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Abstract

Landslides and rock avalanches greatly influence livelihood, ecosystem, and are considered to be a vulnerable form of natural disaster.
Northern regions of Pakistan, comprising of rugged mountains are home to a number of disasters including landslides. This study describes the
susceptibility of landslide processes in the Shigar district of Gilgit Baltistan, which is considered to be a hotspot of natural hazards, and uses
the Analytical Hierarchy Process (AHP) technique to develop a methodology for evaluating and modeling landslide data. Field findings and
results of this study identified that the occurrence of these events is impacted by a range of natural and anthropogenic factors, such as
earthquakes, which shake and disturb the strength of formations, and continuous heavy rainfall, which increase the susceptibility of soil to
erode and damage the connectivity between rocks and boulders. The effects of various landslide-triggering factors (geology, slope, aspect, land
cover, road network, fault line, and river) are evaluated. Landslides are identified during the field investigation, confirmed by Shigar's local
people and compared to the inventory map of landslides. Based on the landslide susceptibility analysis results, 64 percent of the area falls into
the low LSI class, followed by the moderate susceptibility class at 28 percent and the high susceptibility category at 8%. The susceptibility map
for landslides is used to forecast the spatial probability and can be used to design preventative actions for landslides in the Shigar district.
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mitigation [4]. Landslides continue to be one of the most damaging

Introduction

Pakistan, a developing country vulnerable to natural disasters such
as earthquakes, landslides, floods, and avalanches, presents
considerable challenges in disaster management [1,2]. The 2010 Atta
Abad landslide provides as a harsh reminder of the disastrous
repercussions, killing 19 people, displacing over 6,000 others, and
forming a 14-kilometer lake that drowned important infrastructure,
including sections of the Karakoram Highway [3]. Despite the
prevalence of such incidents, the region lacks comprehensive terrain
landslide susceptibility maps, which are critical for risk assessment and

geohazards worldwide, and sophisticated countries have created
susceptibility maps [5], using conventional approaches like the
Analytical Hierarchy Process (AHP) and newer machine learning
techniques like Support Vector Machines (SVMs), [6]. This study
examines these limitations by creating high-resolution landslide
susceptibility maps for the Shigar valley, a location with steep slopes,
harsh terrain, and vulnerability to triggers such as seismic activity and
excessive rainfall [7]. By combining traditional AHP methodologies
with sophisticated machine learning models such as SVM, the study
compares the performance of different methods to determine the most
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dependable framework for local applications [8]. Furthermore, this
study uses a detailed investigation of causative factors such as slope
morphology, valley-fill sediments, and moraine complexes to increase
forecast accuracy [9]. The importance of valley-fill sediments and
barrier breaches is highlighted, providing new insights into their
effects on slope instability and landslide behavior [10,11]. By filling a
major gap in landslide susceptibility mapping in Pakistan, this study
not only improves local disaster resilience but also helps to a better
knowledge of landslide dynamics, particularly in resource-
constrained, high-risk areas [12].

Study area

The study area situated along the bank of the Shigar river and a
spectacular area of the Karakoram region [13]. The entire area is
8,500 square kilometers with a total population of 109,000 people
(Figure 1). The importance of landslide hazards mitigation came after
the huge landslide event in the Karakoram region, which took place in
2010 and was named Attabad landslide [14-16].
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Figure 1. Location map of the present research: (a) Pakistan, (b)
Gilgit-Baltistan, (c) Study area.

Geological features play a critical role in landslide management,
significantly influencing slope stability. Understanding the geological
characteristics of an area is essential for assessing landslide risk and
implementing effective mitigation strategies [17]. Geotechnical
features of geological formations and their link to landslide events are
based on geotechnical characteristics, structural joints and
discontinuities, hydrogeological behavior, and indirect control of soil
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depth, with vegetation concealing erosion processes [18]. Table 1
lists the specifics of each Lithological Training Unit. Landslides are
becoming more common as geological and tectonic formations
(MKT), come closer spatially [19].

