
Volume 1 • Issue 2 • 1000110
J Laser Opt Photonics
ISSN: 2469-410X JLOP, an open access journal 

Open AccessResearch Article

Meziane, J Laser Opt Photonics 2014, 1:2
10.4172/2469-410X.1000110Journal of Lasers, Optics & Photonics

Jo
ur

na
l o

f L
as

ers, Optics & Photonics

ISSN: 2469-410X

DOI:

Laser Dynamics: Weak versus Strong Harmonic-Expansion Modelling
Belkacem Meziane*
Université d’Artois, UCCS Artois, UMR CNRS 8181, Rue Jean Souvraz, SP 18, 62307, Lens Cedex, France

*Corresponding author: Belkacem Meziane Université d’Artois, UCCS Artois, 
UMR CNRS 8181, Rue Jean Souvraz, SP 18, 62307, Lens Cedex, France, Tel.: 
+33 (0) 3 21 79 17 32; E-mail: belkacem.meziane@univ-artois.fr 

Received October 15, 2014; Accepted November 26, 2014; Published December 
06, 2014

Citation: Meziane B (2014) Laser Dynamics: Weak versus Strong Harmonic-Expansion 
Modelling. J Laser Opt Photonics 1: 110. doi:10.4172/2469-410X.1000110

Copyright: © 2014 Meziane B. This is an open-access article distributed under 
the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

Keywords: Laser dynamics; Lorenz-Haken model; Maxwell-Bloch 
equations; Laser signal; Broadened laser

Introduction
Throughout more than three decades of research pertaining to 

the laser dynamics issue, the analytical prospects remained always 
limited to the standard Linear Stability Analysis, applied to extract 
the conditions under which the system becomes unstable and delivers 
non-steady state signals, yet being supplied with some continuous 
pumping mechanism [1-9]. Such analysis allows for the recognition of 
a second-laser threshold, beyond which the system provides no more 
continuous outputs. Instead of stable signals, it exhibits an atypically 
restless behavior in the form of small oscillations that amplify with 
time, ultimately transforming into some periodic or aperiodic self-
pulsing solutions, depending on the system’s control-parameters 
values [5,9-11].

Recently, we have proposed a new method of approach based 
on a harmonic-expansion analysis, which consists in the application 
of adjusted Fourier series to the pulsing solutions [6,7]. A judicious 
iterative procedure allows for the extraction of the first few orders of 
the series. Such an approach gives new analytical information that goes 
well beyond the usual second laser threshold, extracted from LSA. In 
particular, closed form expressions that are valid at, below, and above 
the instability threshold are pulled-out from the simple Lorenz-Haken 
model as well as from the much more complex integro-differential 
Maxwell-Bloch equations [2,4,7]. The complexity of this second model 
stems from the inhomogeneous nature of the laser-line broadening, 
owing to the Doppler Effect associated with permanent motion of the 
lasing atoms, inside a gas laser, for example.

Since the unsteady solutions divide themselves into a transient 
part, with initially small amplitude oscillations, and a long-term one 
with much stronger pulsations, these distinct features naturally call for 
adjusted Fourier series, respectively in the form of small and strong-
harmonic expansions. These expansions represent the signatures of 
the solutions, whose first few components are shown to carry most 
of the fundamental analytical information, straightforwardly derived 
from simple algebraic manipulations. Despite the seemingly irresoluble 
differences between the simple Lorenz-Haken model and the complex 
integro-differential equations, the main analytical results are directly 
pulled-out from the same iterative procedure, conducted up to third-
order in electric field amplitude, for both models.

Basic Laser Scheme and Theoretical Grounds
In its simplest geometry, as represented in Figure 1, a laser 

cavity involves three main components: 1-A pair of perfectly parallel 
mirrors, one of which is totally opaque to the laser wavelength, while 
the other, from which exits the useful part of the laser signal, ensures 
some partial transmittance; 2-An initially absorbing (at thermal 
equilibrium) medium positioned between the two mirrors; and 3-An 
external energy source that breaks the thermo-dynamical equilibrium 
and transforms the absorbing material into an amplifying-one through 
judicious excitation mechanisms. These mechanisms support atomic 
or molecular energy transfer from lower to higher levels, ultimately 
resulting in population inversion which, in turn, seeds and amplifies 
the oscillating signal inside the cavity. 

