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Abstract Free differential algebras (FDAs) provide an algebraic setting for field theories with antisymmetric ten-
sors. The “presentation” of FDAs generalizes the Cartan-Maurer equations of ordinary Lie algebras, by incorporating
p-form potentials. An extended Lie derivative along antisymmetric tensor fields can be defined and used to recover
a Lie algebra dual to the FDA that encodes all the symmetries of the theory including those gauged by the p-forms.
The general method is applied to the FDA of D = 11 supergravity: the resulting dual Lie superalgebra contains the
M-theory supersymmetry anticommutators in presence of 2-branes.
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1 Introduction

Supergravity in eleven dimensions [7,8] is today considered an effective theory (a particular limit of M-theory, for
a review see e.g. [20,21]). More than two decades ago, it was formulated [10] as the gauging of a free differential
algebra (FDA) [4,5,10,19,22], an algebraic structure that extends the Cartan-Maurer equations of an ordinary Lie
algebra G by including p-form potentials, besides the usual left-invariant 1-forms corresponding to the Lie group
generators of G. Thus the 3-form of D = 11 supergravity acquires an algebraic interpretation, as well as the p-forms
present in supergravity theories in various dimensions.

The group-geometric method in [3,4,9,11,15,16] yields lagrangians based on given FDAs. These FDAs encode
the symmetries of the resulting field theories.

Only some time later it was realized how to extract from the FDA also the symmetries gauged by the p-forms, via
a new (“extended”) Lie derivative defined along antisymmetric tensors [6]. The extended Lie derivatives, together
with the ordinary Lie derivatives of the G Lie algebra contained in the FDA, close on an algebra that can be
considered dual to the FDA.

The transformations on the fields generated by the extended Lie derivatives are the symmetries gauged by the
antisymmetric tensors, and can be explicitly computed.

In this paper, we generalize the treatment of [6] (limited to 2-forms) to include arbitrary p-forms, and apply it to
the FDA of D = 11 supergravity. The resulting dual Lie superalgebra contains the supersymmetry anticommutators
of M-theory coupled to a 2-brane discussed in [12], one of the extended Lie derivatives corresponding to the pseudo-
central charge Zm1m2 .

In fact, a supertranslation algebra containing pseudo-central charges Zm1m2 and Zm1−m5 had already been
found by D’Auria and Fré, who proposed in [10] a method to “resolve” FDAs into ordinary Lie algebras by
considering the p-forms as composites of 1-form potentials of a larger group, containing the generators of G plus
some extra generators. For the FDA of D = 11 supergravity, the extra generators were found to be the two pseudo-
central charges Zm1m2 and Zm1−m5 and an additional spinorial charge Q′.

Here we obtain a similar (but not identical) algebra: besides Zm1m2 we find a vector-spinor charge Qm.
Closer contact with the D’Auria-Fré algebra can be achieved by further extending our treatment to FDAs

containing more than one p-form. Then, we can apply it to an FDA containing a 3-form and a 6-form, so that both
the charges ZM1M2 and ZM1−M5 enter the stage in the dual Lie algebra. This leads to the same supertranslation
algebra of [10], that later was derived [17] in the context of D = 11 supergravity coupled to a 2- and a 5-brane.

More recently [23] the D’Auria and Fré resolution of the D = 11 FDA has been related to an underlying
E11 symmetry, and in [18] (where more references can be found on the hidden E11 symmetry of M -theory)
supersymmetry and E11 are consistently combined.

A résumé on FDAs and their gauging is given in Section 2. By use of the extended Lie derivatives we obtain the
dual formulation of FDAs containing a p-form. Both the soft and rigid FDA diffeomorphism algebras are given (the
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latter being a Lie algebra for constant parameters). This is applied in Section 3 to the FDA ofD = 11 supergravity. In
Section 4, we discuss the possibility of gauging the superalgebra dual of this FDA, thus obtaining a new formulation
of D = 11 supergravity.

