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Abstract

Landslides and rock avalanches greatly influence livelihood, ecosystem, and are considered to be a vulnerable form of natural disaster. 
Northern regions of Pakistan, comprising of rugged mountains are home to a number of disasters including landslides. This study describes the 
susceptibility of landslide processes in the Shigar district of Gilgit Baltistan, which is considered to be a hotspot of natural hazards, and uses 
the Analytical Hierarchy Process (AHP) technique to develop a methodology for evaluating and modeling landslide data. Field findings and 
results of this study identified that the occurrence of these events is impacted by a range of natural and anthropogenic factors, such as 
earthquakes, which shake and disturb the strength of formations, and continuous heavy rainfall, which increase the susceptibility of soil to 
erode and damage the connectivity between rocks and boulders. The effects of various landslide-triggering factors (geology, slope, aspect, land 
cover, road network, fault line, and river) are evaluated. Landslides are identified during the field investigation, confirmed by Shigar's local 
people and compared to the inventory map of landslides. Based on the landslide susceptibility analysis results, 64 percent of the area falls into 
the low LSI class, followed by the moderate susceptibility class at 28 percent and the high susceptibility category at 8%. The susceptibility map 
for landslides is used to forecast the spatial probability and can be used to design preventative actions for landslides in the Shigar district.
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Introduction
Pakistan, a developing country vulnerable to natural disasters such 

as earthquakes, landslides, floods, and avalanches, presents 
considerable challenges in disaster management [1,2]. The 2010 Atta 
Abad landslide provides as a harsh reminder of the disastrous 
repercussions, killing 19 people, displacing over 6,000 others, and 
forming a 14-kilometer lake that drowned important infrastructure, 
including sections of the Karakoram Highway [3]. Despite the 
prevalence of such incidents, the region lacks comprehensive terrain 
landslide susceptibility maps, which are critical for risk assessment and

mitigation [4]. Landslides continue to be one of the most damaging 
geohazards worldwide, and sophisticated countries have created 
susceptibility maps [5], using conventional approaches like the 
Analytical Hierarchy Process (AHP) and newer machine learning 
techniques like Support Vector Machines (SVMs), [6]. This study 
examines these limitations by creating high-resolution landslide 
susceptibility maps for the Shigar valley, a location with steep slopes, 
harsh terrain, and vulnerability to triggers such as seismic activity and 
excessive rainfall [7]. By combining traditional AHP methodologies 
with sophisticated machine learning models such as SVM, the study 
compares the performance of different methods to determine the  most
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dependable framework for local applications [8]. Furthermore, this 
study uses a detailed investigation of causative factors such as slope 
morphology, valley-fill sediments, and moraine complexes to increase 
forecast accuracy [9]. The importance of valley-fill sediments and 
barrier breaches is highlighted, providing new insights into their 
effects on slope instability and landslide behavior [10,11]. By filling a 
major gap in landslide susceptibility mapping in Pakistan, this study 
not only improves local disaster resilience but also helps to a better 
knowledge of landslide dynamics, particularly in resource-
constrained, high-risk areas [12].

Study area
The study area situated along the bank of the Shigar river and a 

spectacular area of the Karakoram region [13]. The entire area is 
8,500 square kilometers with a total population of 109,000 people 
(Figure 1). The importance of landslide hazards mitigation came after 
the huge landslide event in the Karakoram region, which took place in 
2010 and was named Attabad landslide [14-16].

Figure 1. Location map of the present research: (a) Pakistan, (b) 
Gilgit-Baltistan, (c) Study area.

Geological features play a critical role in landslide management, 
significantly influencing slope stability. Understanding the geological 
characteristics of an area is essential for assessing landslide risk and 
implementing effective mitigation strategies [17]. Geotechnical 
features of geological formations and their link to landslide events are 
based on geotechnical characteristics, structural joints and 
discontinuities, hydrogeological behavior, and indirect control of soil

depth, with vegetation concealing erosion processes [18]. Table 1 
lists the specifics of each Lithological Training Unit. Landslides are 
becoming more common as geological and tectonic formations 
(MKT), come closer spatially [19].

Materials and Methods

Landslide inventory map
A landslide inventory map illustrates the position and distribution 

of landslides that have previously happened in different time and 
space [20]. As a first step in creating a landslide inventory map, the 
locations and distribution of previous landslides within the study area 
were marked (Figure 2).

Figure 2. The landslide inventory map of the study area is 
presented, with (A1) depicting a large rock. Additionally, (B1) shows a 
photograph taken during the field visit to the study area.

Field investigations
Field studies were conducted through on-site visits, 

measurements, and observations to gather comprehensive data on 
landslides. The collected data were later used to validate the 
outcomes of spatial analysis performed on the inventory map. This 
validation ensured the map accurately represented the landscape's 
vulnerability to landslides by assessing its accuracy, reliability, and 
associated thematic layers. Detailed investigations were carried out 
at strategically selected sites within the mass-wasting areas, 
supported by extensive photographic documentation. These efforts 
utilized 1:200,000 scale geological maps, advanced high-resolution 
cameras, and a handheld Magellan GPS to precisely capture the 
surficial and internal sedimentary features of these geological events.

