between different levels adds complexity. For example, in a study done 
by de Rugy et al. [27], linear muscle synergies were extracted from a 
wrist force aiming task using non-negative matrix factorization; muscle 
synergies mapped linearly to the task space within 20% of maximum 
force, and thereafter the mapping was not linear.

Linear vs. nonlinear methods

The results (Figures 1 and 2) (Table 1) suggest that nonlinear 
methods did not perform better than the linear PCA. Similar findings 
were reported by Clewley [19,28] van der Maaten LJP stating that PCA 
outperformed nonlinear methods for real world datasets. SaM and SPE 
performed close to PCA because inherently, these methods implement 
MDS in nonlinear space while PCA implements MDS in linear space. 
However, the drawback of SaMand SPE is computation time. Moreover, 
SaM involves gradient descent method that suffers from local minima. 
LaE, SNE, LLE, LTSA, and Isomap were next in the order of performance 
with worst being Isomap. The nonlinear methods suffered, in general, 
from not being able to capture the global properties of data which were 
grasped by PCA using variance. Both linear and nonlinear methods 
suffered during the reconstruction of ASL postural movements. The 
reconstruction errors increased significantly for PCA when compared 
to those for natural movements; nevertheless, the reconstruction errors 
were still to a major extent less than the tested nonlinear methods (with 
the exception of SaM performing slightly better for 9 synergies for ASL 
postures in Figure 2) (Table 2).

Global vs. local methods

Global methods (PCA, SaM, SPE) performed better than local 
methods (LLE, LaE, LTSA) with the exception of Isomap and SNE. 
Note that PCA is grouped under global method as it is a global linear 
dimensionality reduction technique. Both global and local methods 
suffer from the following weaknesses. Locally nonlinear methods 
cannot represent the global properties of the data. In Figure 4 we 
observed that the reconstructions by LaE and LTSA were unable to 
capture the globally simple nature of T-MCP joint movement. Globally 
nonlinear methods often ignore the local properties of the data. In 
Figure 6 we observed that reconstructions by Isomap and SNE were 
unable to capture the local submovements in M-MCP joint movement. 
In general, global and local nonlinear methods that are based on 
neighborhood graphs, such as Isomap, SNE, LaE and LLE suffer from 
over-fitting the data and misunderstanding the outliers. Overall, the 
parametric nature of the nonlinear methods makes them susceptible to 
the curse of dimensionality.

In order to accurately represent data, the number of synergies 
chosen to include often depends on the amount of variance they 
described. There reaches a point where any additional synergies only 
represent unstructured noise, which is characterized by a progressive 
decrease in the slope. However, not all the methods used in this study 
are dependent on variance; thus, the reconstruction error seen in 
Figures 5 and 6 can show the significance of higher and lower order 
synergies. PCA, SaM, SPE, Isomap, and SNE show a decrease in error 
as the number of synergies used increases; however, the rate of error 
change begins to decrease at a certain point. This occurs at synergy 4 for 
PCA, synergy 6 for SaM and SPE, and synergy 7 for Isomap and SNE. 
However, LTSA, LaE, and LLE, all locally nonlinear methods, do not 
show a progressive decrease in the slope of error plots. Instead, lower 
order synergies cause a greater decrease in error than higher order 
synergies (e.g. slope between synergy 6 and synergy 7 is greater than the 
slope between synergy 5 and synergy 6 on the LaE curve in Figure 1). 

Figure 6: An example reconstruction (in black) of a natural movement (in 
red) for task 24 when subject 1 grasped a wooden triangle. Abbreviations: T, 
thumb; I, index finger; M, middle finger; R, ring finger; P, pinky finger; MCP, 
metacarpophalangeal joint; IP, interphalangeal joint; PIP, proximal IP joint.
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S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
Subject 1 3.871 1.384 0.906 0.776 0.737 0.468 0.389 0.358 0.309 0.279
Subject 2 5.693 1.896 0.874 0.816 0.712 0.614 0.566 0.430 0.378 0.351
Subject 3 5.421 1.797 0.938 0.766 0.740 0.576 0.534 0.459 0.387 0.352
Subject 4 7.151 1.959 1.070 0.861 0.728 0.627 0.471 0.434 0.394 0.363
Subject 5 6.073 1.304 1.084 0.519 0.452 0.441 0.355 0.299 0.274 0.230
Subject 6 3.219 1.273 0.814 0.657 0.530 0.445 0.429 0.359 0.291 0.248
Subject 7 5.340 1.908 1.058 0.817 0.680 0.561 0.516 0.435 0.376 0.344
Subject 8 4.887 1.506 1.499 0.732 0.564 0.518 0.493 0.406 0.346 0.303
Subject 9 3.080 0.914 0.590 0.403 0.329 0.278 0.202 0.176 0.170 0.144
Subject 10 3.689 1.675 0.928 0.657 0.529 0.401 0.367 0.312 0.253 0.228

Table 2: Lambda values, indicating variance accounted for by each of the synergies (S1-S10) derived from PCA for subjects 1-10.  

