
Volume 6 • Issue 1 • 1000344J Appl Computat Math, an open access journal
ISSN: 2168-9679

Open AccessResearch Article

Journal of
Applied & Computational Mathematics

Jour
na

l o
f A

pp
lie

d & Computational M
athem

atics

ISSN: 2168-9679

Hosseini, J Appl Computat Math 2017, 6:1
DOI: 10.4172/2168-9679.1000344

Keywords: Laying chicken algorithm; Meta-heuristic approaches;
Optimization problems

Introduction
In the recent decades, optimization and computer scientists have

been designing several algorithms based on behavior of animals
and insects because the natural systems are very efficient. Swarm
Intelligence (SI) was introduced in 1989 as a novel approach in the
global optimization [1]. Ant Colony Optimization (ACO) was proposed
to solve discrete problems as a new meta-heuristic optimizer [2].
Particle Swarm Optimization (PSO) introduced for solving continuous
programming problems [3]. These algorithms have been found
acceptable solutions to optimization problems. Therefore, the meta-
heuristic algorithms, such as Artificial Bee Colony Algorithm [4], krill
herd algorithm [5], Bat Algorithm (BA) [6], social spider optimization
[7], Chicken Swarm Optimization (CSO) [8], firefly algorithm [9] have
attracted by many researchers.

This paper suggests a novel optimizer for optimization of linear and
non-linear programming problems in continuous state. The approach
has been discovered in simulating of a natural bi-inspiring model.
The paper introduces the laying chicken algorithm concept, strongly
discusses the steps of its extension from bi-inspiring simulation model
to optimizer. Finally, by proposed numerical results of linear and non-
linear test problems, it is easy to see that the simulated model has been
succeeded.

Laying chicken algorithm is related to two principle concepts.
In general, LCA ties to artificial agent or artificial life obviously, and
to, laying fishes, laying turtles, laying snakes and laying chickens
in particular (not SI behavior). It comes from both evolutionary
programming and genetic algorithms. In this paper, relationships
between LCA and above concepts are obvious.

Proposed laying chicken algorithm by the author includes an easy
natural theory and concept, and performance of steps can be displayed
in some lines of MATLAB code. It needs just an array, to store feasible
solutions, and initial mathematical factors. So it has an acceptable
computational complexity in both of memory and time. Initial testes
have realized the enforcement to be feasible and effective using
different classes of problems. In the rest of paper, performances of steps
and their MATLAB code will be presented. Finally use of approach to
solve several kinds of problems, such as constraint and unconstraint
programming problems in different states, is discussed.

Simulation of Laying Chicken Behavior
The hens and their eggs are a great source of food as one of the

most extensive tame animals [8]. This paper focuses on behavior of
laying hen and answer of this question: “how does she convert the egg
to the chicken?” In this paper, same as eggs to the chicken, the feasible
solutions have been changed to the optimal solution. In fact, each egg
displays a feasible solution in continuous programming problem and a
chicken describes optimal solution in the problem.

Farmers use a false egg sometimes to encourage hens to stay in the
nest. Because hens often prefer in the same location and not empty nest
to lay, in fact they try to do that in the nest that already contain eggs.
This is a great idea to create an initial feasible solution and to generate
first population near that.

Pheromone of ants in ant colony, individual members or global
best in particle swarm optimization, crossover or combination of genes
in genetic, are the fundamental concepts of some of the meta-heuristic
algorithms. Here hens try to warm their eggs; this concept is base to
development of laying chicken algorithm. Same as temperature of eggs
objective function of solutions will be improved. Rotation of eggs is
the next concept which will be simulated by little change of solutions.

The Laying Chicken Algorithm Concept
The laying chicken algorithm optimizer may the best proposed

using describe its conception development. As mentioned, LCA comes
from laying hen as an original naturel event, so in this section the main
concept of LCA and its relationship with the bio-inspiring event is
discussed.

The initial solution
The simulated approach already was written based on two main

*Corresponding author: Hosseini E, Philosophy Doctor of Operational Research
and Optimization, Department of Mathematics, UAE, Tel: 21 2332 0009; E-mail:
eghbal_math@yahoo.com

Received March 14, 2016; Accepted March 17, 2017; Published March 21, 2017

Citation: Hosseini E (2017) Laying Chicken Algorithm: A New Meta-Heuristic
Approach to Solve Continuous Programming Problems. J Appl Computat Math 6:
344. doi: 10.4172/2168-9679.1000344

Copyright: © 2017 Hosseini E. This is an open-access article distributed under
the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and
source are credited.