Three variables and four control parameters govern light-matter 
interactions inside the system, namely the electric field E(t) associated 
to the electromagnetic signal, with a relaxation rate (inverse of the 
cavity lifetime), hereafter designated ĸ, whose value essentially relates 
to the length of the cavity and to the reflection coefficient of the output 
mirror; a macroscopic polarization P(t), and a population inversion D(t) 
that both characterize  the excited medium, with respective relaxation 
ratesγ ⊥  and γ



. An excitation parameter, hereafter designated 2C, 
quantifies the strength of the external pumping source. E(t), P(t) and 
D(t) represent the system’s variables; ĸ, γ ⊥ , γ



, and 2C, its control 
parameters.  

Basic Laser theory is founded on the well-known Lamb self-
consistent analysis. The physical grounds of such a theory are easily 
grabbed with the help of the following diagram [8] 

Schematic representation of the Lamb self-consistent analysis 
indicating the basic theoretical ingredients of light-matter interactions 
that take place inside a Laser.

The external energy source (pump) induces oscillating dipole 
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moments p(t) at a microscopic level, giving rise, when summed-up, 
to a macroscopic polarization P(t), which serves as a driving term in 
Maxwell’s equations that handle the propagating properties of the 
electromagnetic field E(t) oscillating inside the cavity. The field and 
polarization, in turn, interact inside the amplifying medium, energy 
of the form .EP−

 

. Such an energy transforms into a perturbing 
Hamiltonian to involve interaction, which when injected into the 
Schrödinger equation that handles the atomic energy transitions, yields 
the evolution of P(t) and D(t). Non-linear differential equations that 
describe light-matter interactions inside an amplifying medium are 
finally extracted following some valid approximations. Hereafter, we 
will focus on the two basic models obtained from the above pictorial 
elements, the single mode homogeneously broadened laser, and the in 
homogeneosuly broadened system.

The single-mode homogeneously-broadened “Lorenz-Haken” 
model

The simplest model that describes light-matter interactions inside 
an oscillating cavity is that of a single-mode homogeneously broadened 
and unidirectional ring laser. This model stems from the above Lamb 
self-consistent analysis, provided some fairly suitable physical estimates 
are taken into account. The most fundamental assessments are the 
Slowly Varying Envelope and the Rotating Wave Approximations. 
These two assumptions project laser theory into the framework of three 
non-linearly coupled differential equations that take the following 
simple normalized form [1,5,7].

[ ]( ) ( ) 2 ( )dE t K E t CP t
dt

= − +                 (1a)

( ) (t) (t) D(t)dP t P E
dt

= − +                 (1b)

[ ](t) (t) 1 E(t) P(t)dD D
dt

γ= − + +                                    (1c)

Excitation parameter 2C quantifies the pumping strength with 
respect to its level at lasing threshold, γ and ĸ are normalized 
quantities with respect to the polarization relaxation rate γ ⊥  while t 
is a dimensionless variable representing the product of time withγ ⊥ . 

In most lasers, the polarization P(t) is too fast to track, with respect 
to the much slower variables E(t) and D(t). In such cases, an adiabatic 
approximation is applied to Eq. (1b). It consists in setting the derivative 
equal to zero, yielding (t) E(t) D(t)P =  to be injected in Eqs (1a) and 
(1c). As a result, the three-dimensional set (1) is projected into a two-
dimensional one, the well-known rate equations, whose dynamics 
is strictly limited to transient oscillations relaxing towards steady 
permanent state when these undergo some small external perturbation. 
It is an easy task to demonstrate that the rate equations are dynamically 
stable and always return to their state of equilibrium if perturbed.

In other cases however, and under some conditions, namely a bad 
cavity configuration, for which 1K γ> +  and a level of pumping, which 
must exceed some specific value, termed as “second laser threshold”

2
(K 1)(K 1 )2 1

( 1 )thC
K

γ
γ

+ + +
= +

− −
                (2)

the above equations become unstable. Experiencing some slight 
perturbation, the solutions depart from the initially stable steady state 

2 1CοΕ = −                   (3a)

2 1
2
C
Cο
−

Ρ = − ,                (3b)

1
2

D
Cο = −                  (3c)

obtained when all the derivatives in Eqs (1) are set equal to zero.