Physiological interpretation of synergies

1) Task specificity: Task specific kinematic synergies have been 
derived in a number of studies. Synergies were derived using PCA on 
object manipulation tasks and were used in reconstruction of grasping 
tasks [29]. While ASL postures are not commonly learned or used 
postures, many of the ASL postures (e.g. letters A, C, E, F, M, N, O, S, 
T and numbers 0 and 9) are created using movements similar to those 
found in grasping. Individual finger movements cause deviation from 
synergy patterns resulting in increased reconstruction error. Their 
inclusion in this experiment allows us to test the generalizability of 
derived synergies to other tasks. 

2) Behavioral movement patterns captured in synergies: The 
patterns of synergies extracted from both linear and nonlinear methods 
reflected important characteristics of movement. The joint angular 
velocity profiles seen in synergies derived by PCA (Figure 1) were very 
similar to characteristic velocity profiles observed during reach to grasp 
(meaning initial acceleration followed by deceleration) [30]. Synergies 
derived from LLE, LTSA, and, LaE lacked characteristic changes in 
velocities; instead many synergies showed only acceleration or only 
deceleration, particularly in MCP joints (Figure 2). Velocity profiles 
in synergies derived from SNE, SaM, SPE and Isomap showed broad 
bell shaped velocity profiles as shown in Figure 1. In each synergy 
derived from PCA, Isomap, SaM and SNE, velocity patterns are similar 
across MCP joints and across PIP joints but there were differences in 
magnitude of velocity. LLE, LTSA, LaE, and SPE synergies were not able 
to preserve similarities across fingers. 

During object grasping, the hand often over-extends during reach 
[31]. Thus, both extension and flexion need to be represented in derived 
synergies. All methods, with the exception of SPE, were able to capture 
both flexion and extension in one or more synergies. The first synergy 
extracted by PCA shows flexion in MCP joints preceding flexion in 
PIP joints. The overall movement is similar to a power grasp. This type 
of movement in kinematic synergies has also been captured by others 
[11,31,32].

Applications of Derived Kinematic Synergies
Synergies have applications in humanoid robotics and 

neuroprosthetics. Researchers have begun to translate synergies from 
physiological data to functional control of anthropomorphic and 
non-anthropomorphic prosthetics [33,34]. This involves modeling 
physiological grasping datasets with a dimensionality reduction 
technique and translating selected synergies onto a mechanical design. 
More recently, work has been dedicated to grasp structural properties 
(contact forces, object controllability) which are evaluated based on 
determined synergies and implementation [33-38]. The results of this 

study help us in selecting fewer optimal synergies to be inserted into 
such control schemes. For example, SPE, by preserving interpoint 
distance of high and low dimensional space, captured a cylindrical 
grasp well (better than PCA), but was not able to escape the cylindrical 
grasp pattern. Methods that prioritize on globally and commonly found 
patterns may be implemented in a robotic prosthetic hand; however 
synergies that still maintain physiological interfinger coupling may 
be necessary for hand exoskeletons. In the realm of neuroprosthetics, 
as researchers attempt to find neural correlates of synergies, these 
couplings are also important. 

In summary, kinematic synergies in the grasping hand were 
extracted from linear and nonlinear dimensionality reduction 
methods. Movement reconstruction was achieved using the same 
optimal selection algorithm on synergies obtained from all methods. 
PCA performed well in movement reconstruction when compared 
to all nonlinear methods, except the global nonlinear methods 
SaM and SPE [39]. These methods performed nearly close to PCA. 
Graphical visualization of postural synergies derived from linear PCA 
and nonlinear SaM revealed functional and physiological patterns. 
Synergies extracted from global methods preserved characteristic 
velocity profiles while local methods failed. Consequently, global 
methods performed well when compared to local methods. Behavioral 
movement patterns were captured in synergies extracted from all global 
methods. Overall, our results show that PCA derived synergies have 
qualitative (functional and physiological postures) and quantitative 
(unsupervised and less computation load) advantages over nonlinear 
methods as a synergies begin to take prime place in prosthetics.
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