Laying Chicken Algorithm: A New Meta-Heuristic Approach to Solve
Continuous Programming Problems
Eghbal Hosseini*
Philosophy Doctor of Operational Research and Optimization, Department of Mathematics, UAE

Abstract
A concept for the optimization of continuous programming problems using an approach based on behavior of

laying chicken, to produce chicken, is introduced. Laying chicken algorithm (LCA) is used for solving different kinds
of linear and non-linear programming problems. The presented approach gives efficient and feasible solutions in
an appropriate time which has been evaluated by solving test problems. The comparison between LCA and both of
meta-heuristic and classic approaches are proposed.

Citation: Hosseini E (2017) Laying Chicken Algorithm: A New Meta-Heuristic Approach to Solve Continuous Programming Problems. J Appl Computat
Math 6: 344. doi: 10.4172/2168-9679.1000344

Page 2 of 8

Volume 6 • Issue 1 • 1000344J Appl Computat Math, an open access journal
ISSN: 2168-9679

concepts: initial solution and population. Same as the first egg in the
nest, the initial feasible solution was necessary. So it has been created
randomly. If it is not feasible, a loop in the MATLAB code is repeated
to create a feasible one. Initial solution for some optimization problems
is created in MATLAB are as follows:

The initial population

In the first iteration, initial population of solutions has been created
near the initial feasible solution as possible. In fact, the next factor of
the simulation defines “the initial neighborhood,” an n-dimensional
neighborhood of Rn, this is defined as follows:

‖X–Y‖ ≤ k (1)

or

() () ()2 2 2
1 1 2 2 ... n nx y x y x y k− + − + + − ≤

Which, X is initial solution, Y is an n-dimensional vectors and k is
a positive constant. Here the initial population of eggs has been created
randomly in the possible nearest neighborhood of the initial solution.

Each member of initial population has to be in this neighborhood
of the initial solution. We try to generate solutions very near the initial
solution. This is because hens usually like to stay in their nest with their
eggs. In fact, they prefer to convert their eggs to chicken than other
animal eggs. Figure 1 shows 500 eggs (feasible solutions) near to the
initial solution for a given problem with k=1 in R2 (Figure 1).

The algorithm will be more efficient when k be very small. This is
because it does not miss many solutions near initial solution small k.

Improving of population

Each solution in population, which its objective function is not
better than objective function of initial solution, should be changed
in direction initial solution while it will be better than initial solution.
In fact, value of particles have been changed in direction vector which
connects its and the initial solution. These solutions have been modified
as follows:

xj+1=xj+αdj0 (2)

Which, dj0 is the vector from xj to x0 and f(xj)< f(x0), 0 ≤ α ≤ 2k in
maximization problems.

All states of α have been described in Table 1 and according to that,
the feasible interval for α as follows:

0 ≤ α ≤ 2k (3)

It is easy to show that α → 0 does not change solutions very well, so
interval 0<α<k/4 has been removed and the following is the best:

k/4<α ≤ 2k (4)

But according to the gradient theorem in Figure 2a objective
function of blue points are not better than initial solution (large red
point) and small red points are better than it, in a given problem that its
optimal solution is in right hand side of the initial solution. So interval
of α has been modified as follows:

k ≤ α ≤ 2k (5)

This is because the author wants to move all blue solutions in Figure
2a in direction initial solution such that they will be better than it.
Green points in Figure 2b are these solutions after their movement. By
this stage all solution in population will be better than initial solution
Figure 2c. The best solution in this iteration will be initial solution
in the next iteration. So in the next population and after this step, all
solution will be better than the best solution of current population.
This is the main idea of the algorithm which every population is better
than previous population. Pseudo code of this stage has been shown in
Figure 3.

Changing the solutions

The last trait of the simulated method has been inspired from
rotation of the eggs by the hen. She rotates the eggs three or four
times every day. In this stage except the best solution, all member

Figure 1: 500 eggs (blue points) have been created near initial solution
(green point).

(a) (b) (c)

Figure 2: Process of changing solutions which are not better than initial solution in direction it.

Citation: Hosseini E (2017) Laying Chicken Algorithm: A New Meta-Heuristic Approach to Solve Continuous Programming Problems. J Appl Computat
Math 6: 344. doi: 10.4172/2168-9679.1000344

Page 3 of 8

Volume 6 • Issue 1 • 1000344J Appl Computat Math, an open access journal
ISSN: 2168-9679

of population have been little changed as follows. ε is a given small
positive number.