2 Free differential algebras and their Lie algebra duals

Rather than the general theory of FDAs (for a detailed review see [4], and [3] for a shorter account), we will treat
here the case involving only one p-form. It already contains most of the essential features of FDAs. Its “presentation”
is given by the generalized Cartan-Maurer equations:

dσA +
1

2
CABC σBσC = 0, (2.1)

dBi + CiAj σ
ABj +

1

(p+ 1)!
CiA1···Ap+1

σA1 · · ·σAp+1

≡ ∇Bi + 1

(p+ 1)!
CiA1···Ap+1

σA1 · · ·σAp+1 = 0,

(2.2)

where σA are the usual left-invariant 1-forms associated to a Lie algebra G, Bi is a p-form in a representation Dij
of G, and products between forms are understood to be exterior products.

The Jacobi identities for the generalized structure constants, ensuring the integrability of (2.1), (2.2), that is the
nilpotency of the exterior derivative d2 = 0, are

CAB[CC
B
DE] = 0, (2.3)

CiAj C
j
Bk − CiBj C

j
Ak = CCAB CiCk, (2.4)

2Ci[A1jC
j
A2···Ap+2] − (p+ 1)CiB[A1···Ap

CBAp+1Ap+2] = 0. (2.5)

Equations (2.3) are the usual Jacobi identities for the Lie algebra G. Equation (2.4) implies that (CA)
i
j ≡ CiAj is

a matrix representation of G, while equation (2.5) states that Ci ≡ CiA1···Ap+1
σA1 · · ·σAp+1 is a (p + 1)-cocycle,

that is ∇Ci = 0.

2.1 Dynamical fields, curvatures and Bianchi identities

The main idea of the group-geometric method [4,9,11,15,16] extended to FDAs is to consider the 1-forms σA

and the p-form Bi as the fundamental fields of the geometric theory to be constructed. In the case of ordinary Lie
algebras, the dynamical fields are the vielbeins μA of G̃, a smooth deformation of the group manifold G referred to
as “soft group manifold”. For FDAs the dynamical fields are both the vielbeins μA and the p-form field Bi: taken
together they can be considered the vielbeins of the “soft FDA manifold”.

In general μA and Bi do not satisfy any more the Cartan-Maurer equations (2.1), (2.2), so that

RA ≡ dμA +
1

2
CABC μBμC �= 0, (2.6)

Ri = dBi + CiAj μ
ABj +

1

(p+ 1)!
CiA1···Ap+1

μA1 · · ·μAp+1 �= 0. (2.7)

The extent of the deformation of the FDA is measured by the curvatures: the two-form RA and the (p+1)-form Ri.
(Note that we use the same symbolBi for the “flat” and the “soft” p-form.) The deformation of the FDA is necessary
in order to allow field configurations with nonvanishing curvatures.

Applying the exterior derivative d to the definition of RA and Ri (2.6), (2.7), using d2 = 0 and the Jacobi
identities (2.3)–(2.5), yields the Bianchi identities:

dRA − CABC RBμC = 0, (2.8)

dRi − CiAjR
ABj + CiAj μ

ARj − 1

p!
CiA1···Ap+1

RA1μA2 · · ·μAp+1 = 0. (2.9)

The curvatures can be expanded on the μA, Bi basis of the “soft FDA manifold” as

RA = RABC μBμC +RAiB
i, (2.10)

Ri = RiA1···Ap+1
μA1 · · ·μAp+1 +RiAj μ

ABj . (2.11)
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(Note that the RAiB
i term in (2.10) can be there only for p = 2.) The FDA vielbeins μA and Bi are a basis for

the FDA “manifold”. Coordinates y for this “manifold” run on the corresponding “directions”, that is Lie algebra
directions and “p-form directions”. The coordinates running on the p-form directions are p− 1 forms (generalizing
the coordinates running on the Lie algebra directions, which are 0-forms).

Eventually, we want space-time fields: the only coordinates the fields must depend on are spacetime coordinates,
associated with the (bosonic) translation part of the algebra. This is achieved when the curvatures are horizontal in
the other directions (see later).

How do we find the dynamics of μA(y) and Bi(y)? We wish to obtain a geometric theory (i.e. invariant under
diffeomorphisms). We need therefore to construct an action invariant under diffeomorphisms, and this is simply
achieved by using only diffeomorphic invariant operations as the exterior derivative and the exterior product. The
building blocks are the one-form μA and the p-form Bi, their curvatures RA and Ri: exterior products of them can
make up a lagrangian D-form, where D is the dimension of space-time.

