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Abstract
In this paper we study the Lie symmetries of the canonical connection on Lie groups for the special case when the Lie algebra has a codimension 
two abelian nilradical. In this particular case, we have only one algebra in dimension four, namely 4,12A and three algebras in dimension five; namely

5,33
abA , 5,34

aA and 5,35
abA . For each of these algebras we investigate and classify the symmetry algebra associated with its geodesic equations.
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Introduction

This article is concerned with the canonical symmetric connection 
∇ associated to any Lie group G. It was introduced originally in 
1926 as the “zero”-connection; see [1]. Some properties of ∇ are 
considered in Helgason S [2]. More recently ∇ and its geodesic 
system have been investigated within the context of the inverse 
problem of Lagrangian dynamics; see [3-7]. There has also been a lot 
of work related to the symmetry analysis of the geodesic equations in 
lower dimensions [8-11].

In this paper we focus our study on the symmetry analysis of 
the geodesic equations of the canonical connection for the special 
case when the niradical of the Lie algebra is two-dimensional ableian 
algebra. In dimension four there is only one Lie algebra of this type; 
namely 4,12A  and in dimension five there are three families of Lie 
algebras Lie algebras with parameters- with this property; namely; 

5,33
abA , 5,34

aA and 5,35
abA . In Section 2, we define and prove all the 

geometric properties of the canonical connection on Lie groups [12]. 
In Section 3, we consider the algebra 4,12A  we derive the geodesic 
equations from a basis of right-invariant vector fields representation 
of the Lie algebra. We also compute a basis of the symmetry Lie 
algebra and analyze its Lie algebra.

Similarly, in Section four we consider the three five-dimensional 
Lie algebras 5,33

abA , 5,34
aA and 5,35

abA .

Finally, regarding our notation, we will use (x, y, x, w, p, q) are our 

coordinates. We will denote x  for dx
dt

 and x∂  for 
x
∂
∂

.

The Canonical Lie Group Connection

On left invariant vector fields X and Y the canonical symmetric 
connection ∇ on a Lie group G is defined by 

[ ]1 , (2.1)
2XY X Y∇ =                              (2.1)

and then extended to arbitrary vector fields using linearity and the 
Leibnitz rule. Clearly ∇ is left-invariant. One could just as well use 
right-invariant vector fields to define ∇, but one must check that ∇ is 
well defined, a fact that we will prove next.

Proposition 2.1

In the definition of ∇ we can equally assume that X and Y are 
right-invariant vector fields and hence ∇ is also left-invariant and 
hence bi-invariant. Moreover ∇ is symmetric, that is, its torsion is 
zero. 

Proof

The fact that ∇ is symmetric is obvious from eq. (2.1). Now we 
choose a fixed basis in the tangent space at the identity TIG. We shall 
denote its left and right invariant extensions by {X1, X2,..., Xn} and {Y1, 
Y2,..., Yn}, respectively. Then there must exist a non-singular matrix A 
of functions on G such that j

i i jY a X= . We shall suppose that

, (2.2)k
i j ij kX X C X  =                (2.2)

Changing from the left-invariant basis to the right gives

(2.3)k p k m p
ij k i j kmC a a a C=               (2.3)

Next, we use the fact that left and right vector fields commute to 
deduce that

0 (2.4)k m m
j ik i ja C X a+ =               (2.4)

where the second term in 2.4 denotes directional derivative. We note 
that necessarily
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iv. The Ricci tensor Rij of ∇ is given by
1 (2.11)
4

l m
ij jm ilR C C=                (2.11)

and is symmetric and bi-invariant and is obtained by translating to the 
left or right one quarter of the Killing form. It engenders a bi-invariant 
pseudo-Riemannian metric if and only if the Lie algebra g is semi-
simple.

Proof

i. Is obvious and applies to arbitrary vector fields since it is a 
tensorial object.

ii. Is obvious.

iii. This fact follows from a series of implications:

4∇W R(X, Y)Z+4R(∇W X, Y)Z+4R(X, ∇W Y)Z+4R(X, Y)∇W Z=∇W 
[[X, Y ], Z]        (2.12)

⇒ 4∇W R(X, Y)Z+2R([W, X], Y)Z+2R(X, [W, Y ])Z+2R(X, Y)[W, Z] 
−1/2[W, [[X, Y ], Z]=0              (2.13)

⇒ 4∇W R(X, Y)Z+1/2[[W, X],Y],Z]+1/2 [X, [W, Y ]], Z]+1/2 [[X, Y ], 
[W, Z]]−1/2 [W, [[X, Y ], Z]=0            (2.14)

⇒ 4∇W R(X, Y)Z+1/2 [[W, X], Y ], Z]+1/2 [X, [W, Y ]], Z] – 1/2 [Z, 
[[X, Y ], W]=0         (2.15)

⇒ ∇W R(X, Y)Z=0              (2.16)

iv The formula eq (2.11) is obvious from eqs. (2.1) and (2.10). 
The last remark follows from Cartan’s criterion.