Some of solutions have been selected randomly and changed as
follows:

(xi+1,yi+1)=(xi ∓ ε, yi ∓ ε)

Each solution j which xj < xbest has been changed as follows:

(xj+1, yj+1)=(xj+ε,yj)

Each solution k which xk > xbest has been changed as follows:

(xk+1, yk+1)=(xk–ε,yk)

At each iteration, the best solution has been saved and other
solutions selected near that in the next population. There are two states
for current stage: If this stage creates the better solution from the best
one (best in this iteration), it will substitute the best and in the next
iteration solutions should be selected near that. Otherwise the best
solution will not change. In fact by this stage, the best solution will be
better or not changed. Figure 4 shows code of this step.

This stage is useful because it causes to generate more random
solutions except the best solution. In fact, the algorithm has more
choices to select the best solution by more random solutions.

Steps of the algorithm

The main steps of the algorithm in R2 as follows:

•	 The initial feasible solution (x0,y0), is created. Number of
iteration, N, and an arbitrary small positive number, ε1 are given.

•	 Initial population near (x0,y0), is generated.

•	 Each solution in step 2, which its objective function is not
better than (x0,y0), should be changed in direction (x0,y0) and found the
best solution (xbest,ybest)

•	 All solutions, except the best one, have been very little changed.

•	 Objective function of solutions and the best solution is updated.
Let (x0,y0)=(xbest,ybest), go back to step 2.

•	 If |f(xibest)–f(x(i+1)best)|<ε1 or the number of iteration is more
than M the algorithm will be finished, xibest, x(i+1)best are the best solutions
in two consecutive generations. Figure 5 shows the process of the
algorithm to gain optimal solution from a given feasible solution.
Explanation of Figure 5 as follows: initial solution is generated in eqn
(1), Red point is the optimal solution and the green point is an arbitrary
feasible solution. Eqn (2) shows first population near initial solution
with k=1, red points are better than the initial solution and blue points
are not. Blue points move in eqn (3) and convert to green points which
are better than initial solution. The algorithm continues with eqn (4).
All solutions except the best solution have been little changed according
eqn (5). Next population will be created near the best solution.

The process of the algorithm in R3 has been shown in Figure 6.

Convergence

Convergent parameter set includes initial solution, small positive
number ε and constants k and α. BBA is run several times to determine
convergence rate and convergent parameter set of the algorithm.
The convergence rate is top if various results are gained by more

begin

Objective function f(x), x = (x1, ..., xd)T

Generate initial population of eggs xi (i = 1, 2, ..., n) near x0

Temperature Ei at xi is determined by f(xi)

for j = 1 : n (all n eggs)

while (Ej < E0), warm egg j;

end

Evaluate new solutions and update temperature

end

end

Figure 3: Pseudo code of improving of solution.

begin

for j=1 : n (all n eggs)

if (f(xj) < objective function of the best solution), change xj a
little;

end

Evaluate new solutions and update temperature(objective
function)

end

end

Figure 4: MATLAB code of changing the solutions.

Citation: Hosseini E (2017) Laying Chicken Algorithm: A New Meta-Heuristic Approach to Solve Continuous Programming Problems. J Appl Computat
Math 6: 344. doi: 10.4172/2168-9679.1000344

Page 4 of 8

Volume 6 • Issue 1 • 1000344J Appl Computat Math, an open access journal
ISSN: 2168-9679

(1) (2) (3)

Step 1: Initial solution Step 2: First population Step 3: Improving population

(4) (5) (6)

Step 3: Improving population Step 4: Changing solutions Step 5: New population

Figure 5: Steps of the algorithm to obtain optimal solution R2.

(1) (2)

(3) (4)

Figure 6: Steps of the algorithm to obtain optimal solution in R3.

Citation: Hosseini E (2017) Laying Chicken Algorithm: A New Meta-Heuristic Approach to Solve Continuous Programming Problems. J Appl Computat
Math 6: 344. doi: 10.4172/2168-9679.1000344

Page 5 of 8

Volume 6 • Issue 1 • 1000344J Appl Computat Math, an open access journal
ISSN: 2168-9679

performances. Large number of eggs and slow convergent parameter
set must be used in this state. The convergence rate is low if after large
number of iterations same result is gained. Small number of eggs
and quick convergent parameter set should be used here. Finally, if
suitable results are gained, convergence rate is well and the common
parameter set should be used. According to the computational results,
convergence rate of the algorithm is completely high rather than other
proposed meta-heuristic approaches.