A detailed account of the procedure, together with various examples of supergravity theories based on FDAs,
can be found in [4,3].

2.2 Diffeomorphisms and Lie derivative

The variation under diffeomorphisms y+ ε of an arbitrary form ω(y) on a manifold is given by the Lie derivative of
the form along the infinitesimal tangent vector ε = εM∂M :

δω = ω(y + ε)− ω(y) = d(iεω) + iεdω ≡ �εω. (2.12)

On p-forms ω(p) = ωM1···Mp
dyM1 ∧ · · · ∧ dyMp , the contraction iv along an arbitrary tangent vector v = vM∂M

is defined as

iv ω(p) = p vM1ωM1M2···Mp
dyM2 ∧ · · · ∧ dyMp (2.13)

and maps p-forms into (p− 1)-forms. On the vielbein basis, equation (2.13) becomes

iv ω(p) = p vAωAB2···Bp
μB2 ∧ · · · ∧ μBp , (2.14)

where as usual curved indices (M,N, . . .) are related to tangent indices (A,B, . . .) via the vielbein (or inverse vielbein)
components μAM (μMA ) (i.e. v = vM∂M = vAtA where tA ≡ μMA ∂M etc.). Thus the tangent vectors tA are dual to
the vielbeins: μB(tA) = δBA .

The operator

�v ≡ d iv + iv d (2.15)

is the Lie derivative along the tangent vector v and maps p-forms into p-forms.
In the case of a group manifold G, we can rewrite the vielbein variation under diffeomorphisms in a suggestive

way:

δμA = d
(
iεμ

A)+ iεdμ
A = dεA + 2(dμA)BC ε

BμC = (∇ε)A + iεR
A, (2.16)

where we have used the definition (2.6) for the curvature, and the G-covariant derivative ∇ acts on εA as

(∇ε)A ≡ dεA + CABC μBεA. (2.17)

When dealing with FDAs, what is the action of diffeomorphisms on the p-form Bi? First, we consider diffeo-
morphisms in the Lie algebra directions. For these, the Lie derivative formula (2.12) holds. We have therefore, with
tangent indices:

δBi = �εAtAB
i = d

(
iεAtAB

i)+ iεAtAdB
i. (2.18)

Since μA and Bi are a basis for the FDA “manifold”, the contraction of Bi along a Lie algebra tangent vector tA
vanishes:

itAμ
B = δBA , itAB

i = 0,

and using the definition of Ri (2.7) the variation (2.18) takes the form

δBi = iεAtAdB
i =

(
RiAj − CiAj

)
εABj +

(
(p+ 1)RiAA1···Ap

− 1

p!
CiAA1···Ap

)
εAμA1 · · ·μAp

≡ (∇ε)i + iεAtAR
i.

(2.19)
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2.3 Extended Lie derivatives

Before computing the algebra of Lie derivatives on the FDA fields, we introduce the following.
(i) A new contraction operator iεjtj , defined by its action on a generic form ω = ωi1···inA1···Am

Bi1 ∧ · · ·Bin ∧
μA1 ∧ · · ·μAm as

iεjtjω = n εjωji2···inA1···Am
Bi2 ∧ · · ·Bin ∧ μA1 ∧ · · ·μAm , (2.20)

where εj is a (p− 1)-form. This operator still maps p-forms into (p− 1)-forms. We can also define the contraction
itj , mapping n-forms into (n− p)-forms, by setting

iεjtj = εjitj .

In particular

itjB
i = δij , itjμ

A = 0

so that tj can be seen as the “tangent vector” dual to Bj . Note that iεjtj vanishes on forms that do not contain at

least one factor Bi.
(ii) A new Lie derivative (“extended Lie derivative”) given by

�εiti ≡ iεitid+ d iεiti . (2.21)

The extended Lie derivative commutes with d, satisfies the Leibnitz rule and can be verified to act on the fundamental
fields as

�εjtjμ
A = εjRAj , (2.22)

�εjtjB
i = dεi +

(
CiAj −RiAj

)
μA ∧ εj (2.23)

by applying the definitions of the curvatures (2.6) and (2.7).

