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Introduction
Ordinal scales that consist of ordered sets of categorical response 

options are widely used in research and are not true measures of 
psychological traits or states, which are supposed to be normally 
distributed random variables. Researchers have recommended 
that ordinal scales not be used directly as true measures of latent 
psychological traits or states, alternatively referred to as latent variables, 
latent constructs, or factors. “In strictest propriety the ordinary 
statistics involving means and standard deviation ought not to be used 
with these scales, for these statistics imply a knowledge of something 
more than the rank order of the data” [1]. Hayes [2] commented that 
“the problem of measurement, and especially attaining interval levels 
scales, is an extremely serious one for social and behavioral sciences. It 
is unfortunate that in their search for quantitative methods researchers 
sometimes overlook the question of level of measurement…” Treating 
ordinal scales as continuous data in statistical modeling would produce 
biased estimates [3-5]. It is common to use the sum or mean scores of 
scales items for latent growth curve modeling that particularly involves 
mean and variance of a change. It is not clear to what extent such 
practice could bias the change and variance estimates in latent growth 
curve modeling, as compared to an appropriate procedure.

Ordinal indicators reflect latent variables best through probability 
models [6]. The original items can be specified to measure latent 
variables through various measurement models in growth curve 
modeling. In contrast, the means of sets of ordinal items cannot be 
directly equated to the latent variables. Figure 1 below illustrates an 
appropriate way to estimate change in a repeatedly measured factors 
with ordinal indicators [7]. In this “curve of factors” multiple-equation 
growth curve model, three ordinal items (labeled as Y) can be linked 
to first-order factors at each of four time-points via probit or logistic 
factor loadings. Details of the equations are provided by Muthén and 
Shedden [8].

Some parameters are critical in the latent growth curve modeling. 
The estimated initial level and change over time are captured by two 

second-order latent variables, namely, the intercept and slope. The 
variances of the intercept and slope factors indicate the individual 
differences in their initial levels and change rates. The covariance of the 
two factors indicates the extent to which the initial level is associated 
with the change rate. The fixed loadings for the slope factor serve to 
scale the time variable, which is alternatively referred to as time scores. 
A logarithmic curve pattern can be estimated by specifying the slope 
factor effects on the repeatedly measured factors to be 0, 0.69, 1.10, and 
1.39, which are respectively the natural logs of 1, 2, 3, and 4 (a linear 
pattern). Different patterns can be estimated by changing the times 
scores. A model with the best pattern can be selected through model 
comparisons in terms of smallest Bayesian information criteria or χ2 

of model fit.

Using sums or means of the observed Y variables for each factor 
in Figure 1 reduces the size of the model such that the four factors are 
replaced by four observed variables, namely, the sum or mean of scales. 
Technically, when scale sums or means are used, multivariate normality 
is assumed and the variables are treated as continuous measures, often 
using maximum likelihood estimation. However, the multivariate 
normality assumption is usually violated, resulting in potentially biased 
estimation of the structural parameters. When the original ordinal 
observed variables in Figure 1 are specified as categorical, a probit 
model is fit to an item-level polychoric correlation matrix instead of 
a scale-level Pearson covariance matrix and estimated with weighted 
least squares Muthén, [4], resulting in more accurate estimates. This 
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Abstract
Ordinal scales can be used in latent growth curve modeling in three ways: mean, weighted mean scores, and 

factors measured by scale items. Sum and mean scores are commonly used in growth curve modeling in spite of certain 
discouragement. It was unclear how much bias these practices could produce in terms of the change rates and patterns. 
This study compared three methods with Monte Carlo Simulations under different number of response categories of the 
items, in terms of five key parameters of growth curve modeling. The hypothetical population models were derived from 
real empirical data to generate datasets of binary, trichotomous, five- and seven-point scales with sample size of 300. 
Latent growth curve modeling of mean, weighted mean, and factors measured by the ordinal scales were respectively 
fit to these datasets. Results indicated that modeling the factors that are measured with ordinal scales yield the fewest 
biases. Biases of modeling the means and weighted of the scales were under one decimal point in the change rates, 
whereas biases in the variances and covariance of the intercept and slope factors were large. In conclusion, it is 
inadvisable to use means or weighted means of ordinal scales for latent growth curve modeling. It produces the best 
results modeling the factors that are measured with the ordinal scales.
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curve-of-factors growth modeling with ordinal indicators can be 
efficient given appropriate sample size and sufficient computing power. 
Sample size requirements can also be reduced by constraining factor 
loadings and/or other parameters over time if measurement invariance 
holds.