Proposition 2.4

i. Any left or right-invariant vector field is geodesic.

ii. Any geodesic curve emanating from the identity is a one-
parameter subgroup.

iii. An arbitrary geodesic curve is a translation, to the left or 
right, of a one-parameter subgroup.

Proof

i. Is obvious because of the skew-symmetry in eq (2.1).

ii. By definition the curve t → [S exp(tX)] integrates a geodesic 
field X.

iii. If the geodesic curve at t=0 starts at S, translate the curve 
to I by multiplying on the left or right by S−1 and apply (ii).

Proposition 2.5

i. A left or right-invariant vector field is symmetry, a.k.a. affine 
collineation, of ∇.

ii. Any left or right-invariant one-form engenders a first integral 
of the geodesic system of ∇.

Proof

i. The following condition for vector fields X and Y says that 
vector field W is a symmetry or, affine collineation, of a 
symmetric linear connection:

∇x∇YW−∇xYW−R(W, X)Y=0             (2.17)

In the case at hand of the canonical connection, this condition 
just reduces to the Jacobi identity when W, X and Y are all left or 

, (2.5)k
i j ij kY Y C Y  = −                (2.5)

Now we compute

( )1 1 1
2 2 2

k k m p k p k p
i j ij k i j km i k i ij kYY C Y a a C a X a C a∇ + = + +               (2.6)

Next we use 2.4 to replace the second term on the right hand 
side of 2.6 so as to obtain

1 1 1
2 2 2

k k m p k m p k p
i j ij k i j km i j km ij kYY C Y a a C a a C C a∇ + = − +            (2.7)

However, the right hand side of 2.7 is seen to be zero by virtue 
of 2.3. Thus

[ ]1 , (2.8)
2XY X Y∇ =                (2.8)

whenever X and Y are right invariant vector fields.

An alternative proof of Proposition (2.1) uses the inversion map 
ψ defined by, for S ∈ G

( ) 1 (2.9)S Sψ −=                (2.9)

As such, one checks that ψ∗I maps a left-invariant vector field 
evaluated at I to minus its right-invariant counterpart evaluated at I. 
Then ψ∗I is an isomorphism and there is no change of sign in the 
structure constants, as compared with eq. (2.5). Since there are two 
minus signs in eq. (2.1) the same condition eq. (2.1) applies also to 
right-invariant vector fields.

Proposition 2.2

i. An element in the center of g engenders a bi-invariant 
vector field.

ii. A vector field in the center of g is parallel.

iii. A bi-invariant differential k-form θ is closed and so defines 
an element of the cohomology group Hk (M,ℝ).

Proof

i. Suppose that Z ∈ TIG is in the center of g and let exp(tZ) 
be the associated one-parameter subgroup of G so that Z 
corresponds to the equivalence class of curves [exp(tZ)] 
based at I. Let S ∈ G; then LS∗Z corresponds to the 
equivalence class of curves [S exp(tZ)] based at S. Since 
Z is in the center of g then exp(tZ) will be in the center of G 
and hence [S exp(tZ)]=[exp(tZ)S]. It follows that any element 
in the center of g engenders a bi-invariant vector field.

ii. Obvious from eq (2.1).

iii. A proof can be found in [13]. Spivak shows that ψ∗ (θ)=(−1)
kθ, whereas dθ, which is also bi-invariant, changes by 
ψ∗(dθ)=(−1)k+1dθ. It follows that dθ=0.