Materials and Methods

Landslide inventory map

A landslide inventory map illustrates the position and distribution
of landslides that have previously happened in different time and
space [20]. As a first step in creating a landslide inventory map, the
locations and distribution of previous landslides within the study area
were marked (Figure 2).

75°0'0"E 76°30'0"E

Legend
B Londsiides

CZ3 study Area

Kilometors -
10 20

Figure 2. The landslide inventory map of the study area is
presented, with (A1) depicting a large rock. Additionally, (B1) shows a
photograph taken during the field visit to the study area.

Field investigations

Field studies were conducted through on-site visits,
measurements, and observations to gather comprehensive data on
landslides. The collected data were later used to validate the
outcomes of spatial analysis performed on the inventory map. This
validation ensured the map accurately represented the landscape's
vulnerability to landslides by assessing its accuracy, reliability, and
associated thematic layers. Detailed investigations were carried out
at strategically selected sites within the mass-wasting areas,
supported by extensive photographic documentation. These efforts
utilized 1:200,000 scale geological maps, advanced high-resolution
cameras, and a handheld Magellan GPS to precisely capture the
surficial and internal sedimentary features of these geological events.

Spatial distribution maps of the causative factors

For assessing the landslide hazard and its evolution in the study
area, the following data sets are used to process and acquire the
required information for mapping the spatial distribution of various
chosen landslide-influencing factors and interpreting the geospatial
results (Table 1). For the Digital Elevation Model (DEM), used from
the https:/fearthexplorer.usgs.gov/ are utilized to create spatial
distribution maps for various factors in the study area, including slope,
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aspect, elevation, lithology, land use and land cover, distance to roads,
and distance to faults. DEM is utilized in landslide susceptibility and
hazard assessment studies due to its ability to provide detailed
information about the elevation of the Earth’s surface.

Additionally, DEM facilitates the derivation of various topographic
indexes such as slope angle and various slope aspects, aiding the
assessment of assessing terrain susceptibility to landslides [21].
Furthermore, by integrating DEM with other thematic layers such as
land use, lithology, and distance to infrastructure, enables the
identification of landslide-prone areas through spatial analysis and informs

decision-making processes related to land use planning and risk
mitigation. Overall, DEM serves as a foundational dataset that provides
valuable insights into terrain characteristics, contributing significantly to
the comprehensive assessment of landslide susceptibility and risk. This
enabled us to assess the impact of landslides in each of these thematic
categories. To estimate the number of pixels with a resolution of 30 x
30 meters, all the thematic layers have been converted into rasters, and
each raster has been reclassified into different groups. The
methodology to prepare each thematic layer from Landsat images and
DEM are given in the (Table 1).

Data Source Description Website/data portal
Satellite image Sentinel 2 Download https://earthexplorer.usgs.gov/
Sentinel 1 Download https://www.usgs.gov/
Topographical data DEM Used to derive other thematic data layers https://search.asf.alaska.edu/
such as aspect and slope
Elevation Derived from DEM Sentinel-1 DEM
Slope Derived from DEM Sentinel-1 DEM
Aspect Derived from DEM Sentinel-1 DEM
Land cover Derived from sentinel 2 Sentinel 2 imagery

Distance to fault

Digitized from geological map of Pakistan Geological map of Pakistan (Searle and

Khan 1996)

Distance to road

Extracted from Khan S, et al. (2014) Soil survey of Pakistan

Distance to river/stream

Extracted from Khan S, et al. (2014) Soil survey of Pakistan

Landslides inventory Google Earth

Landslide events within the study area mapped https://earthobservatory.nasa.gov/
using Google Earth imagery and verified through
field survey

Table 1. Sources of data used for the study.