Spatial distribution maps of the causative factors
For assessing the landslide hazard and its evolution in the study 

area, the following data sets are used to process and acquire the 
required information for mapping the spatial distribution of various 
chosen landslide-influencing factors and interpreting the geospatial 
results (Table 1). For the Digital Elevation Model (DEM), used from 
the https://earthexplorer.usgs.gov/ are utilized to create spatial 
distribution maps for various factors in the study area, including slope,
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aspect, elevation, lithology, land use and land cover, distance to roads, 
and distance to faults. DEM is utilized in landslide susceptibility and 
hazard assessment studies due to its ability to provide detailed 
information about the elevation of the Earth’s surface.

Additionally, DEM facilitates the derivation of various topographic 
indexes such as slope angle and various slope aspects, aiding the 
assessment of assessing terrain susceptibility to landslides [21]. 
Furthermore, by integrating DEM with other thematic layers such as 
land use, lithology, and distance to infrastructure, enables the 
identification of landslide-prone areas through spatial analysis and informs

decision-making processes related to land use planning and risk 
mitigation. Overall, DEM serves as a foundational dataset that provides 
valuable insights into terrain characteristics, contributing significantly to 
the comprehensive assessment of landslide susceptibility and risk. This 
enabled us to assess the impact of landslides in each of these thematic 
categories. To estimate the number of pixels with a resolution of 30 × 
30 meters, all the thematic layers have been converted into rasters, and 
each raster has been reclassified into different groups. The 
methodology to prepare each thematic layer from Landsat images and 
DEM are given in the (Table 1).

Data Source Description Website/data portal

Satellite image Sentinel 2 Download https://earthexplorer.usgs.gov/

Sentinel 1 Download https://www.usgs.gov/

Topographical data DEM Used to derive other thematic data layers 
such as aspect and slope

https://search.asf.alaska.edu/

Elevation Derived from DEM Sentinel-1 DEM

Slope Derived from DEM Sentinel-1 DEM

Aspect Derived from DEM Sentinel-1 DEM

Land cover Derived from sentinel 2 Sentinel 2 imagery

Distance to fault Digitized from geological map of Pakistan               Geological map of Pakistan (Searle and
Khan 1996)

Distance to road Extracted from Khan S, et al. (2014) Soil survey of Pakistan

Distance to river/stream Extracted from Khan S, et al. (2014) Soil survey of Pakistan

Landslides inventory Google Earth Landslide events within the study area mapped 
using Google Earth imagery and verified through 
field survey

https://earthobservatory.nasa.gov/

All layers are combined using factor weights and sub-factors 
computed using the method to generate the map of landslides 
susceptibility. All thematic layers have been integrated into the 
geospatial environment in ArcGIS 10.5 using a mix of Weighted 
Linear Combination (WLC) method and processed using AHP. The 
Euclidian distance in ArcGIS10.5 spatial analysis tools were used to 
identify and create the thematic layers of distance to faults and roads. 
The five most common land cover classes [22], identified in the study 
area using a Sentinel-2 satellite pictures from 2020 are as follows 
such as forests, agricultural land, urban areas, water bodies, and 
barren land. The land use map was created using the probability of 
supervised categorization technique in ArcGIS 10.5 software. Of 
satellite data to extract topographical data such as slope level, slope 
appearance, and elevation, a sentinal-1 12.5 m digital elevation 
model from the https://asf.alaska.edu/datasets/daac/sentinel-1, was 
utilized [23]. The Area Under the Curve (AUC) method is a statistical 
tool for assessing the performance of landslide susceptibility models 
by calculating the area beneath the Receiver Operating 
Characteristic (ROC) curve [24]. This technique assesses the model's 
capacity to differentiate between landslide-prone and non-landslide-
prone locations, with  higher AUC values indicating  more model  accuracy 

and predictive capability [25]. The Pair Comparison Matrix (PCM) 
method assesses and ranks factors influencing landslide risk using a 
qualitative approach [26,27]. PCM involves systematically comparing 
pairs of factors, such as slope angle, soil type, vegetation cover, and 
hydrological conditions, to assess their relative importance. The 
process starts by identifying relevant factors, followed by pairwise 
comparisons to determine the influence of each factor on landslide 
susceptibility [28].

Methods
Analytical Hierarchy Process (AHP) in landslides susceptibility 

analyses: Once the component inclinations were validated, the values 
of each Pair Comparison Matrix (PCM) column are added together. 
The mean factor qualities were determined as the average of the 
qualities in each column in each row by dividing the values in each 
matrix cell by the total of the same factor column. Here average 
values to the advantage of each line, these average values were used 
as upward values of each factor's weight [29]. As indicated in the 
center column (y) of the table the demand for each component is 
determined based on the weight estimations obtained (Table 2).
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Table 1. Sources of data used for the study.



Comparison Slope Lithology Distance to 
stream

Plan curvature Distance to road Distance to fault Aspect Land cover

Slope 1 1 3 4 5 5 7 9

Lithology 1 1 3 3 3 3 4 5

Distance to stream 1/3 1/3 1 3 4 5 5 5

Plan curvature ¼ 1/3 1/3 1 3 4 5 5

Distance to road 1/5 1/3 1/4 1/3 1 3 3 5

Distance to fault 1/5 1/3 1/5 ¼ 1/3 1 3 3

Aspect 1/7 ¼ 1/5 1/5 1/3 1/3 1 3

Land cover 1/9 1/5 1/5 1/5 1/5 1/3 1/3 1

Table 2. Matrix showing the couple comparison of the factors influencing landslide.