Besides the technical modeling differences, ordinal scales may 
have different statistical properties, depending on the treatment 
and the number of choices from binary (e.g., yes/no, or true/false), 
trichotomous (e.g., never, sometimes, always), seven (e.g., strongly 
disagree, disagree, slightly disagree, neutral, slightly agree, agree, 
strongly agree) to even more. For instance, the mean of binary scale 
with 0=false/incorrect and 1=true/correct always lies between 0 and 1. 
In contrast, the mean of a five-choice scale, if coded as -2, -1, 0, 1, and 
2, may better reflect the range of a latent variable. Although it seems 
plausible to sum the correct answers of dichotomous items to produce 
a “total correct” sum score, such sum scores have been shown to be 
biased against extreme cases on the latent variable dimension. Sum 
scores of other ordinal scales can also deviate significantly from the 
mean and variance of the corresponding latent variable.

Another way to treat ordinal scales in growth curve modeling 
is to apply weights to the different items and then average the item 
scores. This is intended to overcome the drawback of the implicit 
equal-weighting of all the items in mean/sum scores, which ignores the 
differential sensitivity of individual items in measuring a latent trait. 
There are many weighting schemes for creating composite scores [9]. 
For instance, maximal reliability weighting involves a confirmatory 
factor analysis (CFA) as the first step to identify the factor loading 
and residual variance of each item. The weight for each item can be 
generated by dividing the factor loading by the residual variance [10]. 
For ordinal scales, it could be sufficient to maximize the reliability of 
composite scores by weighting each item with its factor loading [11]. 
As composite scores with items weighted by factor loading are still 
not equivalent to the true estimates of latent variables of probability 
models, it remains unclear to what extent these weighted composite 
scores reflect the true parameters of growth curve modeling. Hereafter, 
we refer to this method as growth modeling of weighted means.

This study was aimed to compare the potential biases of using 
scale-level mean and weighted mean composite scores of ordinal 
items curve-of-factors in growth modeling under different numbers of 
response choices. We adopted the growth curve modeling of factors 
with ordinal indicators as the golden standard and posed no specific 
hypotheses about the biases of other approaches.

Method
Empirical and hypothetical population data

Two empirical ordinal datasets were used as the population data 

to ensure generalizability of the findings. The first empirical dataset 
was extracted from an ongoing Flourishing Family Project, which was 
designed to monitor multifarious aspects of over 600 families of two 
US western areas. More information about this project can be found 
at (https://familycenter.byu.edu/Pages/Sponsored-Research/2007/
Flourishing.aspx). Data for this study involve adolescents’ ratings of 
their parents’ psychological control on a scale of eight questions (Table 
1) The participants were asked to choose one of the following options 
for each question: 1=never, 2=rarely, 3=sometimes, 4=often, and 
5=very often.

To simulate binary and trichotomous scales, this dataset of five 
categories were recoded and collapsed. Specifically, never and rarely 
were collapsed to have a value of zero and sometimes, often, and very 
often were combined into a value of one. The five categories were also 
collapsed such that 0=never and rarely, 1=sometimes, and 2=often and 
very often.

The second dataset was adopted from a longitudinal project on 
the first-generation bilingual Chinese immigrant families with young 
children. These families were followed four times during a two-year 
period. Participants were recruited from various organizations across 
the Maryland-Washington DC region. An ordinal scale of maternal life 
satisfaction of five questions were used in this study. There are seven 
rating points for the participants to choose for each question, including 
1=strongly disagree, 2=disagree, 3=slightly disagree, 4=neither agree 
nor disagree, 5=slightly agree, 6=agree, and 7=strongly agree. Thus, 
there were four datasets in total, three that measured psychological 
control respectively using binary, trichotomous, and five-point scales, 
and one that measured life satisfaction using a seven-point scale.

Procedure

The analysis and simulations were carried out in the following 
steps. First, the four empirical longitudinal datasets were subject to 
confirmatory factor analyses (CFA) to examine their measurement 
properties, including measurement invariance over time. The 
estimation method was weighted least square estimator with χ2 test and 
degrees of freedom adjusted for the means and variances (WLSMV). 
The reliability (ω) for each measurement was calculated using the 
variance approach of McDonald [12]. We reported in detail only the 
CFA of the two empirical datasets of five- and seven-point scales for 
brevity.

Second, a latent growth curve modeling of factors (Figure 1) was 
respectively fit to these four datasets of binary, trichotomous, five-, and 
seven-point scales. The four models with their parameter estimates 
served as population models to generate random data for simulations.

