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Introduction
In the recent decades, optimization and computer scientists have 

been designing several algorithms based on behavior of animals 
and insects because the natural systems are very efficient. Swarm 
Intelligence (SI) was introduced in 1989 as a novel approach in the 
global optimization [1]. Ant Colony Optimization (ACO) was proposed 
to solve discrete problems as a new meta-heuristic optimizer [2]. 
Particle Swarm Optimization (PSO) introduced for solving continuous 
programming problems [3]. These algorithms have been found 
acceptable solutions to optimization problems. Therefore, the meta-
heuristic algorithms, such as Artificial Bee Colony Algorithm [4], krill 
herd algorithm [5], Bat Algorithm (BA) [6], social spider optimization 
[7], Chicken Swarm Optimization (CSO) [8], firefly algorithm [9] have 
attracted by many researchers.

This paper suggests a novel optimizer for optimization of linear and 
non-linear programming problems in continuous state. The approach 
has been discovered in simulating of a natural bi-inspiring model. 
The paper introduces the laying chicken algorithm concept, strongly 
discusses the steps of its extension from bi-inspiring simulation model 
to optimizer. Finally, by proposed numerical results of linear and non-
linear test problems, it is easy to see that the simulated model has been 
succeeded.

Laying chicken algorithm is related to two principle concepts. 
In general, LCA ties to artificial agent or artificial life obviously, and 
to, laying fishes, laying turtles, laying snakes and laying chickens 
in particular (not SI behavior). It comes from both evolutionary 
programming and genetic algorithms. In this paper, relationships 
between LCA and above concepts are obvious.

Proposed laying chicken algorithm by the author includes an easy 
natural theory and concept, and performance of steps can be displayed 
in some lines of MATLAB code. It needs just an array, to store feasible 
solutions, and initial mathematical factors. So it has an acceptable 
computational complexity in both of memory and time. Initial testes 
have realized the enforcement to be feasible and effective using 
different classes of problems. In the rest of paper, performances of steps 
and their MATLAB code will be presented. Finally use of approach to 
solve several kinds of problems, such as constraint and unconstraint 
programming problems in different states, is discussed.

Simulation of Laying Chicken Behavior
The hens and their eggs are a great source of food as one of the 

most extensive tame animals [8]. This paper focuses on behavior of 
laying hen and answer of this question: “how does she convert the egg 
to the chicken?” In this paper, same as eggs to the chicken, the feasible 
solutions have been changed to the optimal solution. In fact, each egg 
displays a feasible solution in continuous programming problem and a 
chicken describes optimal solution in the problem.

Farmers use a false egg sometimes to encourage hens to stay in the 
nest. Because hens often prefer in the same location and not empty nest 
to lay, in fact they try to do that in the nest that already contain eggs. 
This is a great idea to create an initial feasible solution and to generate 
first population near that.

Pheromone of ants in ant colony, individual members or global 
best in particle swarm optimization, crossover or combination of genes 
in genetic, are the fundamental concepts of some of the meta-heuristic 
algorithms. Here hens try to warm their eggs; this concept is base to 
development of laying chicken algorithm. Same as temperature of eggs 
objective function of solutions will be improved. Rotation of eggs is 
the next concept which will be simulated by little change of solutions.

The Laying Chicken Algorithm Concept
The laying chicken algorithm optimizer may the best proposed 

using describe its conception development. As mentioned, LCA comes 
from laying hen as an original naturel event, so in this section the main 
concept of LCA and its relationship with the bio-inspiring event is 
discussed.

The initial solution
The simulated approach already was written based on two main 
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A concept for the optimization of continuous programming problems using an approach based on behavior of 

laying chicken, to produce chicken, is introduced. Laying chicken algorithm (LCA) is used for solving different kinds 
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concepts: initial solution and population. Same as the first egg in the 
nest, the initial feasible solution was necessary. So it has been created 
randomly. If it is not feasible, a loop in the MATLAB code is repeated 
to create a feasible one. Initial solution for some optimization problems 
is created in MATLAB are as follows:

The initial population

In the first iteration, initial population of solutions has been created 
near the initial feasible solution as possible. In fact, the next factor of 
the simulation defines “the initial neighborhood,” an n-dimensional 
neighborhood of Rn, this is defined as follows:

‖X–Y‖ ≤ k                                                                                                 (1)

or 

( ) ( ) ( )2 2 2
1 1 2 2 ... n nx y x y x y k− + − + + − ≤

Which, X is initial solution, Y is an n-dimensional vectors and k is 
a positive constant. Here the initial population of eggs has been created 
randomly in the possible nearest neighborhood of the initial solution.