  Finally, a Consistency Ratio (CR) for the comparison matrix in 
pairs has been produced by comparing the consistency Index (CI) with

the average Random Consistency Index (RI) to check the degree of 
consistency of relative weights, as shown in (Table 3).

N 1 2 3 4 5 6 7 8 9 10

RI 0 0 0.52 0.89 1.11 1.25 1.35 1.4 1.45 1.49

Table 3. Random consistency index.

The random consistency index is RI, and the consistency index is 
CI, both of which are expressed as Eq (2). The following formula is 
used to calculate the Consistency Ratio (CR):

When λmax is the maximum value of the matrix; 

n=Number of parameters participating.

As indicated in Table 4, Saaty had been using a randomly 
generated reciprocal matrix featuring scales of 1/9, 1/8, 1, 8, 9 to 
estimate a random consistency index (RI) [30].

Landslides Susceptibility Index (LSI): The final Landslides 
Susceptibility Index (LSI) map was generated using the following 
formula after the reference score was normalized and weights have 
been calculated [31-33]:

  The weights for each of the landslides conditioning variables are Wij, 
and the classification classes for each layer are WJ. Natural breakages 
were utilized to create class intervals on a map of landslides 
susceptibility, and the LSI map was divided into three categories (low, 
moderate, high). Where Wj is the parameter j's weight value;

wij=nominal value or class I weight in parameter j; 
n=the number of parameters.

AHP-weighted information: The four primary variables influence 
the majority of the landslides (i.e., geological factors, land and 
landforms, hydrological factors, and anthropogenic factors). As a 
layer of GIS categorization function such as lithology, distance from 
faults, land cover, slope, aspect, plan curvature, distance from 
streams, and distance from roads. The inconsistency is allowed if the 
CR (Consistency Ratio) value is below or equivalent to 0.1, whereas 
the AHP model was automatically refused if the CR value was more 
than 0.1. The weighted linear summation model was adopted to 
employ acquired weights. The weights have also been utilized to 
create a model of landslides susceptibility.

Validation of results: The validation of susceptibility to landslides 
in our work was done with two different input data sets: A map of 
susceptibility to previously produced landslides and data from land 
landslides occurrences in the study region, which had never been 
used in vulnerability analysis before. In order to evaluate the results, 
the Area Under Curve (AUC) tool is employed which is a graphical 
representation of binary operating classes (True Positive Rate (TPR) 
and False Positive Rate (FPR)) which determines the accuracy of 
project. The TPR represents truly predicted events while FPR 
indicates falsely taken events.
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Results
It is also significant to find out and evaluate the relevant causative 

elements and create a geospatial database to accurately estimate the 
regions prone to landslides. Consequently, this study chose slope 
angle, geology, land cover, slope aspect, distance to roads, distance 
to faults, curvature, and distance to river as evaluation components. 
Each component splits into subclasses, and both factors and 
subclasses were chosen based on a thorough examination of the 
literature, enlarged field observations. All layers are initially accessible 
in vector or raster formats before being changed to a raster layout with 
a spatial resolution of 30 meters. Topographical variables are the 
most critical geomorphological elements that affect slope stability. For 
the current research, the slope map is created using the DEM with 30 
m resolution and further classified into five classes i.e., >45 degree, 
45-30 degree, <30 degree, greater than 45-degree class has a
substantial impact on slope instability and is more susceptible to
mass movement, whereas the slope angle with less than 30 degrees
is regarded as a low susceptible region for mass movement, as shown
in (Figure 3a).

The slope aspect reveals the potential consequences of prevailing 
winds on various weather conditions and solar radiation incidents. 
Based on infiltration capacity, which is governed by slope angle, soil 
characteristics (conductivity and porosity), and plant cover, the soil 
becomes saturated faster based on the factors that, depending on local 
demands, receive higher quantities or severe precipitation. The slope 
aspect was classified into nine groups i.e., flat, north, north-west, east, 
southeast, southwest, west, north-west, and north (Figure 3b). The 
curvature expresses the topographic shape in such a way that the 
positive curvature represents the surface where the pixels are convex, 
and the negative ones denote the surface at which the pixels are 
concave. Curvature is a form of slope, defined as the curvature of a 
flow line formed by the intersection of the Earth's surface with a vertical 
plane (Figure 3c). Landslides are more probable when the value is 
negative, and vice versa. The zero value shows the surface with no 
slope and is straight or flat in the plan curvature map. Distance to road 
also plays a vital role in landslide susceptibility mapping, as the road 
construction comprises extensive excavations, vegetation removal and 
steep slopes. Landslides are triggered by the existence of a road owing 
to changes in slope stress and stability caused by undercutting, 
changes in hydrological conditions, and drainage. To investigate its 
impact in this study, the distance to roads map is classified into six 
buffer zones with an interval of 500-meter (Figure 3d). The closeness 
to road increases the susceptibility of region to landslides, whereas, 
moving away from the roads has a less impact on the mass movement 
events.