Computational Results
Example 1 [9]

Consider the following problem:

min exp(–(x-4)2–(y–4)2)+exp(–(x+4)2–(y–4)2)+2exp(–x2–y2) +
2exp(–x2––(y+4)2)

Figure 7 shows behavior of objective function in Example 1. To
solve the problem, all efficient factors to obtain optimal solution are:
number of eggs, stochastic constant (k), small positive number ε to
change solutions, and initial feasible solution. According to the Table
2 the proposed meta-heuristic approach has presented a solution with
less time and number of eggs than firefly algorithm. Behavior of agents
to obtain optimal solution has been shown in Figure 8.

Example 2 [10]

Consider the following linear programming problem:

min–3x1+x2

x1+2x2 ≤ 4

–x1+x2 ≥ 0

Comparison LCA and exact methods has been proposed in Table 3.
Figure 9 shows to move generations to optimal solution in feasible region.

Example 3 [11]

Consider the following non-linear programming problem:

min–(x1–4)2–(x2–4)2

x1+3 ≤ 0

–x1+x2–2 ≤ 0

x1+x2–4 ≤ 0

x1,x2–2 ≥ 0

Comparison LCA and other methods by example 3 have been
proposed in Table 4. Behavior of generations has been shown in Figure 10.Figure 7: Behavior of the function: Example 1.

States of α xj+1=xj+αdj0 Explanation Logical decision P. Infeasible solutions
α >> 2k α→∞⇒ xj+1→∞ xj+1 will be infeasible. This state should not be selected. 100%
α << 2k α→–∞⇒ xj+1→–∞ xj+1 will be infeasible. This state should not be selected. 100%
α=0 xj+1=xj xj+1 will not be changed. α should not be near zero. –
α=k xj+1=x0 x0 is already in population. This state should not be selected. –
α=2k xj+1=xj+kdj0 xj+1 will be feasible. This state can be selected. 0%
α<k xj+1=xj+2kdj0 xj+1 till be feasible. This state can be selected. 0%

Table 1: States of α description.

Algorithms N.Eggs/Firefly N. Iterations Optimal Solution F Max K ε x0

LCA 24 2 (–0.03,–0.02) 1.99 1 0.01 (0.80,0.90)
LCA 20 3 (–0.10,–0.01) 1.95 1 0.01 (1.81,1.90)
FA[9] 25 20 (0,0) 2 – – –

Table 2: Comparison of LCA and firefly algorithm: Example 1.

Algorithms N. Eggs N. Iterations Optimal Solution F Max K 𝜺 x0

LCA 100 4 (3.85,0.59) –11.50 1 0.01 (0.80,0.90)
Exact methods[10] – – (4,0) –12 – – –

Table 3: Comparison of LCA and exact methods: Example 2.

Algorithms N. Eggs N. Iterations Optimal Solution F Max k ε x0

LCA 100 2 (0.04,0.02) –31.47 1 0.01 (0.81,0.90)
LCA 40 3 (0.04,0.11) –30.73 1 0.01 (0.81,0.90)
LCA 100 4 (0.00,0.17) –30.6 1 0.01 (3,1)

Classic methods [11] (0,0) –32 –

Table 4: Comparison of LCA and other methods: Example 3.

Citation: Hosseini E (2017) Laying Chicken Algorithm: A New Meta-Heuristic Approach to Solve Continuous Programming Problems. J Appl Computat
Math 6: 344. doi: 10.4172/2168-9679.1000344

Page 6 of 8

Volume 6 • Issue 1 • 1000344J Appl Computat Math, an open access journal
ISSN: 2168-9679

x0(green point) and optimal solution (red)

point)

Generation 1 is created near x0 Optimal solution of generation 1

Generation 2 Optimal solution of generation 2 Generation 3 and its optimal
Figure 8: Generations have been moved to find optimal solution: Example 1.

x0 and optimal solution Generation 1 Generation 2

Optimal solution of generation 2 3 and its and optimal solution Optimal solution of generation 4

Figure 9: Generations have been created in feasible region and moved to optimal solution: Example 2.

Citation: Hosseini E (2017) Laying Chicken Algorithm: A New Meta-Heuristic Approach to Solve Continuous Programming Problems. J Appl Computat
Math 6: 344. doi: 10.4172/2168-9679.1000344

Page 7 of 8

Volume 6 • Issue 1 • 1000344J Appl Computat Math, an open access journal
ISSN: 2168-9679

The proposed algorithm is efficient for problems by more than two
variables according to the following example.

