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Introduction
In recent years, fractional derivatives have received considerable 

interest in recent years. In many applications, they provide more 
accurate models of systems under consideration. For example, 
they have been used successfully to model frequency dependent 
damping behavior of many viscoelastic materials. Other authors 
have demonstrated applications of fractional derivatives in the areas 
of electrochemical processes [1,2], dielectric polarization [3], colored 
noise [4], viscoelastic materials [5-8] and chaos [9]. Mainardi [10] and 
Rossikhin and Shitikova [11] presented survey of the application of 
fractional derivatives, in general to solid mechanics, and in particular 
to modeling of viscoelastic damping. Magin [12-14] presented a 
three part critical review of applications of fractional calculus in 
bioengineering. Applications of fractional derivatives in other fields 
and related mathematical tools and techniques could be found in [12-
20]. In fact, real world processes generally or most likely are fractional 
order systems

This paper considers two examples of more general Oscillator 
fractional differential equations of the form:

D2x(t)+f(t,x(t),Dαx(t))=0                  (1.1)

Subject to the initial conditions:

(0) , (0)dx a x b
dt

= =               (1.2)

The first attempt to describe, qualitatively, the oscillatory behavior 
of the heart, was made by Van der Pol, in 1926. He observed for the 
first time the relaxation oscillations, by studying an electrical circuit 
that presents self-entertained oscillations, with amplitude which does 
not depend on the initial conditions [21]. Oscillators, both linear and 
nonlinear, are often used to represent different biological systems. 
Various chemical activities, human diseases, biological rhythms, and 
even neural activity have all been modeled by nonlinear equations.

The concept of fractional or non-integer order derivation and 
integration can be traced back to the genesis of integer order calculus 
itself [22]. Almost most of the mathematical theory applicable to the 
study of non-integer order calculus was developed through the end of 
19th century. However it is in the past hundred years that the most 
intriguing leaps in engineering and scientific application have been 
found. The calculation technique has in some cases had to change 
to meet the requirement of physical reality. The use of fractional 

differentiation for the mathematical modeling of real world physical 
problems has been widespread in recent years, e.g. the modeling of 
earthquake, the fluid dynamic traffic model with fractional derivatives, 
measurement of viscoelastic material properties, etc.

The reason of using fractional order differential equations (FOD) 
is that FOD are naturally related to systems with memory which exists 
in most biological systems. Also they are closely related to fractals 
which are abundant in biological systems. The results derived of the 
fractional system (1.1) are of a more general nature. Respectively, 
solutions to the fractional diffusion equation spread at a faster rate than 
the classical diffusion equation, and may exhibit asymmetry. However, 
the fundamental solutions of these equations still exhibit useful scaling 
properties that make them attractive for applications.

The derivatives are understood in the Caputo sense. The general 
response expression contains a parameter describing the order of the 
fractional derivative that can be varied to obtain various responses.

The LHAM will be applied for computing solutions to the systems 
of fractional partial differential equations considered in this paper. 
This method has been used to obtain approximate solutions of a 
large class of linear or nonlinear differential equations. It is also quite 
straightforward to write computer codes in any symbolic languages. 
The method provides solutions in the form of power series with easily 
computed terms. It has many advantages over the classical techniques 
mainly; it provides efficient numerical solutions with high accuracy, 
minimal calculations.

Fractional Calculus
There are several approaches to the generalization of the notion of 

differentiation to fractional orders e.g. Riemann- Liouville, GruÖnwald-
Letnikow, Caputo and Generalized Functions approach [23]. Riemann-
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In this paper, Laplace Homotopy perturbation method (LHAM) is used to find the approximate solution of 

the fractional Oscillation equations. The fractional derivatives are described in the Caputo sense. We compare 
the exact solutions with our results without fractional derivatives. The resulting solutions spread faster than the 
classical solutions and may exhibit asymmetry, depending on the fractional derivative used. Numerical results are 
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Liouville fractional derivative is mostly used by mathematicians but 
this approach is not suitable for real world physical problems since 
it requires the definition of fractional order initial conditions, which 
have no physically meaningful explanation yet. Caputo introduced 
an alternative definition, which has the advantage of defining integer 
order initial conditions for fractional order differential equations [23]. 
Unlike the Riemann-Liouville approach, which derives its definition 
from repeated integration, the GruÖnwald-Letnikow formulation 
approaches the problem from the derivative side. This approach is 
mostly used in numerical algorithms.

Here, we mention the basic definitions of the Caputo fractional-
order integration and differentiation, which are used in the upcoming 
paper and play the most important role in the theory of differential and 
integral equation of fractional order.

The main advantages of Caputo’s approach are the initial conditions 
for fractional differential equations with Caputo derivatives take on the 
same form as for integer order differential equations.