Figure 3. (a) The slope angle with less than 30 degree is regarded 
as low susceptible region for mass movement, (b) The slope aspect 
was classified into ten groups, like flat, north, north-west, east, 
southeast, southwest, west, north-west, and north, (c) The curvature 
of a flow line formed by the intersection of the Earth's surface with a 
vertical plane, (d) Distance to vector layer and distances to roads 
proximity owing to the high susceptible region while, move away from 
the distance to road has a less impact on the mass movement events 
in the study area.

Landslides are common in areas of geological fault because 
underlying rock resistance worsens due to tectonic rupture activities 
(Figure 4g). The fault buffers are categorized into five groups using a 
geological map as a base map to produce a fault map with an interval 
of 500 m distance using the Euclidean distance tool (Figure 4e).The 
closeness of streams can produce substantial erosion (gully erosion), 
undercuts the valleys and is regarded as predictor of landslides. The 
distance to stream map of this research was created using the Arc 
Hydro tools in the GIS environment which is further classified into six 
buffer classes as shown in (Figure 4f). Increased distance between 
streams reduces the risk of landslides, while going close to stream 
networks the possibility of landslide increases. Landcover map was 
prepared in the current research by using the Landsat-8 images with 
the help of maximum likelihood classification. The landcover map 
was further classified into five classes, namely Barren land, snow 
cover, water bodies, vegetation, and built-up (Figure 4h and Table 4).
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Factor Class Class weight Factor weight λmax C Cr

Slope (°) 0–5 0.03 0.29 5.469 0.1173 0.0754

5–15 0.05

15–30 0.14

30–45 0.45

40–60 0.17

>60 0.16

Aspect Flat 0.02 0.02 9.4239 0.053 0.0365

North 0.4

Northeast 0.03

East 0.05

Southeast 0.09

South 0.15

Southwest 0.23

West 0.23

Northwest 0.15

Plan Curvature -129.92 – -100.14 0.4200 0.05 6.2636 0.0527 0.0425

-100.13 – -50.93 0.3000

-50.92 – -25.81 0.0500

-25.80 – -0.28 0.0300

-0.27–3.40 0.0800

3.41–135.68 0.12

Lithology A/B (Gl) 0.38 0.21 5.469 0.1173 0.0754

C-D (Pm, Dg, K2 g, KB) 0.27

C (C, NKt, SKm, Tr, Y)         0.16

D (Ec, Ca, Gm, Hg, 
MGg)

0.1

E (Cv, Cg, Bg, HPU) 0.06

F (Q) 0.03
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Land cover Barren land 0.48 0.087 4.0862 0.0029 0.0319

Snow cover 0.14

Water bodies 0.07

Built-up area 0.05

Vegetation cover 0.25

Distance to road (m) 0–500 0.38 0.05 6.1187 0.0237 0.0192

500–1000 0.25

1000–1500 0.16

1500–2000 0.1

2000–2500 0.06

>2500 0.04



Distance to drainage (m) 0–500 0.38 0.2 6.1187 0.02 0.1915

500–1000 0.25

1000–1500 0.16

1500–2000 0.1

2000–5000 0.06

>5000 0.04

Distance to fault (m) 0–500 0.35 0.15 4.1801 0.06 0.0667

500–1000 0.24

1000–1500 0.2

1500–2000 0.14

2000–2500 0.1

>2500 0.06

The LSI map is categorized into three classes: Low, moderate, and 
high susceptibility regions (Figure 5). According to the conclusions, 
8% of the region is classified as having low Landslide Susceptibility 
Index (LSI), 28% is classified as moderate susceptibility, and 64% 
falls into the high susceptibility category.

Figure 5. Show the landslide events overlaid over the Landslide 
Susceptibility Index (LSI) distribution map. .

Accuracy assessment of the results
The AUC is generated by comparing TPR and FPR, taking FPR on 

x-axis while TPR on y-axis. This is done by identifying landslide
locations in the field followed by taking GPS points. Total 65 points
were taken in the field for validation purposes, showing different
types of landslides. These points are taken as True Positive Rate
(TPR) and compared with False Positive Rate (FPR) developed by
AHP tool in ArcGIS software. Graphical representation of AUC
explains the accuracy of mapping the area under the curve results
yielded a value of 0.794. Since this value is significantly higher than
the threshold of 0.5, it indicates that the model accurately predicts
landslide susceptibility (Figure 6).
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Figure 4. The fault buffers were categorized into five groups using 
a (e and g) geological map as a base map to produce a fault map, (f) 
The closeness of streams can produce substantial erosion (gully 
erosion), undercuts the valleys and is regarded as predictor of 
landslides, (h) The land cover map show the five classes, namely 
barren land, snow cover, water bodies, vegetation, and built-up area 
in the study area.

Table 4. Calculation of the AHP-weighted information contents of the landslides-affecting factors.



Figure 6. Geographical representation of Are Under Curve 
(AUC) map of the study area.