Proposition 2.3

i. The curvature tensor, which is also bi-invariant, on vector 
fields X, Y, Z is given by

( ) [ ]1, , , (2.10)
4

R X Y Z X Y Z =                (2.10)

ii. The connection ∇ is flat if and only if the Lie algebra g of G 
is two-step nilpotent.

iii. The tensor R is parallel in the sense that ∇W R(X, Y)Z=0, 
where W is a fourth right invariant vector field, so that G is in 
a sense a symmetric space.
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right-invariant.

ii.  A one-form α is a Killing one-form, if the following condition 
holds:

⟨∇xα, Y ⟩+⟨X, ∇Y α⟩=0             (2.18)

In the case of the canonical connection, if X and Y are right-
invariant and α is right-invariant then eq (2.1) gives

⟨X, ∇Y α⟩ =1/2⟨[X, Y ], α⟩                         (2.19)

Clearly, (2.19) implies (2.18) so that every left or right-invariant 
one-form engenders a first integral of the geodesics: if the one-form 
is given in a coordinate system as αidxi on G, the first integral is αiui 
viewed as a function on the tangent bundle T G that is linear in the 
fibers.

Proposition 2.6

Any left or right-invariant one-form α is closed if and only if ⟨[g, 
g], α⟩=0, that is, α annihilates the derived algebra of g.

Proof

Consider the identity

dα(X, Y)=X⟨Y, α⟩−Y ⟨X, α⟩−⟨[X, Y ], α⟩⟩           (2.20)

If α is left-invariant and we take X and Y left-invariant, then the 
first and second terms in eq (2.20) are zero. Now the conclusion of 
the Proposition is obvious. The proof for right-invariant one-forms is 
similar.

Proposition 2.7

Consider the following conditions for a one-form α on G:

i. α is bi-invariant.

ii. α is right-invariant and closed.

iii. α is left-invariant and closed.

iv. α is parallel.

Then we have the following implications: (i), (ii) and (iii) are 
equivalent and any one of them implies (iv).

Proof

The fact that (i) implies (ii) and (iii) follows from Proposition (2.2) 
part (iii). Now suppose that (iii) holds and let X and Y be right and left-
invariant vector fields, respectively. Then consider again the identity

dα(X, Y)=X⟨Y, α⟩−Y ⟨X, α⟩−⟨[X, Y ], α⟩          (2.21)

Assuming that α is closed, then either because [X, Y]=0 or by 
using Proposition 2.6, we find that eq. (2.21) reduces to

X⟨Y, α⟩=Y ⟨X, α⟩         (2.22)

Now the left hand side of eq.(2.22) is zero, since Y and α are 
left-invariant. Hence ⟨X, α⟩ is constant, which implies that α is right-
invariant and hence bi-invariant. Thus (iii) implies (i). The proof that 
(ii) implies (i) is similar.

Finally, supposing that (ii) or (iii) holds we show that (iv) holds. 
Then as with any symmetric connection, the closure condition may 
be written, for arbitrary vector fields X and Y, as

⟨∇Xα, Y ⟩−⟨X, ∇Y α⟩=0              (2.23)

Clearly eq (2.18) and eq (2.23) imply that α is parallel. So a 
closed, invariant one-form is parallel.

Of course, it may well be the case that there are no bi-invariant 
one-forms on G, for example if G is semi-simple so that [g, g]=g. 
However, there must be at least one such one-form if G is solvable 
and at least two if G is nilpotent. If we choose a basis of dimension 
dim g-dim [g, g] for the bi-invariant one-forms on G, it may be used 
to obtain a partial coordinate system on G, since each such form is 
closed. Such a partial coordinate system is significant in terms of 
the geodesic system, in that it gives rise to second order differential 
equations that resemble the system in Euclidean space.

Proposition 2.8

Each of the bi-invariant one-forms on G projects to a one-form 
on the quotient space G/[G, G], assuming that the commutator 
subgroup [G, G] is closed topologically in G. Furthermore the 
canonical connection ∇ on G projects to a flat connection on G/[G, 
G] and the induced system of one-forms on G/[G, G] comprises a 
“flat” coordinate system.

Proof

The fact that a bi-invariant one-form on G projects to a one-form 
on G/[G, G] follows because each such form annihilates the vertical 
distribution of the principal right [G, G]-bundle G → G/[G, G] and 
furthermore the equivariance, or Lie-derivative condition along the 
fibers, is trivially satisfied since the one-form is closed. The fact that 
∇ projects to G/[G, G] follows because [G, G] ◁ G, as was noted in 
Šnob L and Winternitz P [14].