Each member of initial population has to be in this neighborhood 
of the initial solution. We try to generate solutions very near the initial 
solution. This is because hens usually like to stay in their nest with their 
eggs. In fact, they prefer to convert their eggs to chicken than other 
animal eggs. Figure 1 shows 500 eggs (feasible solutions) near to the 
initial solution for a given problem with k=1 in R2 (Figure 1).

The algorithm will be more efficient when k be very small. This is 
because it does not miss many solutions near initial solution small k.

Improving of population

Each solution in population, which its objective function is not 
better than objective function of initial solution, should be changed 
in direction initial solution while it will be better than initial solution. 
In fact, value of particles have been changed in direction vector which 
connects its and the initial solution. These solutions have been modified 
as follows:

xj+1=xj+αdj0                      (2)

Which, dj0 is the vector from xj to x0 and f(xj)< f(x0), 0 ≤ α ≤ 2k in 
maximization problems.

All states of α have been described in Table 1 and according to that, 
the feasible interval for α as follows:

0 ≤ α ≤ 2k                                                                                                  (3)

It is easy to show that α → 0 does not change solutions very well, so 
interval 0<α<k/4 has been removed and the following is the best:

k/4<α ≤ 2k                      (4)

But according to the gradient theorem in Figure 2a objective 
function of blue points are not better than initial solution (large red 
point) and small red points are better than it, in a given problem that its 
optimal solution is in right hand side of the initial solution. So interval 
of α has been modified as follows: 

k ≤ α ≤ 2k                      (5)

This is because the author wants to move all blue solutions in Figure 
2a in direction initial solution such that they will be better than it. 
Green points in Figure 2b are these solutions after their movement. By 
this stage all solution in population will be better than initial solution 
Figure 2c. The best solution in this iteration will be initial solution 
in the next iteration. So in the next population and after this step, all 
solution will be better than the best solution of current population. 
This is the main idea of the algorithm which every population is better 
than previous population. Pseudo code of this stage has been shown in 
Figure 3.

Changing the solutions

The last trait of the simulated method has been inspired from 
rotation of the eggs by the hen. She rotates the eggs three or four 
times every day. In this stage except the best solution, all member 

 

Figure 1: 500 eggs (blue points) have been created near initial solution 
(green point).

(a) (b) (c) 

 
Figure 2: Process of changing solutions which are not better than initial solution in direction it.
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of population have been little changed as follows. ε is a given small 
positive number.

Some of solutions have been selected randomly and changed as 
follows:

(xi+1,yi+1)=(xi ∓ ε, yi ∓ ε)

Each solution j which xj < xbest has been changed as follows:

(xj+1, yj+1)=(xj+ε,yj)

Each solution k which xk > xbest has been changed as follows:

(xk+1, yk+1)=(xk–ε,yk)

At each iteration, the best solution has been saved and other 
solutions selected near that in the next population. There are two states 
for current stage: If this stage creates the better solution from the best 
one (best in this iteration), it will substitute the best and in the next 
iteration solutions should be selected near that. Otherwise the best 
solution will not change. In fact by this stage, the best solution will be 
better or not changed. Figure 4 shows code of this step.

This stage is useful because it causes to generate more random 
solutions except the best solution. In fact, the algorithm has more 
choices to select the best solution by more random solutions.

Steps of the algorithm

The main steps of the algorithm in R2 as follows:

•	 The initial feasible solution (x0,y0), is created. Number of 
iteration, N, and an arbitrary small positive number, ε1 are given.

•	 Initial population near (x0,y0), is generated. 

•	 Each solution in step 2, which its objective function is not 
better than (x0,y0), should be changed in direction (x0,y0) and found the 
best solution (xbest,ybest)

•	 All solutions, except the best one, have been very little changed.

•	 Objective function of solutions and the best solution is updated. 
Let (x0,y0)=(xbest,ybest), go back to step 2.