2.4 The algebra of diffeomorphisms

Using the Bianchi identities (2.8), (2.9), we find that the Lie derivatives and the extended Lie derivatives close on
the algebra

[
�εA1 tA

, �εB2 tB

]
= �[εA1 ∂Aε

C
2 −εA2 ∂AεC1 +εA1 ε

B
2 (CC

AB−2RC
AB)]tC

+ �
2εA1 ε

B
2 ( 1

p!C
i
ABA1···Ap−1

−Ri
ABA1···Ap−1

)μA1 ···μAp−1ti
,

(2.24)

[
�εAtA , �εjtj

]
= �[�εAtA

εk+(Ck
Bj−Rk

Bj)εBεj ]tk , (2.25)

[
�εi1ti

, �
εj2tj

]
= �

RB
i(εi1(ε2)

j
B−εi2(ε1)jB)tj

. (2.26)

The last commutator between extended derivatives vanishes except in the case p = 2 (since only in this case RBi
can be different from 0: then εiA are the components of the 1-form εi, i.e. εi ≡ εiAμ

A).
Notice that the commutator of two ordinary Lie derivatives contains an extra piece proportional to an extended

Lie derivative. This result has an important consequence: if the field theory based on the FDA is geometric, that is its
action is invariant under diffeomorphisms generated by usual Lie derivatives, then also the extended Lie derivative
must generate a symmetry of the action, since it appears on the right-hand side of (2.24). Thus, when we construct
geometric lagrangians gauging the FDA, we know a priori that the resulting theory will have symmetries generated
by the extended Lie derivative: the transformations (2.22), (2.23) are invariances of the action.

Equations (2.24)–(2.26) give the algebra of diffeomorphisms on the soft FDA manifold.

Note. All the variations under diffeomorphisms (2.16), (2.19), (2.22), (2.23) can be synthetically written as

δμI = (∇ε)I + iεJtJR
I , (2.27)

where μI = μA, Bi and so on. If the curvature RI is horizontal in some directions J (i.e. if itJR
I = 0), the

diffeomorphisms in these directions become gauge transformations, as evident from (2.27). In this case, a finite
gauge transformation can remove the dependence on the yJ coordinates, and the fields live on a subspace of the
original FDA manifold. This generalizes horizontality of the curvatures on soft group manifolds: a classic example
is the Poincaré group manifold, where horizontality in the Lorentz directions implies Lorentz gauge invariance and
independence of the fields on the Lorentz coordinates.
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2.5 Lie algebra dual of the FDA

From the algebra of diffeomorphisms (2.24)–(2.26), we find the commutators of the Lie derivatives on the rigid FDA
manifold by taking vanishing curvatures and constant ε parameters (nonvanishing only for given directions):

[
�tA , �tB

]
= CCAB �tC +

2

p!
CiABA1···Ap−1

�
σA1 ···σAp−1ti

,

[
�tA , �σB1 ···σBp−1ti

]
=

[
CkAi δ

B1···Bp−1

C1···Cp−1
− (p− 1)C

[B1

AC1
δ
B2···Bp−1]
C2···Cp−1

δki

]
�
σC1 ...σCp−1tk

,

[
�
σA1 ···σAp−1ti

, �
σB1 ···σBp−1tj

]
= 0.

This Lie algebra can be considered the dual of the FDA system given in (2.1), (2.2), and extends the Lie algebra of
ordinary Lie derivatives (generating usual diffeomorphisms on the group manifold G). Notice the essential presence
of the (p− 1)-form σA1 · · ·σAp−1 in front of the “tangent vectors” ti.

3 The FDA of D = 11 supergravity and its dual

We recall the FDA of D = 11 supergravity [10]:

dωab − ωacωcb = 0
[
= Rab

]
, dV a − ωabV b − i

2
ψ̄Γaψ = 0

[
= Ra

]
,

dψ − 1

4
ωabΓabψ = 0 [= ρ], dA− 1

2
ψ̄ΓabψV aV b = 0

[
= R(A)

]
.

