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Abstract
In this paper we prove that left multiplicative generalized Jordan derivation and left multiplicative generalized 

Jordan triple derivation of 2-torsion free semiprime rings are left multiplicative generalized derivation.

Preliminaries
Throughout this paper R will be denote an associative ring with 

the center Z(R). If n>1, a ring R is said to be n-torsion free, if for x∈R, 
nx=0 implies x=0. Recall that a ring R is called prime if for any x,y∈R, 
xRy={0} implies that either x=0 or y=0. And R is a semiprime if xRx={0} 
implies x=0. An additive mapping T:R→R is said to be a left centralizer 
if T(xy)=T(x)y (resp. T(x2)=T(x)x), for all x,y∈R. An additive mapping 
T:R→R is said to be a right centralizer if T(xy)=yT(x) (resp. T(x2)=xT(x)), 
for all x,y∈R. An additive mapping D:R→R is called a derivation (resp. 
Jordan derivation) if D(xy)=D(x)y+xD(y) (resp. D(x2)=D(x)x+xD(x)), 
for all x,y∈R. An additive mapping D:R→R is called a left derivation 
(resp. Jordan left derivation) if D(xy)=xD(y)+yD(x) (resp. D(x2)=xD(x) 
+xD(x)), for all x,y∈R. A mapping F:R→R is called centralizing on S if 
[f(x),x]∈Z for all x∈S and is called commuting on S if [F(x),x]=0 for 
all x∈S. An additive mapping F:R→R is called a generalized derivation 
if there exists a derivation D:R→R such that (resp. generalized Jordan 
derivation) F(xy)=F(x)y+xD(y) (resp. F(x2)=F(x)x+xD(x)), for all x,y∈R. 
An additive mapping F:R→R is called a left generalized derivation if 
there exists a derivation D:R→R such that (resp. left generalized Jordan 
derivation) F(xy)=xF(y)+D(x)y (resp. F(x2)=xF(x)+D(x)x), for all 
x,y∈R. An additive mapping D:R→R is called Jordan triple derivation 
if D(xyx)=D(x)yx+xD(y)x+xyD(x),for all x,y∈R. An additive mapping 
F:R→R generalized Jordan triple derivation if F(xyx)=F(x)yx+xD(y)
x+xyD(x), for all x,y∈R where D is a Jordan triple derivation. An 
additive mapping F:R→R left multiplicative generalized Jordan triple 
derivation if F(xyx)=xyF(x)+D(x)yx+xD(y)x, for all x,y∈R where D is a 
Jordan triple derivation.

Introduction
Bresar [1] has proved that any Jordan triple derivation on 2-torsion 

free semiprime ring is a derivation. A classical result of Herstein [2] 
asserts that any Jordan derivation on a 2-torsion free prime ring is a 
derivation. A brief proof of Herstein’s result can be found Bresar M et 
al., [3]. Cusak [4] studied Jordan derivations on prime rings. Zalar [5] 
has proved that any left Jordan centralizer on a 2-torsion free semiprime 
ring is a left centralizer. Recently, Jing and Lu [6] introduced a concept 
of generalized Jordan derivation and generalized Jordan triple 
derivation. Vukman and kosi-Ulbl [7] studied an equation related to 
centralizers in semiprime rings. Molnar [8] studied on centralizers of 
an H*-algebra. Subba Reddy et al. [9-12] studied left multiplicative 
generalized derivations in prime and semiprime rings. Vukman [13] 
studied a note on generalized derivations of semiprime rings. In this 
paper, we can extended some results on left multiplicative generalized 
Jordan derivations of semiprime rings.

Theorem 1

Let R be a 2-torsion free semiprime ring and let F:R→R be a left 
multiplicative generalized Jordan derivation. Then prove that F is a left 

multiplicative generalized derivation.

Proof: We have therefore the relation,

F(x2)=xF(x)+D(x)x, for all x∈R.                  (1)

Here D is a Jordan derivation on R.

Since R is a semiprime ring one can conclude that D is a derivation.

Let us denote F−D by T.

Then we have, T(x2)=F(x2)−D(x2)

=xF(x)+D(x)x−D(x)x−xD(x)

=xF(x)−xD(x)

=x(F(x)−D(x))

T(x2)=xT(x).

We have, therefore T(x2)=xT(x), for all x∈R. In other words, T is a 
right Jordan centralizer of R. Since R is a 2-torsion free semiprime ring. 
One can conclude that T is a right centralizer in ref. [5]. Hence F is of 
the form F=D+T. Where D is a derivation and T is a right centralizer 
of R. This means that F is a left multiplicative generalized derivation.

Theorem 2

Let R be a 2-torsion free semiprime ring and let F: R→R be a left 
multiplicative generalized Jordan triple derivation. Then prove that F is 
a left multiplicative generalized derivation.

Proof: We have therefore the relation,

F(xyx)=xyF(x)+D(x)yx+xD(y)x, for all x,y∈R.

where D is a Jordan triple derivation of R.

Since R is a semiprime ring one can conclude that, D is a derivation 
by theorem A in ref. [1].

Let us denote F−D by T.
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We have T(xyx)=F(xyx)−D(xyx)

=xyF(x)+D(x)yx+xD(y)x−D(x)yx−xD(y)x−xyD(x).

=xyF(x)−xyD(x)

=xy(F(x)−D(x))

T(xyx)=xyT(x).

We have therefore T(xyx)=xyT(x), for all x,y∈R.

Conclusion
By theorem in ref. [14] one can conclude that T is a right centralizer. 

We proved that F can be written as F=D+T, where D is a derivation 
and T is a right centralizer, which means that F is a left multiplicative 
generalized derivation.

Example: The following example express as a centralizer of a 
ring R is both left and right centralizer of a additive mapping T, i.e., 
T(xy)=T(x)y=xT(y), for all x,y∈R.

Consider the ring:
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We can show that T is a centralizer.
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, where x,y∈R and a1, b1, a2, b2 ∈S.

Applying T, we find that:
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Thus, we obtain T is a centralizer.
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