Discussion
During this study, a total of 46 landslides, occurring from 2015 to 

2023, were identified and systematically cataloged in the landslide 
inventory [34]. These incidents happened in just 70% of the research 
region. It is also the area where the vast majority of people in the 
region live. The relationship between the distribution of landslides 
over susceptibility categories and the pattern of susceptibility 
categories in the research region. The validation process has been 
complicated by the presence of landslides data throughout many 
regions of the research area. Slope instability and susceptible 
mapping analysis are integral parts of risk management to lower the 
level of landslides. Understanding landslide cycles and subsequent 
attempts to create susceptibility mapping offers critical information on 
scene advancement and reducing the threat posed by landslides. 
After creating a landslides inventory map, seven layers were 
evaluated lithology, curvature, slope, land cover, distance from the 
flow, fault line, and road distance. To confirm that the aims were 
feasible, the landslide susceptibility map was compared to the 
landslides inventory. The findings indicated a substantial connection 
between active landslides zones and the map's high and high 
vulnerability categories [35,36]. The researchers concluded that the 
AHP approach can provide higher accuracy when a strong ability 
accurately establishes the field parameters. Validation approaches 
often demarcate susceptibility maps to landslides, assuming that 
future landslides occur in the same areas as past ones.

Remote sensing and Geographic Information Systems (GIS) are 
used to create an inventory of landslides, investigate their spatial 
pattern, and map landslides susceptibility in this research. An 
inventory of landslides is generated determined by visual 
interpretation of Google Earth's data, which is then confirmed in the 
field [37]. When the landslides inventory was compared to the 
landslide’s causative variables, it was revealed that the roads and 
slope angle are the most important factors governing the spatial 
distribution of landslides in the region. A fault line and joint lithology 
also drive the geographical distribution of landslides. Landslides are 
also an issue in the region's infertile area and drained agricultural 
land. As they approach near roadways and rivers, landslides become 
more powerful. Interested institutions can use the produced 
susceptibility map to plan and manage landslides risk responses [38].

Conclusion
The Shigar area in Northern Pakistan was studied to identify 

potential landslide hazard zones. In the current research the effect of 
various factors was quantified based on AHP analysis. These factors 
include slope, aspect, lithology, and distance to fault, distance to road, 
and distance to stream, plan curvature, and land use. Slope has been 
regarded as the highest weightage factor (0.29) and the more 
triggering factor for landslide occurrences followed by lithology and 
distance to stream. In contrast, land cover is the least contributing 
factor. According to the results of landslides susceptibility analysis, 64 
percent of the Shigar district falls within the low LSI category, follows 
by moderate susceptible at 28%, and elegance at 8%. These guides 
can be considered a base guide for landslides' hazard assessment to 
prevent or decrease future risks effects and further develop choice 
before any advancement in this district requiring comprehensive 
analysis. Results obtained are valuable for clarifying the molding 
factors for setting off landslides, in this manner, supporting the 
endeavors to relieve future risks in the examination region.

Credit Authorship Contribution Statement
Surih Sibaghatullah Jagirani: Writing–review and editing, writing 

original draft, visualization, validation, software, methodology, formal 
analysis, data curation, conceptualization. Zohaib Akbar: Review and 
editing, visualization, Irshad Ali Zardari: Validation, formal analysis, 
data curation. Nazir Ahmed Bazai: Review and editing, data curation 
and supervision. Liu Weming: Supervision, software, resources, 
conceptualization. 

Declaration of Competing Interest
The authors declare that they have no conflict of interest.

Page 8 of 9

Jagirani SS, et al. J Civil Environ Eng, Volume 15:3, 2025

Acknowledgments
This stud was financially supported by the National Nature Science 

Foundation of China (Grant No. 42071017), and the Alliance of 
International Science Organizations Scholarship for Young Talents 
(ANSO) to Sibaghatullah Jagirani is an awardee for the ANSO 
Scholarship 2021-PhD. We wish to express our sincere gratitude to 
Associate Professor Dr. Zhadyrassyn Nurbekova for her invaluable 
guidance and support throughout this research. Our deepest thanks 
also go to Professor Dr. Muhmmad Hassan Agheem of the Centre for 
Pure and Applied Geology, for providing access to the sedimentology 
lab facilities necessary for the study. 



1. Abbas, Zaheer, Shujaul Mulk Khan, Jan Alam, and Thomas Peer, et al.
“Vegetation dynamics along altitudinal gradients in the Shigar Valley (Central 
Karakorum) Pakistan: Zonation, physiognomy, ecosystem services and
environmental impacts.” Pak J Bot 53 (2021): 1865-1874.

2. Abdul Rahamana S, S Aruchamy, and R Jegankumar. “Geospatial approach
on landslide hazard zonation mapping using multicriteria decision analysis:
A study on Coonoor and Ooty, part of Kallar watershed, The Nilgiris, Tamil
Nadu.” Int Arch Photogramm Remote Sens Spat Inf Sci  40 (2014): 1417-
1422.

3. Ahmed, Muhammad Farooq. “A regional study of landslide hazards and
related features in the Upper Indus River Basin, Northern Pakistan.” Missouri 
University of Science and Technology, (2013).

4. Ahmed, Zubair. “Disaster risks and disaster management policies and
practices in Pakistan: A critical analysis of Disaster Management Act 2010 of 
Pakistan.” Int J Disaster Risk Reduct 4 (2013): 15-20.