•	 If |f(xibest)–f(x(i+1)best)|<ε1 or the number of iteration is more 
than M the algorithm will be finished, xibest, x(i+1)best are the best solutions 
in two consecutive generations. Figure 5 shows the process of the 
algorithm to gain optimal solution from a given feasible solution. 
Explanation of Figure 5 as follows: initial solution is generated in eqn 
(1), Red point is the optimal solution and the green point is an arbitrary 
feasible solution. Eqn (2) shows first population near initial solution 
with k=1, red points are better than the initial solution and blue points 
are not. Blue points move in eqn (3) and convert to green points which 
are better than initial solution. The algorithm continues with eqn (4). 
All solutions except the best solution have been little changed according 
eqn (5). Next population will be created near the best solution.

The process of the algorithm in R3 has been shown in Figure 6.

Convergence

Convergent parameter set includes initial solution, small positive 
number ε and constants k and α. BBA is run several times to determine 
convergence rate and convergent parameter set of the algorithm. 
The convergence rate is top if various results are gained by more 

 

begin 

Objective function f(x), x = (x1, ..., xd)T 

Generate initial population of eggs xi (i = 1, 2, ..., n) near x0 

Temperature Ei at xi is determined by f(xi) 

for j = 1 : n (all n eggs) 

while (Ej < E0), warm egg j; 

end 

Evaluate new solutions and update temperature 

end 

end 

Figure 3: Pseudo code of improving of solution.

 

begin 

for j=1 : n (all n eggs) 

if (f(xj) < objective function of the best solution), change xj a 
little; 

end 

Evaluate new solutions and update temperature(objective 
function) 

 
end 

end 

Figure 4: MATLAB code of changing the solutions.
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(1) (2) (3) 

   

Step 1: Initial solution Step 2: First population Step 3: Improving population 

 
(4) (5) (6) 

Step 3: Improving population Step 4: Changing solutions Step 5: New population 

   

 

Figure 5: Steps of the algorithm to obtain optimal solution R2.

(1) (2) 

(3) (4) 

Figure 6: Steps of the algorithm to obtain optimal solution in R3.
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performances. Large number of eggs and slow convergent parameter 
set must be used in this state. The convergence rate is low if after large 
number of iterations same result is gained. Small number of eggs 
and quick convergent parameter set should be used here. Finally, if 
suitable results are gained, convergence rate is well and the common 
parameter set should be used. According to the computational results, 
convergence rate of the algorithm is completely high rather than other 
proposed meta-heuristic approaches.

Computational Results
Example 1 [9]

Consider the following problem:

min exp(–(x-4)2–(y–4)2)+exp(–(x+4)2–(y–4)2)+2exp(–x2–y2) + 
2exp(–x2––(y+4)2)

Figure 7 shows behavior of objective function in Example 1. To 
solve the problem, all efficient factors to obtain optimal solution are: 
number of eggs, stochastic constant (k), small positive number ε to 
change solutions, and initial feasible solution. According to the Table 
2 the proposed meta-heuristic approach has presented a solution with 
less time and number of eggs than firefly algorithm. Behavior of agents 
to obtain optimal solution has been shown in Figure 8.

Example 2 [10]

Consider the following linear programming problem:

min–3x1+x2

x1+2x2 ≤ 4

–x1+x2 ≥ 0

Comparison LCA and exact methods has been proposed in Table 3. 
Figure 9 shows to move generations to optimal solution in feasible region. 

Example 3 [11]

Consider the following non-linear programming problem:

min–(x1–4)2–(x2–4)2

x1+3 ≤ 0

–x1+x2–2 ≤ 0

x1+x2–4 ≤ 0

x1,x2–2 ≥ 0

Comparison LCA and other methods by example 3 have been 
proposed in Table 4. Behavior of generations has been shown in Figure 10.Figure 7: Behavior of the function: Example 1.

States of α xj+1=xj+αdj0 Explanation Logical decision P. Infeasible solutions
α >> 2k α→∞⇒ xj+1→∞ xj+1 will be infeasible. This state should not be selected. 100%
α << 2k α→–∞⇒ xj+1→–∞ xj+1 will be infeasible. This state should not be selected. 100%
α=0 xj+1=xj xj+1 will not be changed. α should not be near zero. –
α=k xj+1=x0 x0 is already in population. This state should not be selected. –
α=2k xj+1=xj+kdj0 xj+1 will be feasible. This state can be selected. 0%
α<k xj+1=xj+2kdj0 xj+1 till be feasible. This state can be selected. 0%

Table 1: States of α description.