All layers are combined using factor weights and sub-factors
computed using the method to generate the map of landslides
susceptibility. All thematic layers have been integrated into the
geospatial environment in ArcGIS 10.5 using a mix of Weighted
Linear Combination (WLC) method and processed using AHP. The
Euclidian distance in ArcGIS10.5 spatial analysis tools were used to
identify and create the thematic layers of distance to faults and roads.
The five most common land cover classes [22], identified in the study
area using a Sentinel-2 satellite pictures from 2020 are as follows
such as forests, agricultural land, urban areas, water bodies, and
barren land. The land use map was created using the probability of
supervised categorization technique in ArcGIS 10.5 software. Of
satellite data to extract topographical data such as slope level, slope
appearance, and elevation, a sentinal-1 12.5 m digital elevation
model from the https://asf.alaska.edu/datasets/daac/sentinel-1, was
utilized [23]. The Area Under the Curve (AUC) method is a statistical
tool for assessing the performance of landslide susceptibility models
by calculating the area beneath the Receiver Operating
Characteristic (ROC) curve [24]. This technique assesses the model's
capacity to differentiate between landslide-prone and non-landslide-
prone locations, with higher AUC values indicating more model accuracy
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and predictive capability [25]. The Pair Comparison Matrix (PCM)
method assesses and ranks factors influencing landslide risk using a
qualitative approach [26,27]. PCM involves systematically comparing
pairs of factors, such as slope angle, soil type, vegetation cover, and
hydrological conditions, to assess their relative importance. The
process starts by identifying relevant factors, followed by pairwise
comparisons to determine the influence of each factor on landslide
susceptibility [28].

Methods

Analytical Hierarchy Process (AHP) in landslides susceptibility
analyses: Once the component inclinations were validated, the values
of each Pair Comparison Matrix (PCM) column are added together.
The mean factor qualities were determined as the average of the
qualities in each column in each row by dividing the values in each
matrix cell by the total of the same factor column. Here average
values to the advantage of each line, these average values were used
as upward values of each factor's weight [29]. As indicated in the
center column (y) of the table the demand for each component is
determined based on the weight estimations obtained (Table 2).
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Comparison Slope Lithology Distance to Plan curvature Distance toroad Distance to fault Aspect Land cover
stream
Slope 1 1 3 4 5 5 7 9
Lithology 1 1 3 3 3 3 4 5
Distance to stream  1/3 13 1 3 4 5 5 5
Plan curvature e 13 13 1 3 4 5 5
Distance to road 1/5 13 1/4 13 1 3 3 5
Distance to fault /5 13 15 % 13 1 3 3
Aspect 7 Y 15 1/5 13 13 1 3
Land cover 1/9 15 1/5 15 1/5 13 13 1

Table 2. Matrix showing the couple comparison of the factors influencing landslide.

Finally, a Consistency Ratio (CR) for the comparison matrix in
pairs has been produced by comparing the consistency Index (CI) with

the average Random Consistency Index (RI) to check the degree of
consistency of relative weights, as shown in (Table 3).

N 1 2 3 4 5

RI 0 0 0.52 0.89 1

125 135 14 1.45 149

Table 3. Random consistency index.

The random consistency index is RI, and the consistency index is
Cl, both of which are expressed as Eq (2). The following formula is
used to calculate the Consistency Ratio (CR):

CI
CR=—

Rl ()

When A is the maximum value of the matrix;

n=Number of parameters participating.

As indicated in Table 4, Saaty had been using a randomly
generated reciprocal matrix featuring scales of 1/9, 1/8, 1, 8, 9 to
estimate a random consistency index (RI) [30].

(Amax —7)
(n-1) 2

CI =

Landslides Susceptibility Index (LSIl): The final Landslides
Susceptibility Index (LSI) map was generated using the following
formula after the reference score was normalized and weights have
been calculated [31-33]:

LSI =3 W,w,

) 3)
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The weights for each of the landslides conditioning variables are Wj;,
and the classification classes for each layer are W,. Natural breakages
were utilized to create class intervals on a map of landslides
susceptibility, and the LSI map was divided into three categories (low,
moderate, high). Where W; is the parameter j's weight value;

wi=nominal value or class | weight in parameter j;
n=the number of parameters.