5. Al-shabeeb, Abdel Rahman Rakad. “A modified analytical hierarchy process 
method to select sites for groundwater recharge in Jordan.” PhD diss.,
University of Leicester, (2015).

6. Baig, Sher Sultan, Garee Khan, and Masroor Alam. “Geological hazards
along the CPEC route from Gilgit to Khunjerab.” Essays and Perspectives on 
the China-Pakistan Economic Corridor and Beyond (2023): 212. 

7. Berhane, Gebremedhin, Abadi Gebrehiwot, and Asmelash Abay. “Landslide 
susceptibility mapping in the Adwa Volcanic Mountain Plugs, Northern
Ethiopia: a comparative analysis of frequency ratio and analytical hierarchy
process methods.” Geomat Nat Hazards Risk 14 (2023): 2281244.

8. Brenning, A. “Spatial prediction models for landslide hazards: Review,
comparison and evaluation.” Nat Hazards Earth Syst Sci 5 (2005): 853-862.

9. Calligaris, Chiara, Shahina Tariq, Hawas Khan, and Giorgio Poretti.
“Landslide susceptibility analysis in Arandu area Shigar valley, CKNP (Gilgit-
Baltistan-Pakistan).” In Workshop on World Landslide Forum, pp. 909-916.
Cham: Springer International Publishing, (2017).

10. Ghorbanzadeh, Omid, Khalil Didehban, Hamid Rasouli, and Khalil Valizadeh 
Kamran, et al. “An application of Sentinel-1, Sentinel-2, and GNSS data for
landslide susceptibility mapping.” ISPRS Int J Geo-Inf  9 (2020): 561.

11. Gros, Stéphane. “The focus: Road horizons in the Himalayas.” IIAS 
Newsletters 97 (2024).

12. Guzzetti, Fausto, Alessandro Cesare Mondini, Mauro Cardinali, and Federica 
Fiorucci, et al. “Landslide inventory maps: New tools for an old problem.” 
Earth-Sci Rev 112 (2012): 42-66.

13. Hewitt, Kenneth. “Styles of rock-avalanche depositional complexes
conditioned by very rugged terrain, Karakoram Himalaya, Pakistan.” (2002).

14. Hewitt, Kenneth, John Gosse, and John J Clague. “Rock avalanches and
the pace of late quaternary development of river valleys in the Karakoram
Himalaya.” Bulletin 123 (2011): 1836-1850.

15. Hewitt, Kenneth. “Catastrophic landslides and their effects on the Upper 
Indus streams, Karakoram Himalaya, Northern Pakistan.” Geomorphol 26
(1998): 47-80.

16. Hong, Yang, Robert Adler, and George Huffman. “Use of satellite remote
sensing data in the mapping of global landslide susceptibility.” Nat Hazards 
43 (2007): 245-256.

17. Hussain, Mian Luqman, Muhammad Shafique, Alam Sher Bacha, and Xiao-
qing Chen, et al. “Landslide inventory and susceptibility assessment using
multiple statistical approaches along the Karakoram highway, northern
Pakistan.” J Mt Sci 18 (2021): 583-598.

18. Iqbal, Muhammad Jawed, Fiaz Hussain Shah, Anwar Ul Haq Chaudhry, and
Muhammad Naseem Baig. “Impacts of Attabad Lake (Pakistan) and its future 
outlook.” Eur Sci J 10 (2014).

19. Kanwal, Shamsa, Salman Atif, and Muhammad Shafiq. “GIS based landslide 
susceptibility mapping of northern areas of Pakistan, a case study of Shigar
and Shyok Basins.” Geomat Nat Hazards Risk 8 (2017): 348-366.

20. Liu, Xiaokang, Shuai Shao, and Shengjun Shao. “Landslide susceptibility
prediction and mapping in Loess Plateau based on different machine learning 
algorithms by hybrid factors screening: Case study of Xunyi County, Shaanxi 
Province, China.” Adv Space Res 74 (2024): 192-210.

21. Marjanovic, Milos, Milos Kovacevic, Branislav Bajat, and Vit Vozenilek.
“Landslide susceptibility assessment using SVM machine learning algorithm.” 
Eng Geol 123 (2011): 225-234.

22. Nguyen, Huong Thi Thanh, Trung Minh Doan, Erkki Tomppo, and Ronald E
McRoberts. “Land Use/land cover mapping using multitemporal Sentinel-2
imagery and four classification methods—A case study from Dak Nong, 
Vietnam.” Remote Sens 12 (2020): 1367.

23. Osumgborogwu, Ikenna. “Gully-landslide interactions: An ecogeomorphic
investigation.” PhD diss., Durham University, (2021).

24. Pantelidis, Lysandros. “Rock slope stability assessment through rock mass
classification systems.” Int J Rock Mech Min Sci 46 (2009): 315-325.

25. Alcántara, Irasema, and Andrew S. Goudie, eds. “Geomorphological hazards 
and disaster prevention.” Cambridge University Press, (2010).

26. Plank, Simon, André Twele, and Sandro Martinis. “Landslide mapping in
vegetated areas using change detection based on optical and polarimetric
SAR data.” Remote Sens 8 (2016): 307.