The Four-Dimensional Lie Algebra A4,12

In this section we consider the only four-dimensional Lie algebra 
with co-dimension two nilradical. This Algebra is denoted by A4,12 and 
the non-zero brackets are given by

[e1, e3]=e1,  [e2, e3]=e2,  [e1, e4]= −e2,  [e2, e4]=e1           (3.1)

A vector field representation of the above algebra is given in 
terms of right-invariant vector fields as follows [3]

1 3 4, 2 , ,E E E Z W E W Z
z w x z w y z w
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

= = = + + = + −
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

       (3.2)

It is easy to verify that the commutators of the above vector fields 
give the same relations as equation 3.1

Geodesic equations

In this section we consider the system of geodesic equations of 
the canonical connection on Lie groups. Given an n-dimensional Lie 
algebra g, the system of geodesic equations is given by

0, ( , , 1, 2,....., )i i j k
jkx x x i j k n+Γ = =               (3.3)

Now, we compute the geodesic equations for the Lie algebra 
A4,12. In order to calculate the connection components i

jkΓ , we need 
to calculate the covariant derivatives of the vector fields given by 
eqn. (3.2). We will also use the definition of the canonical connection 
given by eqn. (2.1). This will result in a system of equations with i

jkΓ  
to be the unknowns. To illustrate this, we will show how to obtain one 
equation in the system. For example:

[ ]1 3 1 3
1 , (3.4)
2E E E E∇ =               (3.4)
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The left hand side of eqn. (3.4) gives the following

∇E1E3=∇∂z (∂x+z∂z+w∂w)

( )13 ( )k k
z zx z z w w∂ ∂= Γ ∂ +∇ ∂ +∇ ∂

1 2 3 4
13 13 13 13 ( ) ( ) ( ) ( )z zx y z w z z z z w w w w

z z∂ ∂

∂ ∂
= Γ ∂ +Γ ∂ +Γ ∂ +Γ ∂ + ∂ + ∇ ∂ + ∂ + ∇ ∂

∂ ∂
 

1 2 3 4 1 2 3 4
13 13 13 13 33 33 33 33( )x y z w z z x y z w= Γ ∂ +Γ ∂ +Γ ∂ +Γ ∂ + ∂ + Γ ∂ +Γ ∂ +Γ ∂ +Γ ∂

1 2 3 4
34 34 34 34( )w x y z w+ Γ ∂ +Γ ∂ +Γ ∂ +Γ ∂           (3.5)

1 1 1 2 2 2
13 33 34 13 33 34( ) ( )z w x z w y= Γ + Γ + Γ ∂ + Γ + Γ + Γ ∂

3 3 3 4 4 4
13 33 34 13 33 34( 1 ) ( )z w z w w+ Γ + + Γ + Γ ∂ + Γ +Γ + Γ ∂

The right hand side of eqn. (3.4) gives

1 3 1
1 1[ , ] (3.6)
2 2

E E E z= = ∂            (3.6)

and so equating the sides give the following equation:
1 1 1 2 2 2 3
13 33 34 13 33 34 13

1( ) ( ) (
2

z w x z w yΓ + Γ + Γ ∂ + Γ + Γ + Γ ∂ + Γ +
3 3 4 4 4
33 34 13 33 34) ( ) 0z w z w w+ Γ + Γ ∂ + Γ +Γ + Γ ∂ =            (3.7)

and so we obtain the following system of equations:
1 1 1
13 33 34
2 2 2
13 33 34

3 3 3
13 33 34

4 4 4
13 33 34

0
0

1 0 (3.8)
2

0

z w
z w

z w

w

Γ + Γ + Γ =

Γ + Γ + Γ =

Γ + + Γ + Γ =

Γ +Γ + Γ =

         (3.8)

After we apply all covariant derivatives and use the definition of 
the canonical connection we obtain the following components of the 
connection given by:

1 2 3 4

1 10 0 0 0 0 0
2 2

0 0 0 0 0 0 0 0 1 10 0 0 0 0 00 0 0 0 0 0 0 0 2 2, , , (3.9
0 0 0 0 0 0 0 0 1 10 0 0 0 0 0

2 20 0 0 0 0 0 0 0
1 10 0 0 0 0 0

2 2

ij ij ij ij

− −   
   
       −             Γ = Γ = Γ = Γ =       −             
   − −
   
   

1 2 3 4

1 10 0 0 0 0 0
2 2

0 0 0 0 0 0 0 0 1 10 0 0 0 0 00 0 0 0 0 0 0 0 2 2, , , (3.9
0 0 0 0 0 0 0 0 1 10 0 0 0 0 0

2 20 0 0 0 0 0 0 0
1 10 0 0 0 0 0

2 2

ij ij ij ij

− −   
   
       −             Γ = Γ = Γ = Γ =       −             
   − −
   
   