Third, the random datasets were generated with a sample size of 
300, which was presumed to yield moderate sampling variations. 

Figure 1: An illustration of latest growth curve modeling of factors.

https://familycenter.byu.edu/Pages/Sponsored-Research/2007/Flourishing.aspx
https://familycenter.byu.edu/Pages/Sponsored-Research/2007/Flourishing.aspx
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This process was tantamount to drawing random samples from 
the population represented by the population models. A CFA was 
conducted with each dataset to obtain the standardized factor loadings, 
which were used to weight the individual items and create weighted 
means of the scales.

Last, latent growth curve modeling of factors (Figure 1) was fit 
to all these generated datasets to examine how well the population 
parameters can be recovered with the “golden standard” method. All 
new variables of the mean scores and weighted mean scores of binary, 
trichotomous, five-, and seven-category variables were subject to 
growth curve modeling for comparisons. As an exception, the weighted 
sums of binary scales of the simulated datasets were modeled, because 
the estimates of growth curve modeling were closer to the population 
parameters than those of weighted means.

The average estimates and standard deviations of the key parameters 
were compared to the original model parameters to examine potential 
biases. The modeling of the empirical data and simulations were 
conducted mainly with the latent variable modeling software Mplus 
(v8.0).

Result
Measurement of the ordinal scales

The measurement model of psychological control for the first data 
set fit the data well, with χ2

(730)=1909.11, p<0.01, CFI=0.94, TLI=0.93, 
RMSEA=0.05. The contents and factor loadings of the eight items 
scale are listed in Table 1. Invariance of factor loadings over time was 
tested by comparing this model with a model constraining the factor 
loadings to be equal across time. The χ2 difference test indicated that 
the majority of the factor loadings were invariant over time (χ2

diff 
(27)=38.04, p=0.08), except the last item at the first measurement 
that is indicated by an asterisk in Table 1 (χ2

diff (1)=9.29, p<0.01). The 
high factor loadings and the reliabilities suggest that the psychological 
control was measured well over time.

The measurement model of the maternal life satisfaction in the 
second data set also fit the data well, with χ2(156)=332.47, CFI=0.99, 
TLI=0.99, RMSEA=0.07. Factor loadings were found to be largely 
invariant over time (χ2

diff (11)=9.45, p=0.05), except the last item at the 

fourth occasion as indicated by the asterisk (χ2
diff (1)=14.42, p<0.01). 

The item content and factor loadings are listed in Table 2. The high 
factor loadings and the reliabilities suggest that the construct of life 
satisfaction was also measured well over time. Thus, factor loadings 
were constrained to be invariant in subsequent latent growth curve 
modeling. The same tests and constraints were also applied to datasets 
of binary and trichotomous scales.

Latent growth curve modeling of the empirical data

A latent growth curve model with a logarithmic trajectory was 
identified to fit the empirical data of psychological control very well 
(χ2 (730)=1909.11, p<0.01, CFI=0.94, TLI=0.93, RMSEA=0.05). As a 
latent construct, the initial value was set to a hypothetical mean of zero. 
The time scores for the model were specified as 0, 0.69, 1.10, 1.39, and 
1.61, which takes the natural log of a linear trend of 1, 2, 3, 4, and 5. 
The growth rate was found to be α=0.13, 95% CI [0.10, 0.17], z=7.24, 
p<0.01, implying an upward curving change.

A similar logarithm trajectory change also fit the data of life 
satisfaction acceptably (χ2 (264)=735.43, p<0.01, CFI=0.97, TLI=0.98, 
RMSEA=0.09). The growth rate was found to be α=-0.25, 95% CI 
[-0.40, -0.07], z=7.24, p<0.01, indicating a downward curving change.

Estimates of simulated data

Listed in Table 3 below are population parameters, the biases, 
mean estimates, and standard deviations of the five key parameters 
of the growth curve modeling under three different treatments of the 
simulated scales. A bias is defined by the difference between an average 
estimate of the simulated data and population parameter. The key 
estimates of the three treatments of the ordinal scales were compared 
to the population parameters with one-sample z tests.