27. Puente-Sotomayor, Fernando, Ahmed Mustafa, and Jacques Teller. “Landslide 
susceptibility mapping of urban areas: Logistic regression and sensitivity
analysis applied to Quito, Ecuador.” Geoenvironmental Disasters 8 (2021):
19.

28. Rehman, Mohib Ur, Yi Zhang, Xingmin Meng, and Xiaojun Su, et al. “Analysis 
of landslide movements using interferometric synthetic aperture radar: A case 
study in Hunza-Nagar Valley, Pakistan.” Remote Sens 12 (2020): 2054.

29. Roccati, Anna, Guido Paliaga, Fabio Luino, and Francesco Faccini, et al.
“GIS-based landslide susceptibility mapping for land use planning and risk
assessment.” Land 10 (2021): 162.

30. Saaty, Thomas L. “Decision making with the analytic hierarchy process.” Int J 
Serv Sci 1 (2002): 215-229.

31. Sahin, Emrehan Kutlug. “Comparative analysis of gradient boosting
algorithms for landslide susceptibility mapping.” Geocarto Int 37 (2022):
2441-2465.

32. San B Taner. “An evaluation of SVM using polygon-based random sampling
in landslide susceptibility mapping: The Candir catchment area (Western
Antalya, Turkey).” Int J Appl Earth Obs Geoinf 26 (2014): 399-412.

33. Shafeeque, Muhammad, Yi Luo, Arfan Arshad, and Sher Muhammad, et al.
“Assessment of climate change impacts on glacio-hydrological processes
and their variations within critical zone.” Nat Hazards 115 (2023): 2721-2748. 

34. Shah, Nisar Ali, Muhammad Shafique, Muhammad Ishfaq, and Kamil Faisal, 
et al. “Integrated approach for landslide risk assessment using geoinformation 
tools and field data in Hindukush mountain ranges, Northern Pakistan.” 
Sustainability 15 (2023): 3102.

35. Voogd, Jan Hendrik. “Multicriteria evaluation for urban and regional planning.” 
(1982).

36. Xu, Chong, Xiwei Xu, Fuchu Dai, and Zhide Wu, et al. “Application of an
incomplete landslide inventory, logistic regression model and its validation
for landslide susceptibility mapping related to the May 12, 2008 Wenchuan
earthquake of China.” Nat Hazards 68 (2013): 883-900.

37. Yalcin, Ali, and Fikri Bulut. “Landslide susceptibility mapping using GIS and
digital photogrammetric techniques: A case study from Ardesen (NE-Turkey).” 
Nat Hazards 41 (2007): 201-226.

38. Zêzere, J. L., S. Pereira, Raquel Melo, and S. C. Oliveira, et al. “Mapping 
landslide susceptibility using data-driven methods.” Sci Total Environ 589
(2017): 250-267.

References

Jagirani SS, et al. J Civil Environ Eng, Volume 15:3, 2025

How to cite this article: Jagirani, Surih Sibaghatullah, Irshad Ali Zardari, Zohaib 
Akbar and Liu Weiming, et al. "Landslides Susceptibility Analysis Using 
Analytic Hierarchy Process Method: A Case Study of Shigar Valley, Gilgit 
Baltistan, Pakistan." J Civil Environ Eng 15 (2025): 601.