Typical periodic solution :When the bad cavity condition is satisfied 
and when the system is driven beyond the instability threshold 22 thC the 
solutions of Eqs (1) move off  the permanent state (3). Such a departure 
takes the form of small amplitude oscillations with growing amplitude 
during some period of time, referred to as the transient regime, until 
it finally settles in a  long-term pulsing regime. As indicated in Figure 
2, these two regimes carry distinct features; the signal first grows with 
small oscillations around the steady-state Eο  before terminating with 
strong amplitude oscillations around zero-mean value for the electric 
field. It thus becomes obvious that the transient and the “permanent” 
states cannot be handled with the same analytical approach. The typical 
solution represented in Figure 2 has been numerically simulated with 
2C=10, K=3, and 0.1γ = , and an initial condition 3.01Eο = , for the 
electric field.

The distinctive features between the transient and the permanent 
parts of the solution will serve as the main guidelines for the weak 
and strong-harmonic expansion analyses developed in the following 
paragraphs.

Weak-harmonic expansion approach versus linear stability 
analysis: Usual analytical diagnoses, which may be found in any laser 
textbook [5,9], are limited to the standard Linear stability Analysis. 
Such a diagnosis allows for the extraction of the bad cavity condition 
along with an expression for the second laser threshold (Eq. (2)), under 
which a small perturbation grows to depart from the initial steady-state 
(Eqs (3)). In addition, a closed form expression that corresponds to the 

M1  M2 

External energy 
source Amplifying 

medium  Laser 

Figure 1: Basic Laser scheme with its main components.

 

Figure 2: Transient and Long-term solutions of Eqs (1), simulated at the 
onset of instability, with 2C=10, k=3 , and γ=0.1.
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transient-signal frequency- fluctuation is also extracted. The standard 
LSA method assumes 

(t) E (t),E eο= +                     (4a)

 (t) P (t),P pο= +                   (4b)

(t) D (t)D dο= +                    (4c)

where e(t), p(t) and d(t) are small quantities with respect to Eο , Pο , and 
Dο  respectively.

When these expressions are plugged into Eqs (1), assuming the 
small perturbations to evolve according to 

(t) e exp(i t)e ο= ∆ ,                  (5a)

p(t) exp(i t)pο= ∆ ,                  (5b)

d(t) exp(i t)dο= ∆                     (5c)

one obtains a first expression for the instability threshold, as given by 
Eq. (2), and a second formulae that provides the angular frequency ∆  
at which the developing signal oscillates, at this instability threshold

2 (K 1)
1

K
K
γ

γ
+

∆ =
− −

                   (6)

Apart from expressions (2) and (6) (only valid, let us insist, at the 
onset of instability) LSA gives no more analytical information! The 
features of the transient signal or those of the long-term solution, away 
from the instability threshold, have always called for direct numerical 
simulations of Eqs (1).

The main weakness of the LSA procedure may be pointed-out from 
a simple glance at Figure 3, representing the transient parts of the three 
interacting variables. As these depictions clearly indicate, electric field, 
polarization and population inversion are not phase locked, whereas, 
through Eqs (5), LSA imposes an in-phase evolution to all three 
variables. Such a phase locking hypothesis is in total contradiction to 
the competing nature of the non-linearly coupled Eqs (1), as clearly 
displayed in the transient time traces of Figure 3.

In order to account for the noticeably un-locked evolution of the 
transient time-traces, E(t), (t)P , and D(t)  are expanded in the form

(t) E cos( t)E eο= + ∆                                 (7a)

1 2(t) P cos( t) p sin( t)P pο= + ∆ + ∆                 (7b)

1 2D(t) cos( t) sin( t)D d dο= + ∆ + ∆                (7c)

Which, when inserted into Eqs (1), yield a series of 6 algebraic 
relations between the small amplitudes 1 2 1 2, , p ,d ,de p , and the yet 
unknown angular frequency ∆ . After some lengthy but straightforward 
algebra, we obtain an expression for the angular frequency in the form 