 Biases in the population parameters in Table 1 suggest the following 
findings. First, growth curve modeling of the factors that are measured 
by the ordinal scales reflected the changes of the hypothetical true 
population with a maximum of 0.02 differences. Biases in the variances 
of the intercept and slope factors and the covariance of the intercept 
and slope factors approximated 0.06 when using binary scales. One-
sample z-tests indicated some of the population parameters can be 
recovered without any biases, as underlined in the table. In contrast, 

Psychological Control Age 12 Age 13 Age 14 Age 15 Age 16
Tries to change how I feel or think about things 0.51 0.46 0.48 0.55 0.63
Changes the subject whenever I have something to say 0.74 0.73 0.79 0.76 0.80
Interrupts me 0.72 0.76 0.73 0.74 0.73
Blames me for other family members' problems 0.70 0.76 0.81 0.77 0.80
Is less friendly with me if I do not see things her/his way 0.79 0.81 0.80 0.82 0.88
Brings up past mistakes when s/he criticizes me 0.72 0.73 0.76 0.78 0.79
Will avoid looking at me when I have disappointed her/him 0.77 0.74 0.77 0.74 0.86
If I have hurt her/his feelings, my parent stops talking to me until I please her/him 0.62* 0.73 0.78 0.79 0.83
Reliability ω 0.88 0.90 0.91 0.91 0.93

Table 1: Standardized factor loadings and reliabilities of psychological control scale.

Time 1 Time 2 Time 3 Time 4
In most ways, my life is close to my ideal 0.83 0.87 0.80 0.80
The conditions of my life are excellent 0.95 0.94 0.91 0.94
I am satisfied with my life 0.99 0.96 0.90 0.96
If I could live my life over, I would change almost nothing 0.68 0.68 0.56 0.60
So far, I have gotten the important things I want in my life 0.80 0.78 0.74 0.89
Reliability ω 0.93 0.93 0.89 0.93

Table 2: Standardized factor loadings and reliabilities of the life satisfaction scale over time.
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all the estimates of growth curve modeling of the mean scores and 
weighted mean scores were significantly different from the population 
means. Second, using the mean scores of binary scales for growth 
curve modeling resulted in appreciable underestimation of the slope 
mean, while using the mean scores of other ordinal scales for growth 
curve modeling reflected the change well (bias ≤ 0.04). Third, biases 
in the slope means of the population were similar whether using the 
sum of binary scales or weighted means of binary, trichotomous, or 
five-point scales. The appreciable bias in the slope mean occurred 
when using the weighted means of the seven points scale (bias=0.05). 
Biases in the variances and covariance of the intercept and slope factors 
were no better than the other two approaches. Fourth, the means of 
the intercept factors depended on the number of response options: 
the more response options, the higher the intercept means (initial 
levels). Fifth, average estimates of growth modeling of both means and 
weighted means of the ordinal scales were all significantly different 
from the population parameters, as the z tests suggested.

Discussion
This simulation study compared latent growth modeling of 

mean and weighted mean scores of ordinal items to full curve-of-
factors modeling of the original ordinal items. The reference values 
for these comparisons were population model parameters derived 
from empirical data, so that they are more plausible and generalizable 
than arbitrary specifications. The change of psychological control 
showed a logarithmic increase, which is decelerated upward trend. 
This perception seemed to be reasonable as adolescents try to gain 
more independence and autonomy, their parents gradually increase 
psychological control and abandon physical and verbal coercion. As 
for life satisfaction of the first generation Chinese immigrants, it may 
be expected to decrease as adaptations to a new culture might have 
been accompanied by financial and job stresses.

The simulations suggested that growth modeling of factors that 
were measured by the ordinal scales provide good estimates of the 
hypothetical population parameters. Although some average estimates 
were significantly different from the population parameters, the 
magnitude of these differences are minimal, or practically trivial. In 
contrast, modeling the means or weighted means of ordinal items 
would bias the variances of the intercept and slope factors, especially 
the intercept factor. Large biases in variances of the intercept and 
slope factors could mislead practical efforts in dealing with individual 
differences. It is comforting that modeling the means or weighted means 
of ordinal scales resulted in negligible biases in the change rates of the 
population, except binary scales, as publications of changes estimated 
this way could be still credible. As means or weighted means of the 
ordinal scales are dependent on the number of response categories, it is 
difficult to compare them with the latent continuous factors measured 
by the ordinal scales.

Weighted means of the ordinal scales did not perform any better 
than the means of ordinal scales. One explanation is that weights make 
a difference in the composite only when the variables are not correlated. 
As all the scale variables are highly correlated, their contributions to the 
variances overlap and thus do not appear as expected [13].