Definition 1 

The fractional derivative of f(x) in the Caputo sense is defined as:
1 ( )

0

1( ) ( ) ( ) ( )
( )

x
m m m mD f x I D f x x t f t dt

m
α α α

α
− − += = −

Γ − ∫
for 1 , , 0.m m m N xα− < ≤ ∈ >

For the Caputo derivative we have

DαC=0, C is constant

0, ( 1)
( 1) , ( 1)
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Definition 2

For m to be the smallest integer that exceeds α, the Caputo fractional 
derivatives of order α>0 is defined as

1

0

1 ( , )( ) ,    m-1 m
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∫

Analysis of the Method
In this section, in order to verify numerically whether the proposed 

methodology leads to higher accuracy, we evaluate two examples to get 
the numerical solution of the problem (1.1). To show the efficiency of 
the present method for our problem, we compare the results with the 
exact solution.

Example 1: Consider the fractional composite Oscillation:
2

2 8d x d x x
dt dt

α

α+ + =                  (3.1)

Subject to the initial condition

(0) 0, (0) 0dx x
dt

= =                  (3.2)

The exact solution when α→1 is:

/2 3 1 3( ) 8(1 (cos sin ))
2 23

tx t e t t−= − +                (3.3)

We will apply LHAM to nonlinear fractional Van der Pol 
Oscillation (3.1). The technique consists first for applying Laplace 

transform to both side of equation (3.1), we find
2

2{ } { } { } 8 {1}d x d xL L L x L
dt dt

α

α
+ + =                   (3.4)

We can write this equation in the forms
2

2{ } 8 {1} { } { }d x d xL L L x L
dt dt

α

α= − −                  (3.5)

Applying the formula for Laplace transform, we obtain

2 8{ ( )} (0) (0) { ( )} { }d d xs L x t s x x L x t L
dt s dt

α

α− − = − −                (3.6)

Using the initial condition (3.2), we have

2 8{ ( )} { ( )} { }d xs L x t L x t L
s dt

α

α= − −                  (3.7)

Or

3 2 2
8 1 1{ ( )} { ( )} { }d xL x t L x t L
s s s dt

α

α= − −                 (3.8)

By the homotopy technique [24,25], defines the homotopy 
H(x,p):Ω×[0,1]→R which satisfies,

3 3 2 2
8 8 1 1( , ) (1 )[ { ( )} }] [ { ( )} { ( )} { }] 0d xH x p p L x t p L x t L x t L
s s s s dt

α

α= − − + − + + =    (3.9)

Where p∈[0,1] is an imbedding parameter, x(0) is an initial 
approximation.

The basic assumption is that the solution of equations (3.9) can be 
expressed as a powers series in p

x=x0 + px1 + p2x2 +…               (3.10)

Substitute Equation (3.10) into Equation (3.9) and rearranging the 
results based on p-terms, we find:

0
0 3

8{ ( )}p L x t
s

= =                (3.11)

Applying the inverse Laplace transform for equation (3.11) we get

x0(t)=4t2                (3.12)

1 0
1 02 2

1 1: { ( )} { ( )} { }d xp L x t L x t L
s s dt

α

α=− −              (3.13)

Substitute this value of x0(t) in equation (3.12) into equation (3.13) 
gives

1
1 5 5

1 1: { ( )} 8 8p L x t
s s α−=− −               (3.14)

Applying the inverse Laplace transform for equation (3.14) we get

4 4
1

1 8( )
3 (5 )

x t t t α
α

−= − −
Γ −

               (3.15)

2 1
2 12 2

1 1: { ( )} { ( )} { }d xp L x t L x t L
s s dt

α

α=− −               (3.16)

6 6 6 2
2

1 16 8( )
90 (7 ) (7 2 )

x t t t tα α
α α

− −= + +
Γ − Γ −

           (3.17)

3 2
3 22 2

1 1: { ( )} { ( )} { }d xp L x t L x t L
s s dt

α

α=− −              (3.18)

8 8 8 2 8 3
3

1 24 24 8( )
45360 (9 ) (9 2 ) (9 3 )

x t t t t tα α α
α α α

− − −= − − − −
Γ − Γ − Γ −

   (3.19)

            (2.1)
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The approximate solution of equation (3.1) can be readily obtained 
by equations (3.12), (3.15), (3.17), and (3.19) as follow (Figure 1 and 
Table 1):

0 1 2
1

( ) lim ...
p

x t x x x x
→

= = + + +                 (3.20)

Example 2: Consider the time fractional Van der Pol Oscillation:
2 3(1 ) 2cos cosd x d xx x t t

dt dt
+ + + = −              (3.21)

Subject to the initial condition

(0) 0, (0) 1dx x
dt

= =                  (3.22)

The exact solution when α → 1 is:

x(t)=sint                  (3.23)

Applying Laplace transform to both side of equation (3.21), we find

2
2 3

2{ } {(1 ) } { } 2 {cos } {cos }d x d xL L x L x L t L t
dt dt

α

α+ + + = −         (3.24)

We can write this equation in the forms
2

2
2

5 1{ } {cos } {cos3 } { } { } { }
4 4

d x d x d xL L t L t L x L L x
dt dt dt

α α

α α= − − − − (3.25)