2 2 2(2C 1) (2 1) K (2 ) (K 1)
(2 1) K 1

c
C

γ γ γ γ
γ

− + − + − +
∆ =

− + +
                (8)

Evidently revealing an explicit dependence on excitation parameter 
2C, as well as on field and population-inversion relaxation rates K
and γ

Indeed, when the instability threshold (Eq. (2)) is inserted in 
Eq. (8), one retrieves Eq. 6. This constitutes a first test of validity for 
the small harmonic expansion analysis. Additional confirmation 

must call for direct comparison between relation (8) and numerical 
simulations. Figure 4 represents the oscillation frequency as a function 
of the excitation parameter, as given by Eq. (8) (solid upper-line) and 
a few scattered points obtained through direct numerical simulations. 
The dot values were precisely quantified with the help of the Fourier 
transform algorithm (as in the example shown in Figure 3d).  

As expected, the validity of the analytical expression (8) extends 
to the whole control parameter space, be it below, at, or above the 
instability threshold! This constitutes a fundamentally fuller outcome 
as compared to the one given by linear stability analysis.

Now, let us turn to the long-term solution and search for an 
adapted strategy to obtain further analytical projections.

Strong-harmonic expansion analysis: Again, from a quick 
glance at figure 2, it transpires that the weak harmonic expansions 
cannot give any information on the long-term signal, since the field 
variable no longer oscillates around steady-state, but around the time 
axis, a signature of zero-average value. Typical traces of the three 
variables (t)E , P(t) , and D(t) , in the pulsing regime, are represented, 
respectively in Figures 5a, 5b, and 5c. One may directly see that the 
variables evolve to satisfy (t) 0,E< >=  (t) 0,P< >= , and (t) 0,D< >=

dcd Dο≠  Figures 5d, 5e, 5f are the Fourier spectra corresponding to 
each variable. 

The times traces of Figure 5 also indicate that each variable evolves 
with strong amplitudes, of the same order of magnitude as the steady 
state values. 

Accordingly, adapted expansions must take the following strong-
harmonic forms

2 1(t) cos[(2n 1) t]n nE E += ∑ + ∆                         (9a)

(2n 1) (2n 1) P(t) {p cos[(2n 1) t] P sin[(2n 1) t]}+ += ∑ + ∆ + + ∆n ip op       (9b)

ip(2n) op(2n)D(t) {d cos[2n t] sin[2n t]}dc nd d= ∑ ∆ + ∆                   (9c)

 

Figure 3: Typical time traces in the transient regime showing clear out-of-
phase evolutions between a)E(t), b)P(t), and c)D(t). d)is a Fourier transform 
that quantifies the frequency of the temporal signals.
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n = 0, 1, 2, 3, etc.

where the subscripts ip and op stand, respectively, for in-phase and out-
of-phase components.

From a first sense, it is easy to understand that straightly plugging 
Eqs (9) into Eqs (1) would yield an inextricable infinite set of algebraic 
relations, from which one must find some way through. Such a way 
calls for the following iterative procedure.

•	 First step

To start with, we limit expansion (9a) to its first-order component, 
and write

1(t) E cos( t)E = ∆                      (10a)

which, when inserted in Eq. (1a) carries out

1 2(t) P cos( t) P sin( t)P = ∆ + ∆                  (10b)

1P , and P2 are then evaluated from Eq. (9b), taking into account, in 
a first approximation, the population-inversion sole dc-part.

 The above first-order expressions for (t)E and P(t)  inflict a driving 
term to Eq. (1c), in the form

1 1 1 1 2 1(t) P(t) cos(2 t) sin(2 t)
2 2 2

E P PE P EE = + ∆ + ∆              (10c)

imposing to Eq. (1c) a first solution of the same form. That is

dc 1 2(t) d cos(2 t) d sin(2 t)D d= + ∆ + ∆                                (10d)

Injecting back (t)D  into Eq. (1c), with the use of Eq. (10c), we solve 
for dcd , 1d , and  2d therefore completing the first-order solutions for 
all three variables.