Example 4 [10]

Consider the following linear programming problem:

Min x1+x2–4x3

x1+ x2+2x3 ≤ 9

x1+x2–x3 ≤ 2

–x1+x2+x3 ≤ 4

x1,x2,x3 ≥ 0

Comparison LCA and exact methods has been proposed in Table
5. Behavior of generations to find optimal solution has been shown in
Figure 11.

Conclusion
Laying chicken algorithm is an easy meta-heuristic approach which

optimizes different kinds of functions and optimization programming

problems. Also, it seems efficient according to the examples. LCA was
proposed as a natural event algorithm, not based on swarm intelligence
unlike most of pervious meta-heuristic approaches. It ties to behavior
of hen in process of produce chickens from eggs. In fact, LCA relates to
both of biological and evolution computation because of its evolution
and stochastic process.

LCA was successful because it does not miss the great solutions
near initial solution particularly when k is small. The number of
generations would be less according to a suitable feasible solution such
as x0 in fact consuming time to find optimal solution is much better
than other meta-heuristic approaches.

Finally, there are many different NP-Hard problems which can be
solved by meta-heuristic approaches especially using laying chicken
algorithm. The simple MATLAB code of the LCA can be interested in
the future researches especially for problems in large size. However,
the proposed solution by LCA is near to optimal solution, but it is an
approximate approach and the better algorithms can be proposed in
the future researches.

x0 and optimal solution

Generation 3

Generation 2

 Generation 4 and its and optimal
solution

Generation 1

Optimal solution of generation 2

Figure 10: Generations moves in feasible region to find optimal solution: Example 3.

Algorithms N. Eggs N. Iterations Optimal Solution F Max K 𝜺
LCA 27 7 (0.31,0.00,4.29) –16.87 1 0.01

Exact methods[10] – – (0.33,0,4.33) -17 – –

Table 5: Comparison of LCA and other methods: Example 4.

Citation: Hosseini E (2017) Laying Chicken Algorithm: A New Meta-Heuristic Approach to Solve Continuous Programming Problems. J Appl Computat
Math 6: 344. doi: 10.4172/2168-9679.1000344

Page 8 of 8

Volume 6 • Issue 1 • 1000344J Appl Computat Math, an open access journal
ISSN: 2168-9679

x0 and optimal solution Generation 1 Generation 2

Generation 3 Generation 3 and its and optimal
solution

Constraints and optimal solution

Figure 11: Generations moves in the feasible region to ind optimal solution: Example 4.

References

1. Beni G, Wang J (1989) Swarm intelligence in cellular robotic systems. In NATO
Advanced Workshop on Robots and Biological Systems, Il Ciocco, Tuscany,
Italy, pp: 703-712.

2. Colorni A, Dorigo M, Maniezzo V, Trubian M (1994) Ant system for job-shop
scheduling. Belgian Journal of Operations Research. Statistics and Computer
Science 34: 39-53.

3. Shi Y (2001) Particle swarm optimization: developments, applications and
resources. In evolutionary computation 2001. Proceedings of the 2001
Congress 1: 81-86.

4. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical
function optimization: artificial bee colony (ABC) algorithm. Journal of Global
Optimization 39: 459-471.

5. Gandomi AH, Alavi AH (2012) Krill herd: a new bio-inspired optimization
algorithm. Communications in Nonlinear Science and Numerical Simulation 17:
4831-4845.

6. Yang XS, He X (2013) Bat algorithm: literature review and applications.
International Journal of Bio-Inspired Computation 5: 141-149.

7. Cuevas E, Cienfuegos M, Zaldívar D, Pérez-Cisneros M (2013) A swarm
optimization algorithm inspired in the behavior of the social-spider. Expert
Systems with Applications 40: 6374-6384.

8. Meng X, Liu Y, Gao X, Zhang H (2014) A new bio-inspired algorithm: chicken
swarm optimization. In International Conference in Swarm Intelligence.
Springer International Publishing, pp: 86-94.