Page 9 of 9

https://pakbs.org/pjbot/paper_details.php?id=9727
https://pakbs.org/pjbot/paper_details.php?id=9727
https://pakbs.org/pjbot/paper_details.php?id=9727
https://isprs-archives.copernicus.org/articles/XL-8/1417/2014/
https://isprs-archives.copernicus.org/articles/XL-8/1417/2014/
https://isprs-archives.copernicus.org/articles/XL-8/1417/2014/
https://isprs-archives.copernicus.org/articles/XL-8/1417/2014/
https://scholarsmine.mst.edu/doctoral_dissertations/2109/
https://scholarsmine.mst.edu/doctoral_dissertations/2109/
https://www.sciencedirect.com/science/article/abs/pii/S2212420913000186
https://www.sciencedirect.com/science/article/abs/pii/S2212420913000186
https://www.sciencedirect.com/science/article/abs/pii/S2212420913000186
https://figshare.le.ac.uk/articles/thesis/A_modified_analytical_hierarchy_process_method_to_select_sites_for_groundwater_recharge_in_Jordan/10157534/1
https://figshare.le.ac.uk/articles/thesis/A_modified_analytical_hierarchy_process_method_to_select_sites_for_groundwater_recharge_in_Jordan/10157534/1
https://www.tandfonline.com/doi/full/10.1080/19475705.2023.2281244
https://www.tandfonline.com/doi/full/10.1080/19475705.2023.2281244
https://www.tandfonline.com/doi/full/10.1080/19475705.2023.2281244
https://www.tandfonline.com/doi/full/10.1080/19475705.2023.2281244
https://nhess.copernicus.org/articles/5/853/2005/
https://nhess.copernicus.org/articles/5/853/2005/
https://link.springer.com/chapter/10.1007/978-3-319-53498-5_103
https://link.springer.com/chapter/10.1007/978-3-319-53498-5_103
https://www.mdpi.com/2220-9964/9/10/561
https://www.mdpi.com/2220-9964/9/10/561
https://cnrs.hal.science/hal-04837871/
https://www.sciencedirect.com/science/article/pii/S0012825212000128
https://pubs.geoscienceworld.org/gsa/books/edited-volume/795/chapter-abstract/3913686/Styles-of-rock-avalanche-depositional-complexes?redirectedFrom=fulltext
https://pubs.geoscienceworld.org/gsa/books/edited-volume/795/chapter-abstract/3913686/Styles-of-rock-avalanche-depositional-complexes?redirectedFrom=fulltext
https://pubs.geoscienceworld.org/gsa/gsabulletin/article-abstract/123/9-10/1836/125703/Rock-avalanches-and-the-pace-of-late-Quaternary
https://pubs.geoscienceworld.org/gsa/gsabulletin/article-abstract/123/9-10/1836/125703/Rock-avalanches-and-the-pace-of-late-Quaternary
https://pubs.geoscienceworld.org/gsa/gsabulletin/article-abstract/123/9-10/1836/125703/Rock-avalanches-and-the-pace-of-late-Quaternary
https://www.sciencedirect.com/science/article/abs/pii/S0169555X98000518
https://www.sciencedirect.com/science/article/abs/pii/S0169555X98000518
https://link.springer.com/article/10.1007/s11069-006-9104-z
https://link.springer.com/article/10.1007/s11069-006-9104-z
https://link.springer.com/article/10.1007/s11629-020-6145-9
https://link.springer.com/article/10.1007/s11629-020-6145-9
https://link.springer.com/article/10.1007/s11629-020-6145-9
https://core.ac.uk/reader/328024190
https://core.ac.uk/reader/328024190
https://www.tandfonline.com/doi/full/10.1080/19475705.2016.1220023
https://www.tandfonline.com/doi/full/10.1080/19475705.2016.1220023
https://www.tandfonline.com/doi/full/10.1080/19475705.2016.1220023
https://www.sciencedirect.com/science/article/abs/pii/S0273117724003247
https://www.sciencedirect.com/science/article/abs/pii/S0273117724003247
https://www.sciencedirect.com/science/article/abs/pii/S0273117724003247
https://www.sciencedirect.com/science/article/abs/pii/S0273117724003247
https://www.sciencedirect.com/science/article/abs/pii/S0013795211002195
https://www.mdpi.com/2072-4292/12/9/1367
https://www.mdpi.com/2072-4292/12/9/1367
https://www.mdpi.com/2072-4292/12/9/1367
https://etheses.dur.ac.uk/14030/
https://etheses.dur.ac.uk/14030/
https://www.sciencedirect.com/science/article/abs/pii/S1365160908001135
https://www.sciencedirect.com/science/article/abs/pii/S1365160908001135
https://www.mdpi.com/2072-4292/8/4/307
https://www.mdpi.com/2072-4292/8/4/307
https://www.mdpi.com/2072-4292/8/4/307
https://link.springer.com/article/10.1186/s40677-021-00184-0
https://link.springer.com/article/10.1186/s40677-021-00184-0
https://link.springer.com/article/10.1186/s40677-021-00184-0
https://www.mdpi.com/2072-4292/12/12/2054
https://www.mdpi.com/2072-4292/12/12/2054
https://www.mdpi.com/2072-4292/12/12/2054
https://www.mdpi.com/2073-445X/10/2/162
https://www.mdpi.com/2073-445X/10/2/162
https://www.inderscienceonline.com/doi/abs/10.1504/IJSSCI.2008.017590
https://www.tandfonline.com/doi/abs/10.1080/10106049.2020.1831623
https://www.tandfonline.com/doi/abs/10.1080/10106049.2020.1831623
https://www.sciencedirect.com/science/article/abs/pii/S0303243413001098
https://www.sciencedirect.com/science/article/abs/pii/S0303243413001098
https://www.sciencedirect.com/science/article/abs/pii/S0303243413001098
https://link.springer.com/article/10.1007/s11069-022-05661-9
https://link.springer.com/article/10.1007/s11069-022-05661-9
https://www.mdpi.com/2071-1050/15/4/3102
https://www.mdpi.com/2071-1050/15/4/3102
https://pure.tue.nl/ws/portalfiles/portal/3744610/102252.pdf
https://link.springer.com/article/10.1007/s11069-013-0661-7
https://link.springer.com/article/10.1007/s11069-013-0661-7
https://link.springer.com/article/10.1007/s11069-013-0661-7
https://link.springer.com/article/10.1007/s11069-013-0661-7
https://link.springer.com/article/10.1007/s11069-006-9030-0
https://link.springer.com/article/10.1007/s11069-006-9030-0
https://www.sciencedirect.com/science/article/abs/pii/S0048969717304291?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0048969717304291?via%3Dihub

	Contents
	Landslides Susceptibility Analysis Using Analytic Hierarchy Process Method: A Case Study of Shigar Valley, Gilgit Baltistan, Pakistan
	Abstract
	Introduction
	Study area

	Materials and Methods
	Landslide inventory map
	Field investigations
	Spatial distribution maps of the causative factors
	Methods

	Results
	Accuracy assessment of the results

	Discussion
	Conclusion
	Credit Authorship Contribution Statement
	Declaration of Competing Interest
	Acknowledgments
	References