Algorithms N.Eggs/Firefly N. Iterations Optimal Solution F Max K ε x0

LCA 24 2 (–0.03,–0.02) 1.99 1 0.01 (0.80,0.90)
LCA 20 3 (–0.10,–0.01) 1.95 1 0.01 (1.81,1.90)
FA[9] 25 20 (0,0) 2 – – –

Table 2: Comparison of LCA and firefly algorithm: Example 1.

Algorithms N. Eggs N. Iterations Optimal Solution F Max K 𝜺 x0

LCA 100 4 (3.85,0.59) –11.50 1 0.01 (0.80,0.90)
Exact methods[10] – – (4,0) –12 – – –

Table 3: Comparison of LCA and exact methods: Example 2.

Algorithms N. Eggs N. Iterations Optimal Solution F Max k ε x0

LCA 100 2 (0.04,0.02) –31.47 1 0.01 (0.81,0.90)
LCA 40 3 (0.04,0.11) –30.73 1 0.01 (0.81,0.90)
LCA 100 4 (0.00,0.17) –30.6 1 0.01 (3,1)

Classic methods [11] (0,0) –32 –

Table 4: Comparison of LCA and other methods: Example 3.
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x0(green point) and optimal solution (red) 

point) 

Generation 1 is created near x0 Optimal solution of generation 1 

 

  

Generation 2 Optimal solution of generation 2 Generation 3 and its optimal 
Figure 8: Generations have been moved to find optimal solution: Example 1.

  
x0 and optimal solution Generation 1 Generation 2 

  
Optimal solution of generation 2 3 and its and optimal solution Optimal solution of generation 4 

Figure 9: Generations have been created in feasible region and moved to optimal solution: Example 2.
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The proposed algorithm is efficient for problems by more than two 
variables according to the following example.

Example 4 [10]

Consider the following linear programming problem:

Min x1+x2–4x3

x1+ x2+2x3 ≤ 9

x1+x2–x3 ≤ 2

–x1+x2+x3 ≤ 4

x1,x2,x3 ≥ 0

Comparison LCA and exact methods has been proposed in Table 
5. Behavior of generations to find optimal solution has been shown in 
Figure 11.

Conclusion
Laying chicken algorithm is an easy meta-heuristic approach which 

optimizes different kinds of functions and optimization programming 

problems. Also, it seems efficient according to the examples. LCA was 
proposed as a natural event algorithm, not based on swarm intelligence 
unlike most of pervious meta-heuristic approaches. It ties to behavior 
of hen in process of produce chickens from eggs. In fact, LCA relates to 
both of biological and evolution computation because of its evolution 
and stochastic process.

LCA was successful because it does not miss the great solutions 
near initial solution particularly when k is small. The number of 
generations would be less according to a suitable feasible solution such 
as x0 in fact consuming time to find optimal solution is much better 
than other meta-heuristic approaches.

Finally, there are many different NP-Hard problems which can be 
solved by meta-heuristic approaches especially using laying chicken 
algorithm. The simple MATLAB code of the LCA can be interested in 
the future researches especially for problems in large size. However, 
the proposed solution by LCA is near to optimal solution, but it is an 
approximate approach and the better algorithms can be proposed in 
the future researches. 

  

x0 and optimal solution 

 
Generation 3 

Generation 2 

 

 Generation 4 and its and optimal 
solution

Generation 1   

 
 
 
 
 

Optimal solution of generation 2 

  

 
Figure 10: Generations moves in feasible region to find optimal solution: Example 3.

Algorithms N. Eggs N. Iterations Optimal Solution F Max K 𝜺
LCA 27 7 (0.31,0.00,4.29) –16.87 1 0.01

Exact methods[10] – – (0.33,0,4.33) -17 – –

Table 5: Comparison of LCA and other methods: Example 4.
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x0 and optimal solution Generation 1 Generation 2 

Generation 3 Generation 3 and its and optimal 
solution 

Constraints and optimal solution 

Figure 11: Generations moves in the feasible region to ind optimal solution: Example 4.
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