9. Yang XS (2010) Nature-inspired metaheuristic algorithms. Luniver press.

10. Bazzara M (2010) linear programming and Network Flows, Wiley. Inc, New
York.

11. Bazzara M (2007) Non-linear programming Theory and Algorithms. Wiley Inc.
New York.

http://dx.doi.org/10.1007/978-3-642-58069-7_38
http://dx.doi.org/10.1007/978-3-642-58069-7_38
http://dx.doi.org/10.1007/978-3-642-58069-7_38
http://s3.amazonaws.com/academia.edu.documents/39665046/Ant_system_for_job-shop_scheduling20151103-6930-14z4vzc.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1490030715&Signature=X%2Bs6VMXD8ABz5T1AJZBRLHqR2tA%3D&response-content-disposition=inline%3B filename%3DAnt_system_for_job-shop_scheduling.pdf
http://s3.amazonaws.com/academia.edu.documents/39665046/Ant_system_for_job-shop_scheduling20151103-6930-14z4vzc.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1490030715&Signature=X%2Bs6VMXD8ABz5T1AJZBRLHqR2tA%3D&response-content-disposition=inline%3B filename%3DAnt_system_for_job-shop_scheduling.pdf
http://s3.amazonaws.com/academia.edu.documents/39665046/Ant_system_for_job-shop_scheduling20151103-6930-14z4vzc.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1490030715&Signature=X%2Bs6VMXD8ABz5T1AJZBRLHqR2tA%3D&response-content-disposition=inline%3B filename%3DAnt_system_for_job-shop_scheduling.pdf
https://doi.org/10.1109/CEC.2001.934374
https://doi.org/10.1109/CEC.2001.934374
https://doi.org/10.1109/CEC.2001.934374
https://doi.org/10.1007/s10898-007-9149-x
https://doi.org/10.1007/s10898-007-9149-x
https://doi.org/10.1007/s10898-007-9149-x
http://www.sciencedirect.com/science/article/pii/S1007570412002171
http://www.sciencedirect.com/science/article/pii/S1007570412002171
http://www.sciencedirect.com/science/article/pii/S1007570412002171
https://doi.org/10.1504/IJBIC.2013.055093
https://doi.org/10.1504/IJBIC.2013.055093
https://arxiv.org/ftp/arxiv/papers/1406/1406.3282.pdf
https://arxiv.org/ftp/arxiv/papers/1406/1406.3282.pdf
https://arxiv.org/ftp/arxiv/papers/1406/1406.3282.pdf
https://doi.org/10.1007/978-3-319-11857-4_10
https://doi.org/10.1007/978-3-319-11857-4_10
https://doi.org/10.1007/978-3-319-11857-4_10
https://books.google.co.in/books?hl=en&lr=&id=iVB_ETlh4ogC&oi=fnd&pg=PR5&dq=Nature-+Inspired+Meta-Heuristic+Algorithms&ots=DvjtmdDDtf&sig=hREHeSF3D2tFfVgaGTV1ThgePP0#v=onepage&q=Nature- Inspired Meta-Heuristic Algorithms&f=false
https://books.google.co.in/books?hl=en&lr=&id=FykSXKGEeZQC&oi=fnd&pg=PR7&dq=linear+programming+and+Network+Flows&ots=6M8F7LLNzK&sig=3JBziCiC_9A89-BWbi7wzc7o440#v=onepage&q=linear programming and Network Flows&f=false
https://books.google.co.in/books?hl=en&lr=&id=FykSXKGEeZQC&oi=fnd&pg=PR7&dq=linear+programming+and+Network+Flows&ots=6M8F7LLNzK&sig=3JBziCiC_9A89-BWbi7wzc7o440#v=onepage&q=linear programming and Network Flows&f=false
https://books.google.co.in/books?hl=en&lr=&id=nDYz-NIpIuEC&oi=fnd&pg=PT9&dq=Non-linear+programming+Theory+and+Algorithms:+Bazzara+&ots=qMoMZgsgvg&sig=i1TDKUqYFq-mVApWtZhsTX5m5oA#v=onepage&q&f=false
https://books.google.co.in/books?hl=en&lr=&id=nDYz-NIpIuEC&oi=fnd&pg=PT9&dq=Non-linear+programming+Theory+and+Algorithms:+Bazzara+&ots=qMoMZgsgvg&sig=i1TDKUqYFq-mVApWtZhsTX5m5oA#v=onepage&q&f=false

	Title
	Corresponding author
	Abstract
	Keywords
	Introduction
	Simulation of Laying Chicken Behavior
	The Laying Chicken Algorithm Concept
	The initial solution
	The initial population
	Improving of population
	Changing the solutions
	Steps of the algorithm
	Convergence

	Computational Results
	Example 1 [9]
	Example 2 [10]
	Example 3 [11]
	Example 4 [10]

	Conclusion
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	References