AHP-weighted information: The four primary variables influence
the majority of the landslides (i.e., geological factors, land and
landforms, hydrological factors, and anthropogenic factors). As a
layer of GIS categorization function such as lithology, distance from
faults, land cover, slope, aspect, plan curvature, distance from
streams, and distance from roads. The inconsistency is allowed if the
CR (Consistency Ratio) value is below or equivalent to 0.1, whereas
the AHP model was automatically refused if the CR value was more
than 0.1. The weighted linear summation model was adopted to
employ acquired weights. The weights have also been utilized to
create a model of landslides susceptibility.

Validation of results: The validation of susceptibility to landslides
in our work was done with two different input data sets: A map of
susceptibility to previously produced landslides and data from land
landslides occurrences in the study region, which had never been
used in vulnerability analysis before. In order to evaluate the results,
the Area Under Curve (AUC) tool is employed which is a graphical
representation of binary operating classes (True Positive Rate (TPR)
and False Positive Rate (FPR)) which determines the accuracy of
project. The TPR represents truly predicted events while FPR
indicates falsely taken events.
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Results

It is also significant to find out and evaluate the relevant causative
elements and create a geospatial database to accurately estimate the
regions prone to landslides. Consequently, this study chose slope
angle, geology, land cover, slope aspect, distance to roads, distance
to faults, curvature, and distance to river as evaluation components.
Each component splits into subclasses, and both factors and
subclasses were chosen based on a thorough examination of the
literature, enlarged field observations. All layers are initially accessible
in vector or raster formats before being changed to a raster layout with
a spatial resolution of 30 meters. Topographical variables are the
most critical geomorphological elements that affect slope stability. For
the current research, the slope map is created using the DEM with 30
m resolution and further classified into five classes i.e., >45 degree,
45-30 degree, <30 degree, greater than 45-degree class has a
substantial impact on slope instability and is more susceptible to
mass movement, whereas the slope angle with less than 30 degrees
is regarded as a low susceptible region for mass movement, as shown
in (Figure 3a).

The slope aspect reveals the potential consequences of prevailing
winds on various weather conditions and solar radiation incidents.
Based on infiltration capacity, which is governed by slope angle, soil
characteristics (conductivity and porosity), and plant cover, the soil
becomes saturated faster based on the factors that, depending on local
demands, receive higher quantities or severe precipitation. The slope
aspect was classified into nine groups i.e., flat, north, north-west, east,
southeast, southwest, west, north-west, and north (Figure 3b). The
curvature expresses the topographic shape in such a way that the
positive curvature represents the surface where the pixels are convex,
and the negative ones denote the surface at which the pixels are
concave. Curvature is a form of slope, defined as the curvature of a
flow line formed by the intersection of the Earth's surface with a vertical
plane (Figure 3c). Landslides are more probable when the value is
negative, and vice versa. The zero value shows the surface with no
slope and is straight or flat in the plan curvature map. Distance to road
also plays a vital role in landslide susceptibility mapping, as the road
construction comprises extensive excavations, vegetation removal and
steep slopes. Landslides are triggered by the existence of a road owing
to changes in slope stress and stability caused by undercutting,
changes in hydrological conditions, and drainage. To investigate its
impact in this study, the distance to roads map is classified into six
buffer zones with an interval of 500-meter (Figure 3d). The closeness
to road increases the susceptibility of region to landslides, whereas,
moving away from the roads has a less impact on the mass movement
events.
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Figure 3. (a) The slope angle with less than 30 degree is regarded
as low susceptible region for mass movement, (b) The slope aspect
was classified into ten groups, like flat, north, north-west, east,
southeast, southwest, west, north-west, and north, (c) The curvature
of a flow line formed by the intersection of the Earth's surface with a
vertical plane, (d) Distance to vector layer and distances to roads
proximity owing to the high susceptible region while, move away from
the distance to road has a less impact on the mass movement events
in the study area.