(3.1)

The D = 11 Fierz identity ψ̄Γabψψ̄Γaψ = 0 ensures the FDA closure (d2 = 0). Its Lie algebra part is the D = 11

superPoincaré algebra, whose fundamental fields (corresponding to the Lie algebra generators Pa, Jab, Q) are the
vielbein V a, the spin connection ωab and the gravitino ψ. The 3-form A is in the identity representation of the Lie
algebra, and thus no i-indices are needed. The structure constants CiA1···Ap+1

of (2.2) are in the present case given
by Cαβab = −12(CΓab)αβ (no upper index i), while the CiAj vanish.

The equations of motion on the “FDA manifold” have the following solution for the curvatures [10]:

Rab = Rabcd V
cV d + i

(
2ρ̄c[aΓb] − ρabΓc

)
ψV c

+ Fabcd ψ̄Γ cdψ +
1

24
F c1c2c3c4 ψ̄Γabc1c2c3c4ψ,

(3.2)

Ra = 0, (3.3)

ρ = ρabV
aV b +

i

3

(
Fab1b2b3Γ b1b2b3 − 1

8
F b1b2b3b4Γab1b2b3b4

)
ψV a, (3.4)

R(A) = Fa1···a4V a1V a2V a3V a4 , (3.5)

where the spacetime componentsRabcd, ρab, F
a1···a4 of the curvatures satisfy the well-known propagation equations

(Einstein, gravitino and Maxwell equations):

Racbc − 1

2
δabR = 3Fac1c2c3F bc1c2c3 − 3

8
δab F

c1···c4F c1···c4 ,

Γabcρbc = 0,

DaFab1b2b3 − 1

2 · 4! · 7! ε
b1b2b3a1···a8 Fa1···a4Fa5···a8 = 0.

3.1 The algebra of diffeomorphisms on the FDA manifold

Using the structure constants extracted from the FDA (3.1) in the general formulas (2.24), (2.25), (2.26), one easily
finds the complete diffeomorphism algebra of D = 11 supergravity on the FDA manifold. The supertranslation part
reads

[
�εa1ta , �εb2tb

]
= �[εa1∂aε

c
2−εa2∂aεc1]tc − 2 �εa1ε

b
2R

cd
ab tcd

− 4 �εa1ε
b
2ψ̄Γ

abψ t,

[
�εα1 tα , �εβ2 tβ

]
= −i�ε̄1Γ cε2 tc − 2 �

εα1 ε
β
2 R

cd
αβ tcd

− 4 �ε̄1Γabε2V aV b t,

[
�εata , �εβtβ

]
= �(εa∂aεγ−2εaεβργaβ) tγ

− 8 �εaε̄ΓabψV b t,
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where Rcdαβ and ργaβ are respectively the ψψ and the V ψ components of the curvatures Rcd and ρ, as given in
(3.2) and (3.4).

The mixed commutators (between ordinary and extended Lie derivatives) are computed by adapting the general
formula (2.25) to the case at hand:

[
�εAtA , �εt

]
= �(�εAtAε)t

= �[εA∂AεBC+2εAC∂BεA+4εABεD(RA
CD− 1

2C
A
CD)]μBμC t,

where μA = V a, ωab, ψα and the two-form parameter associated to the three-form A is expanded on the μA basis:
ε = εABμ

AμB . For example,
[
�εata , �εcdV cV dt

]
= �(εa∂aεbc+2εac∂bεa)V bV ct.

Finally, commutators between extended Lie derivatives vanish:
[
�ε1ta , �ε2t

]
= 0.

Note. The action of the extended Lie derivative is nontrivial only on A, where it amounts to a gauge transformation:

�εtA = dε,

(cf. equation (2.23)) due to horizontality of R(A) in the A-direction.