             (3.9)

Therefore we obtain the following system of geodesic equations:
0
0

x
y
z xz yw
w xw yw

=
=
= +
= −





   

    

       (3.10)

The lie symmetry algebras

The symmetry Lie algebra for the geodesic equations is given by:

e1=Dz,  e2=Dt,  e3=Dw,   e4=xDt,  e5=yDt,  e6=ex sin(y)Dz+ex cos(y)
Dw, e7=ex sin(y)Dw−excos(y)Dz,

e8=Dx, e9=Dy,  e10=tDt,  e11=zDz+wDw,  e12=zDw−wDz           (3.11)

The non-zero Lie brackets of the symmetry algebra is given by:

[e1, e11]=e1,  [e1, e12]=e3,  [e2, e10]=e2,  [e3, e11]=e3, [e3, e12]= −e1,  
[e4, e8]= −e2,

[e4, e10]=e4,  [e5, e9]= −e2,  [e5, e10]=e5,  [e6, e8]= −e6,  [e6, e9]=e7, 
[e6, e11]=e6,         (3.12)

[e6, e12]=e7,  [e7, e8]= −e7,  [e7, e9]= −e6,  [e7, e11]=e7,  [e7, e12]= −e6.

The symmetry algebra is a solvable Lie algebra with seven-
dimensional abelian nilradical spanned by e1, e2, e3, e4, e5, e6, e7 
and a five-dimensional abelian complement spanned by e8, e9, e10, 
e11, e12.

Five Dimensional Lie Algebras

In this section we consider the five dimensional Lie algebras with 
co-dimension two abelian nilradical. There are only three algebras; 

5,33
abA , 5,34

aA and 5,35
abA .

Algebra 5,33
abA , (a2+b2 ≠ 0). The non-zero brackets for the algebra 

5,33
abA  are given by

[e1, e4]=e1,  [e3, e4]=be3,  [e2, e5]=e2,  [e3, e5]=ae3           (4.1)

The geodesic equations are given by

, ,
, 0, 0

q qw x xw
y qyw byz z w
= =
= + = =

     

     
             (4.2)

We now consider the following subcases depending on the 
values of a and b:

Case 1: 0, 0
5,33
a bA ≠ ≠ . The symmetry vector fields are given by:

F1=Dt,  F2=Dy,  F3=Dq,  F4=Dx,  F5=wDt,  F6=zDt,  F7=ezDq, F8=ewDx, 
F9=eawebzDy, 

F10=Dw, F11=Dz, F12=tDt, F13=yDy, F14=qDq, F15=xDx.           (4.3)

The non-zero brackets of the symmetry algebra is given by:

[e1, e12]=e1,  [e2, e13]=e2,  [e3, e14]=e3,  [e4, e15]=e4,  [e5, e10]= −e1,

[e5, e12]=e5,  [e6, e11]= −e1,  [e6, e12]=e6,  [e7, e11]= −e7,  [e7, e14]=e7, 

[e8, e10]= −e8,  [e8, e15]=e8,  [e9, e10]= −ae9,  [e9, e11]= −be9,  [e9, 
e13]=e9.               (4.4)

Case 2: 0, 0
5,33
a bA = ≠ . The symmetry vector fields are given by:

F1=Dt,  F2=Dx,  F3=Dq,  F4=Dy,  F5=wDt,  F6=zDt,  F7=ewDx, F8=ezDq,

F9=ebzDy, F10=Dw, F11=Dz, F12=tDt, F13=xDx, F14=qDq, F15=yDy. (4.5)

The non-zero brackets of the symmetry algebra is given by:

[e1, e12]=e1,  [e2, e13]=e2, [e3, e14]=e3,  [e4, e15]=e4,  [e5, e10]= −e1, 

[e5, e12]=e5,  [e6, e11]= −e1,  [e6, e12]=e6,  [e7, e10]= −e7,  [e7, e13]=e7, 

[e8, e11]= −e8,  [e8, e14]=e8,  [e9, e11]= −be9,  [e9, e15]=e9          (4.6)

Case 3: 0, 0
5,33
a bA ≠ = . The symmetry vector fields are given by:

F1=Dt, F2=Dq, F3=Dx, F4=Dy, F5=wDt, F6=zDt, F7=ezDq, F8=ewDx, 
F9=eawDy, 

F10=Dz, F11=Dw, F12=tDt, F13=qDq, F14=xDx, F15=yDy.        (4.7)