Landslides are common in areas of geological fault because
underlying rock resistance worsens due to tectonic rupture activities
(Figure 4g). The fault buffers are categorized into five groups using a
geological map as a base map to produce a fault map with an interval
of 500 m distance using the Euclidean distance tool (Figure 4e).The
closeness of streams can produce substantial erosion (gully erosion),
undercuts the valleys and is regarded as predictor of landslides. The
distance to stream map of this research was created using the Arc
Hydro tools in the GIS environment which is further classified into six
buffer classes as shown in (Figure 4f). Increased distance between
streams reduces the risk of landslides, while going close to stream
networks the possibility of landslide increases. Landcover map was
prepared in the current research by using the Landsat-8 images with
the help of maximum likelihood classification. The landcover map
was further classified into five classes, namely Barren land, snow
cover, water bodies, vegetation, and built-up (Figure 4h and Table 4).
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Factor Class Class weight Factor weight Mmax Cc Cr
Slope (°) 0-5 0.03 0.29 5.469 0.1173 0.0754
5-15 0.05
15-30 0.14
30-45 0.45
40-60 0.17
>60 0.16
Aspect Flat 0.02 0.02 9.4239 0.0563 0.0365
North 0.4
Northeast 0.03
East 0.05
Southeast 0.09
South 0.15
Southwest 0.23
West 0.23
Northwest 0.15
Plan Curvature -129.92 --100.14 0.4200 0.05 6.2636 0.0527 0.0425
-100.13 - -50.93 0.3000
-50.92 - -25.81 0.0500
-25.80 --0.28 0.0300
-0.27-3.40 0.0800
3.41-135.68 0.12
Lithology A/B (Gl) 0.38 0.21 5.469 0.1173 0.0754
C-D (Pm, Dg, K2 g, KB) 0.27
C (C, NKt, SKm, Tr, Y) 0.16
D (Ec, Ca, Gm, Hg, 0.1
MGg)
E (Cv, Cg, Bg, HPU) 0.06
F(Q 0.03
Land cover Barren land 0.48 0.087 4.0862 0.0029 0.0319
Snow cover 0.14
Water bodies 0.07
Built-up area 0.05
Vegetation cover 0.25
Distance to road (m) 0-500 0.38 0.05 6.1187 0.0237 0.0192
500-1000 0.25
1000-1500 0.16
1500-2000 0.1
2000-2500 0.06
>2500 0.04
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Distance to drainage (m)  0-500 0.38 0.2 6.1187 0.02 0.1915
500-1000 0.25
1000-1500 0.16
1500-2000 0.1
2000-5000 0.06
>5000 0.04
Distance to fault (m) 0-500 0.35 0.15 41801 0.06 0.0667
500-1000 0.24
1000-1500 0.2
1500-2000 0.14
2000-2500 0.1
>2500 0.06

Table 4. Calculation of the AHP-weighted information contents of the landslides-affecting factors.

Figure 4. The fault buffers were categorized into five groups using
a (e and g) geological map as a base map to produce a fault map, (f)
The closeness of streams can produce substantial erosion (gully
erosion), undercuts the valleys and is regarded as predictor of
landslides, (h) The land cover map show the five classes, namely
barren land, snow cover, water bodies, vegetation, and built-up area
in the study area.

The LSI map is categorized into three classes: Low, moderate, and
high susceptibility regions (Figure 5). According to the conclusions,
8% of the region is classified as having low Landslide Susceptibility
Index (LSI), 28% is classified as moderate susceptibility, and 64%
falls into the high susceptibility category.