3.2 The dual Lie algebra

Taking constant parameters (εB = δBA for a fixed A, εCD = δABCD for fixed A,B) and vanishing curvatures, the
algebra of Lie derivatives given in the preceding paragraph reduces to the following Lie algebra:

[
Pa, Pb

]
= −(

CΓab
)
αβ
Zαβ ,

[
Pa, Qβ

]
= 2

(
CΓab

)
αβ
Qbα,

{
Qα, Qβ

}
= i

(
CΓa

)
αβ
Pa +

(
CΓab

)
αβ
Zab,

[
Jab, Jcd

]
= ηa[cJd]b − ηb[cJd]a,

[
Jab, Pc

]
= ηc[aPb],

[
Jab, Qα

]
= −1

4

(
Γab

)
αβ
Qβ ,

[
Jab, Z

cd] = 2δ
[c
[a
Z
d]
b]
,

[
Jab, Q

cγ] = δc[aQ
γ
b]

− 1

4

(
Γab

)γβ
Qcβ ,

[
Qα, Z

ab] = 2i
(
CΓ [a)

αβ
Qb]β ,

(3.6)

where only the nonvanishing commutators are given. We have used the familiar symbols for the Lie algebra genera-
tors Pa, Qα, Jab rather than the Lie derivative symbols �ta , �tα , �tab . Moreover, we have normalized the generators
corresponding to the extended Lie derivatives as

Zab = 4 �V aV bt, Qaα = 4 �V aψαt.

Notice that when all curvatures vanish, the extended Lie derivative �ψαψβt has null action on all the FDA fields,
(indeed the only nontrivial action �ψαψβtA is proportional to the spin connection, which vanishes in flat space).

Thus we can set Zαβ = 4 �ψαψβt = 0, and the commutator [Pa, Pb] can be taken to be vanishing.
The third line of (3.6) reproduces the supersymmetry commutations of M-theory in presence of 2-branes.
Finally, we give the Cartan-Maurer equations of the Lie algebra (3.6):

dωab − ωacωcb = 0
[
= Rab

]
,

dV a − ωabV b − i

2
ψ̄Γaψ = 0

[
= Ra],

dψ − 1

4
ωabΓabψ = 0

[
= ρ],

dBab − ωacBcb + ωbcBca − 1

2
ψ̄Γabψ = 0

[
= Tab],

dηa − ωacηc − 1

4
ωcdΓcdη

a + 2CΓabψV b − 2i CΓ cψBac = 0
[
= Σa],

(3.7)
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where the bosonic one-form Bab and spinor vector one-form ηaα correspond to the generators Zab and Qaα. The
closure of this algebra (or equivalently the Jacobi identities for the structure constants of the Lie algebra (3.6)) can
be easily checked by use of the D = 11 Fierz identity:

Γabψψ̄Γ bψ − Γ bψψ̄Γabψ = 0,

the only nontrivial check concerning the dηa equation in (3.7).

4 Conclusions

Generalizing the results of a previous paper [6], we have further developed an understanding of FDAs in terms of
ordinary Lie algebras. In particular, the symmetries gauged by antisymmetric tensors are generated by the extended
Lie derivatives introduced in Section 2.

The complete diffeomorphism algebra of FDAs containing a p-form has been obtained, both for the soft and
rigid FDAs. As in ordinary group manifolds, the diffeomorphism algebra reduces in the rigid case to a Lie algebra.

We have applied these results to D = 11 supergravity, and recovered the symmetry algebra of the theory,
including the symmetries gauged by the three-form field. Taking its rigid limit yields the Lie algebra of Section 3,
containing the supertranslation generators Pa, Qα, the Lorentz generators Jab, the familiar pseudo-central charge
Zab and an additional spinor-vector charge Qaα.

If this algebra can be gauged via the usual procedure of [4,5,10,22] (and there is no a priori reason why it could
not) the resulting theory would provide a new formulation of D = 11 supergravity in terms of the one-form fields
associated to the Lie algebra generators (i.e. vielbein V a, spin connection ωab, gravitino ψ, bosonic one-form Bab,
spinor-vector one-form ηa).

We should mention that the D’Auria-Fré algebra of [10] has so far resisted attempts to gauge it: a formulation
of D = 11 supergravity in terms of the superPoincaré fields, bosonic 1-forms Bab, Ba1···a5 and an additional spinor
η still does not exist. Some recent references on this issue (and on the use of the D’Auria-Fré algebra in M-theory
considerations) can be found in [1,2,13,14].
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