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Chronic Obstructive Pulmonary Disease (COPD/emphysema) is a 
predominantly cigarette-smoke related, chronic inflammatory airways 
disease, which is currently incurable. Existing treatments are largely 
symptomatic, and there is an urgent need for identification of new 
therapies. Crucial for our understanding of the pathogenesis of this and 
other chronic lung diseases was the identification of a significant defect 
in the ability of pulmonary macrophages to phagocytose apoptotic 
airway epithelial cells (defective efferocytosis) [1,2], which may 
contribute to an excess of apoptotic material, secondary necrosis of the 
uncleared material and perpetuation of chronic airway inflammation 
[3,4]. Impaired phagocytosis of bacteria in COPD was also shown; an 
important finding given the contribution of infective exacerbations to 
airways destruction in these patients [5]. 

Importantly, these defects could be substantially overcome using 
macrophage-targeted therapies [2,5-8] including macrolide antibiotics 
that improved efferocytosis, and reduced airway epithelial cell apoptosis 
and inflammation in vivo [5,6]. Nakanishi et al. [9] further showed that 
administration of clarithromycin prevented the onset of emphysema 
in smoke-exposed mice [9]. Two important lines of reasoning indicate 
that the macrolides are exerting anti-inflammatory rather than anti-
microbial actions to improve these facets of COPD pathogenesis. Firstly, 
the low doses of macrolides shown to be beneficial in COPD frequently 
fail to reach the MICs of respiratory pathogens. Secondly, the beneficial 
effects of these drugs in COPD pathogenesis are being recapitulated 
with non-antimicrobial macrolide congeners [10]. Nevertheless, 
concern regarding the selection of resistant bacteria necessitates the 
evaluation of immune based, non anti-microbial approaches to avoid 
this consequence. 

Of recent interest is the use of lectins in this regard. Lectins are 
soluble carbohydrate-binding proteins that include C-type (lung 
surfactants and Mannose Binding Lectin (MBL)), S-type (galectins), 
L-type, heparin binding proteins and pentraxins. They contain 
carbohydrate recognition domains (CRD) and are traditionally 
recognised for their roles in recognition of Pathogen-Associated 
Molecular Patterns (PAMPs) and facilitation of pathogen clearance. 
More recently we and others have shown that lectins also have the 
ability to facilitate phagocytosis of apoptotic cells [8,11]. Mannose 
binding lectin is produced in the liver, is present in the airway [8,12] and 
recognizes nucleic acids including fragmented DNA on apoptotic cells 
and products of tissue damage (eg, heat shock proteins, cell membrane 
material) thus mediating its actions in clearing apoptotic debris [13]. 
MBL research has primarily focused on defence against pathogens, 
a key immune function that has relevance to the exacerbations that 
occur in COPD particularly its role in defences against Streptococcus 
pneumoniae [14], although these may be indirect and mediated by 
enhanced pentraxin binding. More recently however, decreased airway 
levels of MBL were shown in patients with COPD and smokers (with no 
changes noted in plasma) [8]. 

Importantly, the levels of MBL were low in the airway even in 
the presence of infection, and levels correlated with efferocytosis and 
COPD disease severity (FEV1) [8]. Nebulized administration of MBL 
to smoke-exposed mice reversed the dysfunction of both alveolar and 
lung tissue macrophages and reduced airway inflammation (evidenced 

by a significant reduction in WCC and macrophage numbers to near-
normal levels) [8]. While the effects of the local MBL deficiency in the 
handling of pathogens such as S. pneumoniae and H. influenzae that 
colonize the airway in COPD are currently unknown, the available data 
do support human in vivo studies of MBL therapy in COPD.

Both plasma-derived (pdMBL) MBL and recombinant (rMBL) 
have been produced and studied for potential immunotherapeutic 
benefits. Plasma-derived MBL is superior to rMBL when comparing the 
key biological processes central to MBL function, including mannan 
binding and complement deposition in vivo. Rajagopalan et al. [15] 
reported that (a) pdMBL bound mannan significantly more efficiently 
than rMBL (b) complement deposition was reduced 5 fold in rMBL 
compared to pdMBL (c) the proportion of higher order oligomers 
(required for functional mannan binding and complement deposition) 
is far lower in rMBL than in pdMBL [15]. In our studies we also found 
that the significant improvement in macrophage function with pdMBL 
did not occur with rMBL. Recombinant MBL has been clinically 
trialled [16] however no data is available on the outcome of this study, 
as this and all other clinical trials of rMBL were ceased before study 
completion due to a failure to meet commercialisation milestones that 
are as yet not fully enunciated. In contrast, pdMBL has been utilised in 
a number of early phase clinical trials and has been shown to be safe, 
well tolerated, and efficacious [17-20]. Plasma-derived MBL may thus 
prove to be a useful adjunct therapeutic strategy for COPD and other 
chronic lung diseases where MBL may play a pathophysiological role, 
and clinical trials are warranted. In particular, the use of intra-nasal or 
aerosolized administration of MBL would be an attractive treatment 
option.
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