TSoE TES0E finaad TeasTE roTE firiad EHTE iad

e ]

B A I Low Susceptisity
[ tmcium Susceptibiity

o 510 20 30 4 I Hon Suscestisiny
O — — L

rovE I HTE TRTE TRSTE more wisTe XTE e

Figure 5. Show the landslide events overlaid over the Landslide
Susceptibility Index (LSI) distribution map. .

Accuracy assessment of the results

The AUC is generated by comparing TPR and FPR, taking FPR on
x-axis while TPR on y-axis. This is done by identifying landslide
locations in the field followed by taking GPS points. Total 65 points
were taken in the field for validation purposes, showing different
types of landslides. These points are taken as True Positive Rate
(TPR) and compared with False Positive Rate (FPR) developed by
AHP tool in ArcGIS software. Graphical representation of AUC
explains the accuracy of mapping the area under the curve results
yielded a value of 0.794. Since this value is significantly higher than
the threshold of 0.5, it indicates that the model accurately predicts
landslide susceptibility (Figure 6).
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Figure 6. Geographical representation of Are Under Curve
(AUC) map of the study area.

Discussion

During this study, a total of 46 landslides, occurring from 2015 to
2023, were identified and systematically cataloged in the landslide
inventory [34]. These incidents happened in just 70% of the research
region. It is also the area where the vast majority of people in the
region live. The relationship between the distribution of landslides
over susceptibility categories and the pattern of susceptibility
categories in the research region. The validation process has been
complicated by the presence of landslides data throughout many
regions of the research area. Slope instability and susceptible
mapping analysis are integral parts of risk management to lower the
level of landslides. Understanding landslide cycles and subsequent
attempts to create susceptibility mapping offers critical information on
scene advancement and reducing the threat posed by landslides.
After creating a landslides inventory map, seven layers were
evaluated lithology, curvature, slope, land cover, distance from the
flow, fault line, and road distance. To confirm that the aims were
feasible, the landslide susceptibility map was compared to the
landslides inventory. The findings indicated a substantial connection
between active landslides zones and the map's high and high
vulnerability categories [35,36]. The researchers concluded that the
AHP approach can provide higher accuracy when a strong ability
accurately establishes the field parameters. Validation approaches
often demarcate susceptibility maps to landslides, assuming that
future landslides occur in the same areas as past ones.

Remote sensing and Geographic Information Systems (GIS) are
used to create an inventory of landslides, investigate their spatial
pattern, and map landslides susceptibility in this research. An
inventory of landslides is generated determined by visual
interpretation of Google Earth's data, which is then confirmed in the
field [37]. When the landslides inventory was compared to the
landslide’s causative variables, it was revealed that the roads and
slope angle are the most important factors governing the spatial
distribution of landslides in the region. A fault line and joint lithology
also drive the geographical distribution of landslides. Landslides are
also an issue in the region's infertile area and drained agricultural
land. As they approach near roadways and rivers, landslides become
more powerful. Interested institutions can use the produced
susceptibility map to plan and manage landslides risk responses [38].
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Conclusion

The Shigar area in Northern Pakistan was studied to identify
potential landslide hazard zones. In the current research the effect of
various factors was quantified based on AHP analysis. These factors
include slope, aspect, lithology, and distance to fault, distance to road,
and distance to stream, plan curvature, and land use. Slope has been
regarded as the highest weightage factor (0.29) and the more
triggering factor for landslide occurrences followed by lithology and
distance to stream. In contrast, land cover is the least contributing
factor. According to the results of landslides susceptibility analysis, 64
percent of the Shigar district falls within the low LSI category, follows
by moderate susceptible at 28%, and elegance at 8%. These guides
can be considered a base guide for landslides' hazard assessment to
prevent or decrease future risks effects and further develop choice
before any advancement in this district requiring comprehensive
analysis. Results obtained are valuable for clarifying the molding
factors for setting off landslides, in this manner, supporting the
endeavors to relieve future risks in the examination region.
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