Applying the formula for Laplace transform, we obtain

2
2 2

2

5 1{ ( )} (0) (0)
4 41 9

{ ( )} { } { }

d s ss L x t s x x
dt s s

d x d xL x t L L x
dt dt

α α

α α

− − = − −
+ +

− −

                   (3.26)

Using the initial condition (3.22), we have
2

2 2

2

5 1{ ( )} 1
4 41 9

{ ( )} { } { }

s ss L x t
s s

d x d xL x t L L x
dt dt

α α

α α

= + − −
+ +

− −

             (3.27)

Or

2 2 2 2

2
2 2

1 5 1 1 1 1{ ( )}
4 4( 1) ( 9)

1 1{ ( )} { } { }

L x t
s s s s s s

d x d xL x t L L x
s dt s dt

α α

α α

= + − −
+ +

− −

            (3.28)

By using homotopy technique, we find:

2

2 2 2

2 2 2

1( , ) (1 )[ { ( )} }] [ { ( )}

1 5 1 1 1
4 4( 1) ( 9)

1 1 1{ ( )} { } { ( )}] 0

H x p p L x t p L x t
s

s s s s s

d xL x t L L N x
s s dt s

α

α

= − − +

− − +
+ +

+ + + =

            (3.29)

Where p∈[0,1] is an imbedding parameter, x(0) is an initial 
approximation.

The basic assumption is that the solution of equations (3.29) can be 
expressed as a powers series in p

x=x0 + px1 + p2x2 + …                                (3.30)

Substitute equation (3.30) into equation (3.29) and rearranging the 
results based on p-terms, we find:

0
0 2

1{ ( )}p L x t
s

= =                                  (3.31)

1
1 02 2 2

20 0
02 2

5 1 1 1 1: { ( )} { ( )}
4 4( 1) ( 9)

1 1{ } { }

p L x t L x t
s s s s s

d x d xL L x
s dt s dt

α α

α α

= − −
+ +

− −

             (3.32)

Applying the inverse Laplace transform for equation ( 3.31) we get

x0(t)=t                  (3.33)

Substitute these value of x0(t) into equation (3.32) gives

1
1 2 2 4 4 6

5 1 1 1 1 1 (4 ) 1: { ( )}
4 4 (2 )( 1) ( 9)

p L x t
s s s s s s sα α

α
α− −

Γ −
= − − − −

Γ −+ +
(3.34)

We can write the last equation in the form:

1
1 2 2 4 4 6

44 1 5 1 1 1 (4 ) 1: { ( )}
36 4 36 (2 )1 9

s sp L x t
s s s s s sα α

α
α− −

Γ −
= − + − − −

Γ −+ +
(3.35)

Applying the inverse Laplace transform for equation (3.35) we get

3 3 5
1

44 5 1 1 1 (3 )(2 )( ) cos cos3
36 4 36 6 (4 ) (6 )

x t t t t t tα αα α
α α

− −− −
= − + − − −

Γ − Γ −
(3.36)

The approximate solution of equation (3.21), therefore, can be 
readily obtained
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Figure 1: Approximate solutions for example 1 comparison with the exact 
solutions.

t Exact Solution LAHM (α=1) LAHM (α=0.99) LAHM (α=0.95)
0.0 0.0000000 0.0000000 0.0000000 0.0000000
0.1 0.09983 0.09983 0.09999 0.10058
0.2 0.19867 0.1986 0.1991 0.201
0.3 0.29552 0.29514 0.2961 0.29974
0.4 0.38942 0.38816 0.38964 0.39533
0.5 0.47943 0.47617 0.47821 0.48611
0.6 0.56464 0.55744 0.56006 0.57027
0.7 0.64422 0.62997 0.63316 0.64566
0.8 0.71736 0.69139 0.69512 0.70981
0.9 0.78333 0.73892 0.74314 0.75981
1.0 0.84147 0.76935 0.77396 0.7923

Table 1: The numerical results for Example 1.
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0 1 2
1

( ) lim ...
p

x t x x x x
→

= = + + +  (3.37)

Therefore substitute the value of x0(t) and x1(t) from equation 
(3.33) and equation (3.36) yields (Figure 2 and Table 2):

3 3 544 5 1 1 1 (3 )(2 )( ) cos cos3
36 4 36 6 (4 ) (6 )

x t t t t t t tα αα α
α α

− −− −
= − + + − − −

Γ − Γ −
(3.38)

Conclusion
We employ the LHPM to obtain approximate solutions for 

fractional nonlinear oscillatory equations. Excellent agreement between 
approximate and exact solutions. The LHPM has great potential 
and can be applied to other strongly nonlinear oscillators with non-
polynomial terms. The results revealed that the LHPM is a powerful 
mathematical tool for the exact and numerical solutions of nonlinear 
equations in terms of accuracy and efficiency. The corresponding 
numerical solutions are obtained according to the recurrence relation 
using Mathematica.
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