•	 Second step

With expressions (10a) and (10d), the driving term in Eq. (1b) 
expands into

1 2 1 1 1
dc 1(t) D(t) d cos( t) sin( t) cos(3 t) sin(3 t)

2 2 2
d d E d EE E = + ∆ + ∆ + ∆ + ∆ 

 
   (11a)

Inducing the following third-order development to the polarization 
variable

( ) ( ) ( ) ( ) ( )1 2 3 4cos sin cos 3 sin 3P t P t P t P t P t= ∆ + ∆ + ∆ + ∆               (11b)

that we insert back into Eq. (1b) to obtain a series of algebraic 
relationships from which we extract analytical expressions for the first 
and third-order field-amplitudes, along with a closed form formulae 
for the long-term angular-frequency 

2 2 2

1 2 2 2 2

(1 )( 4 )(1 )2
2 (1 ) (1 ) 4

KE
K

γ
γ γ γ γ

+ + ∆ + ∆
=

+ −∆ + −∆ − ∆              (12a)

2 2 2 2
1

2
2 2 2 1

1d

(1 3 ) 8
3

41 [ (1 ) 4 ]
2d

ad EE
E

γ γ

γ γ

 Τ − ∆ − ∆ = −
−Γ Τ −∆ − ∆

              (12b)

and   
2

K(2C 1) (2 ) 3(K 1)
8(k 1) (2 4)k

γ γ γ
γ γ

− + − +
∆ =

+ − + +
             (12c)

Where the coefficients

2
2 1

1

1
2

d E
Γ = −

 
+ ∆ + 

 

                              (13a)

1 2 2 2

1
(1 )( 4 )d γ

Γ =
+ ∆ + ∆

,                   (13b)       

3 2 2 2

1
(1 9 )( 4 )d γ

Γ =
+ ∆ + ∆

,                (13c)

have been introduced for shortening purposes. Again, an explicit 
dependence on excitation parameter 2C and relaxations rates K and γ  
clearly appears in the angular frequency formulae. 

As intuitively expected, the field third-order component scales to 
the power three, in first- order field-amplitude. Figure 4 (lower trace, 
solid line) indicates a perfect match between the analytical expression 
(12c) and the numerically simulated long-term frequencies (dots along 
the curve).

It is worth to put an accent on the fact that only the above first and 

Figure 4: Transient and long-term frequencies (solid lines) along with few 
numerically simulated values (dots). Both curves show excellent agreement 
between the closed form expressions Eq.8 (upper curve) and Eq. 12c (lower 
graph) with those obtained from straight numerical simulations of Eqs (1). 

 

Figure 5: Long-term time traces and corresponding frequency spectra of a)
the field E(t), b)polarization P(t), and c)population inversion D(t). Note the 
presence of odd components in the field and polarization spectra, while 
the population-inversion spectrum exhibits an even frequency distribution.
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third order calculations are necessary in order to derive an analytical 
expression for the long-term frequency whose validity extends to the 
whole parameter space (K, γ , 2C). K, Its validity goes much beyond 
the region of period-one solutions, as those of Figure 5. It spreads over 
regions of the control-parameter space that comprise some regular 
cascading solutions, in the form of a period-doubling hierarchy, for 
example [11].

The iterative procedure may be continued towards further steps 
if one wishes to extract higher-order field-amplitudes. Since the third 
order components in field and polarization naturally induce  a driving 
term E(t)P(t) that develops the population inversion to its fourth-order 
expansion, a fifth-order field-component may be extracted from Eqs 
(1a) and (1b), which, in turn, allows for the extraction of a seventh-
order component, and so on. However, since our aim is not to obtain 
complete analytical solutions but rather to extract new analytical 
information such as the expression of the operating long-term 
frequency Eq. (12c), we limit our presentation to the results obtained 
thus far. Additional outcomes may be found in Refs [6,7,11].

We now apply the weak and strong harmonic expansion analyses to 
the integro-differential system, again limiting our goal to the derivation 
of analytical formulas that handle the transient and permanent pulsing 
states, in terms of oscillation frequencies.