The non-zero brackets of the symmetry algebra is given by:
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F1=Dt, F2=Dx, F3=Dq, F4=Dy, F5=wDt, F6=zDt, F7=yDx, F8=ezDx, 
F9=ewDq, 

F10=wezDx+ezDy, F11=Dw, F12=Dz, F13=tDt, F14=qDq, F15=xDx+yDy.        
(4.17)

The non-zero brackets of the symmetry algebra is given by:

[e1, e13]=e1,  [e2, e15]=e2,  [e3, e14]=e3,  [e4, e7]=e2,  [e4, e15]=e4,  [e5, 
e11]= −e1, [e5, e13]=e5, [e6, e12]= −e1,  [e6, e13]=e6,  [e7, e10]= −e8,  [e8, 
e12]= −e8,  [e8, e15]=e8, [e9, e11]= −e9, [e9, e14]=e9,  [e10, e11]= −e8,  [e10, 

e12]= −e10,  [e10, e15]=e10.          (4.18)

Case 3: 1
5,34
aA = . The symmetry vector fields are given by:

F1=Dt, F2=Dx, F3=Dq, F4=Dy, F5=wDt, F6=zDt, F7=yDx, F8=ezDx 
F9=ewezDq, F10=wezDx+ezDy, F11=Dw, F12=Dz, F13=tDt, F14=qDq, 

F15=xDx+yDy.           (4.19)

The non-zero brackets of the symmetry algebra is given by:

[e1, e13]=e1,  [e2, e15]=e2,  [e3, e14]=e3,  [e4, e7]=e2,  [e4, e15]=e4,  [e5, 
e11]= −e1, [e5, e13]=e5,  [e6, e12]= −e1,  [e6, e13]=e6,  [e7, e10]= −e8,  [e8, 
e12]= −e8,  [e8, e15]=e8, [e9, e11]= −e9,  [e9, e12]= −e9,  [e9, e14]=e9,  [e10, 
e11]= −e8,  [e10, e12]= −e10,  [e10, e15]=e10.         (4.20)

The symmetry Lie algebra is a fifteen-dimensional solvable Lie 
algebra with a ten-dimensional nilradical spanned by e1, e2, e3, e5, e5, 
e6, e7, e8, e9, e10 and an abelian five-dimensional complement spanned 
by e11, e12, e13, e14, e15. 

Algebra 5,35
abA . The non-zero brackets for the algebra 5,35

abA
(a2+b2≠0) are given by:

[e1, e4]=be1, [e2, e4]=e2, [e3, e4]=e3, [e1, e5]=ae1, [e2, e5]= −e3, [e3, e5]=e2.    (4.21)

The geodesics are given by:

, , , 0, 0q bqz aqw x xz yw y xw yz z W= + = + = − + = =                  (4.22)

Case 1: 
0, 0

5,35
a bA ≠ ≠

. The symmetry vector fields are given by:

F1=Dy, F2=Dx, F3=Dq, F4=Dt, F5=wDt, F6=zDt, F7=e awe bzDq, F8=ez 
sin(w)Dx+ez cos(w)Dy, 

F9=ez sin(w)Dy −ezcos(w)Dx, F10=Dw, F11=Dz, F12=tDt, F13=qDq, 
F14=xDx+yDy, F15=xDy−yDx.           (4.23)

The non-zero brackets of the symmetry algebra is given by:

[e1, e14]=e1,  [e1, e15]= −e2,  [e2, e14]=e2,  [e2, e15]=e1,  [e3, e13]=e3,  
[e4, e12]=e4, [e5, e10]= −e4,  [e5, e12]=e5,  [e6, e11]= −e4,  [e6, e12]=e6,  [e7, 
e10]= −ae7,  [e7, e11]= −be7, [e7, e13]=e7,  [e8, e10]=e9,  [e8, e11]= −e8,  [e8, 
e14]=e8,  [e8, e15]=e9,  [e9, e10]= −e8, [e9, e11]= −e9,  [e9, e14]=e9,  [e9, 
e15]= −e8.                             (4.24)

Case 2: 
0, 0

5,35
a bA = ≠

. The symmetry vector fields are given by:

F1=Dy, F2=Dx, F3=Dq, F4=Dt, F5=wDt, F6=zDt, F7=ebzDq, F8=ezsin(w)
Dx+ezcos(w)Dy, F9=ezsin(w)Dy – ezcos(w)Dx, F10=Dw, F11=Dz, F12=tDt, 
F13=qDq, F14=xDx+yDy, F15=xDy−yDx.            (4.25)