This study has some limitations. We have not included other data 
conditions such as various distributions of the ordinal scales and 
sample sizes that might contribute to the biases. It was suggested by 
Coenders, et al. [14] that a five-point scale with middle value of zero 
and normal distributions could result in negligible biases in the latent 
variable relations, as in the case the covariance of the intercept and 
slope factors in this study. This is because the range of the five point 
scale are close to that of a typical latent variable. In addition, it could 
be expected that smaller samples would result in larger variances of the 
simulated estimates, whereas skewed distributions may result in greater 

           Treatment
Scales

Pop Model Modeling Factors Mean Scores Weighted Mean Scores

Binary Bias M Std. Bias M Std. Bias M Std.
Intercept Mean 0.00 0.00 0.00 0.00 0.13 0.13 0.01 0.60 0.60 0.06
Slope Mean 0.12 -0.02 0.10 0.04 -0.09 0.03 0.01 0.02 0.14 0.07
Intercept Variance 0.27 -0.06 0.21 0.05 -0.25 0.02 0.00 0.11 0.38 0.09
Slope Variance 0.12 -0.03 0.09 0.04 -0.11 0.01 0.00 0.08 0.20 0.07
Covariance -0.10 0.02 -0.08 0.03 0.09 -0.01 0.00 -0.03 -0.13 0.06
Trichotomous
Intercept Mean 0.00 0.00 0.00 0.00 0.29 0.29 0.02 0.17 0.17 0.02
Slope Mean 0.05 0.01 0.06 0.01 0.02 0.07 0.02 0.00 0.05 0.02
Intercept Variance 0.24 -0.04 0.20 0.03 -0.17 0.07 0.01 -0.21 0.03 0.01
Slope Variance 0.02 0.00 0.02 0.00 0.02 0.04 0.01 -0.01 0.01 0.00
Covariance -0.03 0.00 0.03 0.01 0.00 -0.03 0.01 0.02 -0.01 0.00
Five-Point 
Intercept Mean 0.00 0.00 0.00 0.00 0.84 0.84 0.04 0.47 0.47 0.03
Slope Mean 0.13 0.00 0.13 0.03 0.04 0.17 0.03 -0.02 0.11 0.03
Intercept Variance 0.26 -0.05 0.21 0.04 0.06 0.32 0.05 -0.15 0.11 0.03
Slope Variance 0.11 -0.03 0.08 0.02 0.04 0.15 0.04 -0.06 0.05 0.01
Covariance -0.10 0.02 -0.08 0.02 -0.01 -0.11 0.04 0.06 -0.04 0.02
Seven-Point
Intercept Mean 0.00 0.00 0.00 0.00 30.38 30.38 0.09 20.78 20.78 0.09
Slope Mean -0.25 0.01 -0.24 0.05 -0.01 -0.26 0.05 0.05 -0.20 0.04
Intercept Variance 20.07 0.03 20.10 0.29 0.52 20.59 0.19 -0.31 10.76 0.18
Slope Variance 0.28 0.00 0.28 0.04 0.06 0.34 0.04 -0.04 0.24 0.03
Covariance -0.36 0.00 -0.36 0.08 -0.11 -0.47 0.07 0.05 -0.31 0.06

Note: Italicized numbers indicate non-significant differences from the population parameters.

Table 3: Biases in population parameters, average, and standard deviations of growth curve modeling estimates of simulated datasets.
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deviation from the true means. Moreover, growth curve modeling of 
sums of ordinal scales was not examined with simulations, because the 
sum differs from the mean just by a constant (division by the number 
of items), offering little extra information.

Another limitation of this study is that we have omitted a two-
step approach (latent scoring and modeling) in the comparison. This 
method first obtains the estimated factor scores from measurement 
models and then uses these scores as observed variables in subsequent 
growth curve modeling [15]. This practice conforms to item response 
theory modeling that is widely accepted in the education field. The 
requirement of measurement invariance may be satisfied by testing 
and constraining discrimination and threshold (difficulty) parameters 
to be the same over time. In addition to the widely accepted theoretical 
basis, the advantages of this method may be less computationally time-
consuming than direct modeling of the ordinal items, which may be 
particularly useful when a model with many items is fit to relatively 
small samples. This approach works well to model relations among 
latent constructs [16]. However, given a shortened scale of four or six 
items could function as well as a long one Embretson and Hershberger 
[17]; Kenny [18] and could be modeled directly, this approach does not 
appear to be advantageous for growth curve modeling, but might be 
examined in the future.

Conclusion
It is not advisable to use means or weighted means of ordinal items 

for latent growth curve modeling. Ordinal scales can best be modeled 
directly in latent growth curve modeling. Published reports of growth 
curve modeling with ordinal scales may be evaluated with findings of 
this study as a reference.
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