The integro-differential « Maxwell-Bloch » system

This system is derived along the same lines of thoughts as the simpler 
Lorenz-Haken model, following the lamb self-consistent analysis. 
It describes light-matter interactions inside an in homogeneously 
broadened medium placed inside a judiciously arranged ring-cavity. 
For example, inside a gaz laser where the motion of the interacting 
particles results in a Doppler-shift hereafter denoted w, of the emitted 
radiation with respect to those at rest. A Gaussian distribution g(w), 
integrated over the amplifying medium, takes into account such an 
effect [2,4,7].

In normalized form, the integro-differential equations write 

(t) {E(t) 2C dwg(w) p(w, t)}dE K
dt

+∞
−∞= − + ∫                              (14a)

( )(w, t) 1 (w, t) E(t)d(w, t)dp iw p
dt

= − + +                                (14b)

(w, t) 1{d(w, t) 1 [E*(t) p(w, t) E(t) p*(t)]}
2

dp
dt

= − + + +               (14c)

The control parameters K,γ  and 2C bear the same significations as 
those of the Lorenz-Haken model.

Despite the integral over the inhomogeneous profile in Eq. (14a), 
which seems to complicate the problem of light-matter interactions, 
the dynamical solutions of Eqs (14) bear some amazing resemblance 
with those of the simpler Lorenz-Haken equations.  A typical example 
is represented in Figure 6, at the transition region from the transient to 
the “permanent” solution for the field (Figure 6a), and the center-line 
components for the polarization (Figure 6b) and population inversion 
(Figure 6c). 

Just as in the case of the Lorenz-Haken system, the transient 
oscillations take place around the steady-state values for each variable, 
while the long term solution fluctuates around zero-mean values 
for the field and polarization, and around a dc value, distinct from 
the corresponding steady-state, for the population inversion. As a 
consequence, it becomes obvious that the weak and strong harmonic 

expansions analyses do apply in this case, yet the algebra becomes even 
more tedious, since each atomic packet situated at w away from line-
center participates to the dynamics, through the integral in Eq. (14a), 
and must be taken into account. 

Weak-harmonic expansion analysis of the transient regime: The 
transient time traces of Figure 6 indicate small fluctuations taking place 
around steady state values with clear unlocked progressions of each 
variable with respect to the others. Thus, to first order, we may write, 
in the case of real fields

s(t) E cos( t)E e= + ∆                             (15a)

( ) ( ) ( ) ( ) ( ) ( )1 2, cos sinsp w t p w p w t p w t= + ∆ + ∆               (15b)

( ) ( ) ( ) ( ) ( ) ( )1 2, cos sinsd w t d w d w t d w t= + ∆ + ∆                   (15c)

When these expansions are inserted into Eqs (14), we are led to a 
series of algebraic relations between the small amplitudes e,p1,p2,d1,d2., 
that contain the yet unknown angular frequency ∆ . After some lengthy 
but straightforward algebraic manipulations, we obtain the following 
two relations

1 s2 (w) p (w, ,E ) 1C dwg+∞
−∞∫ ∆ = ,               (16a)

2 s2 (w) p (w, ,E )C dwg
K

+∞
−∞

∆
∫ ∆ =                 (16b)

the ratio of which yields an expression that encloses one unknown 
only, that is ∆ , for fixed control parameter κ,γ and excitation level  ES 

2 s

1 s

(w) p (w, ,E )
(w) p (w, ,E )

dwg
dwg K

+∞
−∞
+∞
−∞

∫ ∆ ∆
=

∫ ∆
                                  (17)

Figure 6: Time traces at the transition region from transient to permanent 
period-one solution of a)field E(t); -center-tuned b)polarization and c) 
population inversion-components obtained at the onset of instability, with 
k=4, and γ=0.1.
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The excitation parameter 2C is related to the steady-state intensity 
 through the following state equation (obtained when the 

derivatives in Eqs (14) are set equal to zero)

( )
22

2 1
1 s

g w
C dw

w E

+∞

−∞

=
+ +∫                                          (18)

Scanning over 2C thus amounts to varying Es

Equation (17) can only be solved graphically by representing its 
right and left-hand sides on the same diagram, for given excitation level 
and control parameters γ  and K. An example of such a solution is 
represented in Figure 7.