The non-zero brackets of the symmetry algebra is given by:

[e1, e14]=e1,  [e1, e15]= −e2,  [e2, e14]=e2,  [e2, e15]=e1,  [e3, e13]=e3,  
[e4, e12]=e4, [e5, e10]= −e4,  [e5, e12]=e5,  [e6, e11]= −e4,  [e6, e12]=e6,  [e7, 
e11]= −be7,  [e7, e13]=e7, [e8, e10]=e9,  [e8, e11]= −e8,  [e8, e14]=e8,  [e8, 
e15]=e9,  [e9, e10]= −e8,  [e9, e11]= −e9, [e9, e14]=e9,  [e9, e15]= −e8.   (4.26)

[e1, e12]=e1, [e2, e13]=e2, [e3, e14]=e3, [e4, e15]=e4, [e5, e11]= −e1, [e5, 
e12]=e5,

[e6, e10]= −e1,  [e6, e12]=e6,  [e7, e10]= −e7,  [e7, e13]=e7,  [e8, e11]= 
−e8,  [e8, e14]=e8, 

[e9, e11]= −ae9,  [e9, e15]=e9.             (4.8)

Case 4: 
1

5,33
aA =

. The symmetry vector fields are given by:

F1=Dt, F2=Dy, F3=Dq, F4=Dx, F5=wDt, F6=zDt, F7=ezDq, F8=ewDx, 
F9=ewebzDy, 

F10=Dw, F11=Dz, F12=tDt, F13=yDy, F14=qDq, F15=xDx.          (4.9)

The non-zero brackets of the symmetry algebra is given by:

[e1, e12]=e1,  [e2, e13]=e2,  [e3, e14]=e3,  [e4, e15]=e4,  [e5, e10]= −e1,  
[e5, e12]=e5, 

[e6, e11]= −e1,  [e6, e12]=e6, [e7, e11]= −e7,  [e7, e14]=e7,  [e8, e10]= −e8,  
[e8, e15]=e8, 

[e9, e10]= −e9,  [e9, e11]= −be9,  [e9, e13]=e9.           (4.10)

Case 5: 1
5,33
bA = . The symmetry vector fields are given by:

F1=Dt, F2=Dy, F3=Dx, F4=Dq, F5=wDt, F6=zDt, F7=ewDx, F8=ezDq, 
F9=eawezDy, 

F10=Dw, F11=Dz, F12=tDt, F13=yDy, F14=xDx, F15=qDq.        (4.11)

The non-zero brackets of the symmetry algebra is given by:

[e1, e12]=e1,  [e2, e13]=e2,  [e3, e14]=e3,  [e4, e15]=e4,  [e5, e10]= −e1,  
[e5, e12]=e5,

[e6, e11]= −e1,  [e6, e12]=e6,  [e7, e10]= −e7,  [e7, e14]=e7,  [e8, e11]= 
−e8,  [e8, e15]=e8,

[e9, e10]= −ae9,  [e9, e11]= −e9,  [e9, e13]=e9.           (4.12)

The symmetry Lie algebra is a fifteen-dimensional solvable Lie 
algebra with nine-dimensional nilradical spanned by e1, e2, e3, e4, e5, 
e6, e7, e8, e9 and an abelian six-dimensional complement spanned by 
e10, e11, e12, e13, e14, e15.

Algebra 5,34
aA . The non-zero brackets for the algebra Aa5,34 are 

given by:

[e1, e4]=ae1,  [e2, e4]=e2,  [e3, e4]=e3,  [e1, e5]=e1,  [e3, e5]=e2.  (4.13)

The geodesics equations are given by:

, , , 0, 0q aqz qw x xz yw y yz z W= + = + = = =                        (4.14)

We now consider the following subcases:

Case 1: 0
5,34
aA ≠ . The symmetry vector fields are given by:

F1=Dt, F2=Dx, F3=Dq, F4=Dy, F5=wDt, F6=zDt, F7=yDx, F8=ezDx, 
F9=wezDx+ezDy, F10=eweazDq, F11=Dw, F12=Dz, F13=tDt, F14=qDq, 
F15=xDx+yDy.              (4.15)

The non-zero brackets of the symmetry algebra is given by:

[e1, e13]=e1,  [e2, e15]=e2,  [e3, e14]=e3,  [e4, e7]=e2,  [e4, e15]=e4,  [e5, 
e11]= −e1, [e5, e13]=e5,  [e6, e12]= −e1,  [e6, e13]=e6,  [e7, e9]= −e8,  [e8, 
e12]= −e8,  [e8, e15]=e8, [e9, e11]= −e8,  [e9, e12]= −e9,  [e9, e15]=e9,  [e10, 
e11]= −e10,  [e10, e12]= −ae10,  [e10, e14]=e10.         (4.16)

Case 2: 0
5,34
aA = . The symmetry vector fields are given by:
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Case 3: 0, 0
5,35
a bA ≠ = . The symmetry vector fields are given by:

F1=Dy, F2=Dx, F3=Dq, F4=Dt, F5=wDt, F6=zDt, F7=eawDq, F8=ezsin(w)
Dx+ezcos(w)Dy, F9=ezsin(w)Dy−ezcos(w)Dx, 

F10=Dz, F11=Dw, F12=tDt, F13=qDq, F14=xDx+yDy, F15=xDy−yDx.(4.27)

The non-zero brackets of the symmetry algebra is given by:

[e1, e14]=e1,  [e1, e15]= −e2,  [e2, e14]=e2,  [e2, e15]=e1,  [e3, e13]=e3,  
[e4, e12]=e4, [e5, e11]= −e4,  [e5, e12]=e5,  [e6, e10]= −e4,  [e6, e12]=e6,  [e7, 
e11]= −ae7,  [e7, e13]=e7, [e8, e10]= −e8,  [e8, e11]=e9,  [e8, e14]=e8,  [e8, 
e15]=e9,  [e9, e10]= −e9,  [e9, e11]= −e8, [e9, e14]=e9,  [e9, e15]= −e8.  (4.28)

Case 4: 
1

5,35
aA =

. The symmetry vector fields are given by:

F1=Dy, F2=Dx, F3=Dq, F4=Dt, F5=wDt, F6=zDt, F7=ewebzDq, F8=ezsin(w)
Dx+ezcos(w)Dy, F9=ez in(w)Dy−ezcos(w)Dx, F10=Dw, F11=Dz, F12=tDt, 
F13=qDq, F14=xDx+yDy, F15=xDy−yDx.           (4.29)

The non-zero brackets of the symmetry algebra is given by:

[e1, e14]=e1, [e1, e15]= −e2, [e2, e14]=e2, [e2, e15]=e1, [e3, e13]=e3, [e4, 
e12]=e4, [e5, e10]= −e4, [e5, e12]=e5, [e6, e11]= −e4, [e6, e12]=e6, [e7, e10]= −
e7, [e7, e11]= −be7, [e7, e13]=e7, [e8, e10]=e9, [e8, e11]= −e8, [e8, e14]=e8, [e8, 
e15]=e9, [e9, e10]= −e8, [e9, e11]= −e9, [e9, e14]=e9, [e9, e15]= −e8.      (4.30)

Case 5: 1
5,35
bA = . The symmetry vector fields are given by:

F1=Dy, F2=Dx, F3=Dq, F4=Dt, F5=wDt, F6=zDt, F7=eawezDq, F8=ezsin(w)
Dx+ezcos(w)Dy, F9=ezsin(w)Dy−ezcos(w)Dx, F10=Dw, F11=Dz, F12=tDt 
F13=qDq, F14=xDx+yDy, F15=xDy−yDx.          (4.31)

The non-zero brackets of the symmetry algebra is given by:

[e1, e14]=e1,  [e1, e15]= −e2,  [e2, e14]=e2,  [e2, e15]=e1,  [e3, e13]=e3,  
[e4, e12]=e 4, [e5, e10]= −e4,  [e5, e12]=e5,  [e6, e11]= −e4,  [e6, e12]=e6,  [e7, 
e10]= −ae7,  [e7, e11]= −e7, [e7, e13]=e7,  [e8, e10]=e9,  [e8, e11]= −e8,  [e8, 
e14]=e8,  [e8, e15]=e9,  [e9, e10]= −e8, [e9, e11]= −e9,  [e9, e14]=e9,  [e9, 
e15]= −e8             (4.32) 

The symmetry Lie algebra is a fifteen-dimensional solvable Lie 
algebra with a nine-dimensional nilradical spanned by e1, e2, e3, e4, 
e5, e6, e7, e8, e9 and an abelian six-dimensional complement spanned 
by e10, e11, e12, e13, e14, e15.
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