In order to draw the characteristic curve that describes the 
evolution of the transient pulsation with respect to excitation level, one 
must scan over Es and compute the corresponding  ∆  value, as done 
in Figure 7. In so doing, one obtains a solid curve associated to Eq. 
(17), in which Es is the variable and∆ the function. The details of the 
resultant graph are represented in Figure 8. It is worth mentioning that 
up to twice the threshold Es=1.5, 2C=2 the frequencies of the numerical 
simulations exactly match those of the closed form expression (17). 
For higher excitations, indeed, higher order terms, neglected in this 
approach, participate to the transient dynamics, and the first order 
expression deviates from the actual frequencies of the transient regime. 

Strong-harmonic expansion analysis of the pulsing regime: 
According to the long-term time traces of figure 6, the pulsing regime 
carries the same properties as those of the Lorenz-Haken model, i.e. 

(t) 0,E< >= (w, t) 0,p< >= dc(w, t) d sd d< >= ≠ . Accordingly, an 
intrinsic expansion of the electric field consists in a Fourier series of the 
form  

m(t) cos(m t)mE E= ∑ ∆                 (19a)

While the medium’s variables follow

( ) ( ) ( ) ( ) ( ){ }  , cos sin
m mm ip opp w t p w m t p w m t= ∑ ∆ + ∆               (19b)

dc ipm opm(w, t) d (w) {d (w)cos(m t) d (w)sin(m t)}md = +∑ ∆ + ∆    (19c)

Just as in the case of the Lorenz-Haken model, the third-order 
expansions are all we need in order to extract the necessary long-term 
pulsation. Careful algebraic handlings yield

1 1

1 1

(w) p (w, ,E )
         

(w) p (w, , E )

+∞

−∞
+∞

−∞

∆ ∆
=

∆

∫
∫

op

ip

dwg

kdwg
                (20)

n which only the value of ∆  is unknown, since the first order field-
amplitude E1 is formerly determined with the first-order expansion.

At first sight, this last formula seems identical to Eq. (17). However, 
comparison between expansions (15b) and (19b) tells us that while p1 
and p2 are small quantities with respect to ps, the values  of p0p1, and 
pip1 are of the same order of magnitude as ps. Indeed, the obtained 
expressions for the in-phase and out-of phase polarization components 
are quite distinctive in both cases.

Equation (20) must also be solved graphically, for fixed values of the 
control parameters and excitation level. An example of such a solution 
is given in Figure 9a, while Figure 9b represents the graphical solution 
of the transient frequency, obtained with the same parameter values. 
Quick comparison between the two values reveals that the transient 
pulsation is almost 3 times higher than the pulsing one, as intuitively 
expected from the fact that the transient frequency calls for first-order 

developments only, while the pulsing solution requires third-order 
expansions.

 Needless to emphasize on the fact that representing the left and 
right hand side of Eq. (20) in order to solve for ∆ , as done in Figure 

9b, gives the same result as when representing ( ) ( )1 ,opdwg w p w
+∞

−∞

− ∆∫  

on one hand, and  1(w) p p (w, )dwg
K ο

+∞
−∞

∆
∫ ∆ on the other, as done in 

Figure 9a.

Despite the much more complicated algebra involved in the 
integro-differential “Maxwell-Bloch” equations, as compared to the 
Lorenz-Haken model, closed form expressions for both the transient 
and the long-term regimes have been derived. For each set of parameter 
values, we have found a fairly good match between the numerically 
simulated pulsations and those given by the closed form expressions, an 
indication of the strength of the weak and strong harmonic-expansion 
analyses. 

Let us now turn to some instinctual and easy-to-apprehend 
analogies with the characteristics of a well-known academic example, 
the forced mass-spring system. 

Simple physics versus complicated algebra: connection to 
resonance

 Let us recall and consider the academic example of the forced 
harmonic oscillator; that of a mass-spring system represented in figure 
10. 

When some varying external excitation mechanism of the form 

0(t) F cos( t)F ω=                                       (21)

is applied to the system, the movement of the mass along some x axis 
about its equilibrium position will take place according to

( ) ( ) ( )cosx t A tω ω ϕ= +                                                            (22)

The mass undergoes a displacement with frequency-dependent 
amplitude that gives birth to the well-known phenomenon of resonance, 

Figure 7: Graphical solution of Eq. (17) giving the pulsation frequency 
of the transient oscillations of Figure 6. In this example, the solution 
reads ∆≅	0.14.
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Figure 8: Pulsation versus excitation level, corresponding to Eq. (17) (solid 
line) obtained with κ=4,	 γ=0.1. The dots were computed through direct 
numerical simulations of the integro-differential equations (14) along with a 
Fast Fourier Transform algorithm.

Figure 9: Graphical solution giving a) the long-term pulsing frequency and 
b) the transient oscillation frequency, obtained with the same parameter 
values. Note that the ∆ value in b) is almost 3 times higher than in a). Such 
a scaling conforms to the representations of Figure 6a.

excitation response

K m

Figure 10: Resonance phenomenon in the externally driven simple 
harmonic oscillator that occurs in the form of high-amplitude response when 
the frequency of an external force approaches that of the system’s intrinsic 
frequency ω0.

which occurs when the external angular frequency approaches the 

Eigen-pulsation 0
K
m

ω =  of the mass-spring system (Figure 10).

In the course of our investigations, we have found that the strong-
harmonic expansion routine comprises additional and out-of-first-
sight properties. The third order relationships simplify to end up with a 
closed form frequency relation that shows no dependence on excitation 
level, but solely depends on the characteristic parameters of the system 
K and γ . The obtained expression writes 

( ) ( )
( ) ( )

, ,3    
, ,

dwg w F w

dwg w G w

γ

γ

+∞

−∞
+∞

−∞

∆∆
= −

∆

∫
∫ĸ

                                                    (23)

Implying one single solution ∆  for fixed control parameters κ	and γ .

Expectedly, a characteristic frequency may also be derived from 
the Lorenz-Haken model with the help of the third-order field-
components. It can also be derived directly from Eq. (23). Setting w=0, 
in Eq. (23), which amounts to selecting the center component of the 
profile, with the result of projecting the integro-differential equations 
into the three-dimensional Lorenz-Haken model, we are left with

2

2 2

3 2 (1 2 3 )
(1 3 ) 8

γ
γ

∆ ∆ + − ∆
= −

− ∆ − ∆ĸ
                                                                     (24)

which takes the simpler closed form

( )2 1 2 3
 

24 6 9
γ γ

γ
+ +

∆ =
+ +

ĸ

ĸ
                                                                    (25)

Just as the resonant frequency of a spring-mass oscillator is 
exclusively related to the mass and the spring coefficient, the Laser 
intrinsic frequencies merely relate to the field and population inversion 
relaxation rates (both scaled to the polarization decay rate). As a 
consequence, the unstable solutions of both the Lorenz-Haken and 
the inhomogeneously broadened systems may be attributed to some 
resonant phenomenon which occurs when the system is excited with an 
external mechanism, strong enough (beyond the instability threshold) 
to drive the system close to its Eigen-frequency, thus giving rise to the 
phenomenon of resonance, which takes the form of high amplitude 
output pulses, such as those of the long-term time traces depicted in 
Figures 2, 5 and 6.

Conclusion
The purpose of this paper was to outline, through a self-consistent 
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presentation, a new strategy of approach and show how analytical 
information that go well beyond the usual linear stability analysis can 
be extracted from the non-linear differential equations that govern 
light-matter interactions inside a bad-cavity configured laser. Closed 
form expressions were derived to give exact quantifications of both 
the transient and the long-term pulsations that characterize the laser 
behavior when the system is driven into its state of turbulence. Our 
methodology is rooted in the application of a weak and a strong-
harmonic expansion analyses, shown to be adapted respectively to the 
transient, with small oscillations, and “permanent”, with strong self-
pulsing, parts of the solutions. Both methods reveal to apply equally 
well to the simple Lorenz-Haken model and to the more complex 
integro-differential Maxwell-Bloch equations. In addition, intrinsic 
Eigen-frequencies were shown to characterize both models. These 
proper frequencies bear the same significance as that of an externally 
driven harmonic oscillator, known to give rise to the phenomenon of 
resonance. The self-pulsing solutions of the laser equations may thus be 
viewed as the manifestation of such a resonance property, which takes 
place when the external pumping mechanism is raised beyond some 
critical level, the so-called instability threshold. 
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