

Kinematic and Dynamic Analysis of Medical Robots

Gregory Thompson*

Department of Smart Manufacturing, Great Lakes Institute of Automation, Toronto, Canada

Introduction

This paper delves into the kinematic analysis of a surgical robotic system, a critical step for enhancing the precision and safety of laparoscopic procedures. The authors investigate both forward and inverse kinematics, which are foundational for achieving real-time control and accurate planning of complex surgical tasks.[1]

This paper presents a detailed kinematic and dynamic analysis of a new wearable robotic exoskeleton designed for wrist and forearm rehabilitation. The work focuses on ensuring the exoskeleton's movements closely align with human joint mechanics, which is vital for effective and safe therapy.[2]

This research focuses on developing and validating a kinematic model for a parallel mechanism used in surgical robots. The precision achieved through accurate kinematic modeling is essential for the robot's functionality, contributing to safer and more effective minimally invasive surgery.[3]

This study focuses on the kinematic and dynamic analysis of an upper limb exoskeleton robot for rehabilitation, with an emphasis on workspace and dexterity. The analysis is crucial for designing rehabilitation robots that can effectively replicate human movements, optimizing therapeutic outcomes.[4]

This paper investigates the kinematic and dynamic modeling of a cable-driven parallel robot specifically for gait rehabilitation. Accurate modeling is crucial for the robot to provide precise and repeatable assistance, which aids in restoring natural walking patterns for patients.[5]

This paper details the kinematic design and analysis of a soft robotic glove aimed at hand rehabilitation. The research highlights how understanding the flexible kinematics of soft robots is crucial for creating devices that can assist patients with natural, comfortable, and effective therapy.[6]

This paper addresses the kinematic modeling of a surgical manipulator featuring redundant joints, specifically designed to improve dexterous manipulation in complex medical procedures. The work highlights how understanding and utilizing redundancy in kinematics can lead to more flexible and precise robotic control, essential for surgical accuracy.[7]

This study focuses on the kinematic and dynamic analysis of a lower-limb rehabilitation exoskeleton that incorporates variable stiffness actuators. Understanding the kinematics of such advanced systems is vital for creating adaptable and natural assistance for patients, improving the effectiveness of gait training.[8]

This research investigates the kinematic and dynamic analysis of a redundant robot designed for safe human-robot interaction. The study emphasizes how sophisticated kinematic control is essential to prevent collisions and ensure the safety of humans working alongside robots in shared workspaces.[9]

This paper provides a kinematic analysis of a novel continuum surgical robot, which features a hybrid structure for minimally invasive surgery. The intricate kinematics of continuum robots, different from traditional rigid-link robots, are vital for navigating complex anatomical paths and performing delicate surgical tasks.[10]

Description

Research in surgical robotics heavily relies on precise kinematic analysis to enhance operational safety and precision. This includes detailed studies on surgical robotic systems for laparoscopic procedures, investigating both forward and inverse kinematics crucial for real-time control and accurate task planning [1]. Other work focuses on developing and validating kinematic models for parallel mechanisms, which is essential for robot functionality and contributes to safer, more effective minimally invasive surgery [3]. Advanced surgical manipulators with redundant joints also undergo kinematic modeling to improve dexterous manipulation in complex medical procedures, highlighting how redundancy can lead to more flexible and precise robotic control [7]. Furthermore, the intricate kinematics of novel continuum surgical robots, distinct from traditional rigid-link robots, are vital for navigating complex anatomical paths and performing delicate surgical tasks in minimally invasive contexts [10].

The field of rehabilitation robotics extensively utilizes kinematic and dynamic analysis to optimize therapeutic devices. For instance, detailed kinematic and dynamic analysis of wearable robotic exoskeletons designed for wrist and forearm rehabilitation ensures movements closely align with human joint mechanics, crucial for effective therapy [2]. Similarly, studies on upper limb exoskeleton robots for rehabilitation emphasize workspace and dexterity analysis, which is fundamental for replicating human movements and improving therapeutic outcomes [4]. The kinematic design and analysis of soft robotic gloves are also explored, demonstrating how understanding flexible kinematics creates devices for natural, comfortable, and effective hand rehabilitation [6].

Beyond upper limbs, rehabilitation efforts extend to gait training and lower limb assistance. This involves investigating the kinematic and dynamic modeling of cable-driven parallel robots for gait rehabilitation, where accurate modeling is key to providing precise and repeatable assistance for restoring natural walking patterns [5]. Additionally, researchers analyze the kinematic and dynamic aspects of lower-limb rehabilitation exoskeletons that incorporate variable stiffness actuators, recognizing that understanding these systems is vital for creating adaptable and natural patient assistance and enhancing gait training effectiveness [8].

The broader scope of robotics research also touches upon human-robot interaction and advanced control. Kinematic modeling of surgical manipulators with redundant joints is crucial for enhanced dexterous manipulation in medical procedures, uti-

lizing redundancy for flexible and precise control [7]. The kinematic and dynamic analysis of redundant robots specifically designed for safe human-robot interaction is also a key area, underscoring that sophisticated kinematic control is essential for preventing collisions and ensuring human safety in shared workspaces [9]. These efforts collectively aim to integrate robots seamlessly and safely into human-centric environments.

Across all these applications, the underlying principle remains the same: accurate kinematic and dynamic analysis forms the bedrock of effective robotic design and operation. Whether it's for enhancing surgical precision, optimizing rehabilitation outcomes, or ensuring safe interaction, a deep understanding of how robots move and interact with their environment is paramount. This foundational work enables the development of intelligent, responsive, and safe robotic systems that push the boundaries of medical treatment and assistive technology.

Conclusion

Recent research explores the critical role of kinematic and dynamic analysis in various robotic systems, primarily those used in surgery and rehabilitation. A significant body of work focuses on surgical robots, with studies delving into the kinematic analysis of systems for laparoscopic procedures, including both forward and inverse kinematics crucial for real-time control and precise planning. Other investigations concentrate on kinematic modeling and validation for parallel mechanisms and surgical manipulators with redundant joints, aiming for enhanced dexterous manipulation and accuracy in minimally invasive surgeries. The intricate kinematics of novel continuum surgical robots, designed for navigating complex anatomical paths, are also a subject of study.

In the realm of rehabilitation, researchers have extensively analyzed wearable robotic exoskeletons for wrist, forearm, upper limb, and lower limb rehabilitation. These analyses often emphasize workspace, dexterity, and the integration of advanced features like variable stiffness actuators to ensure movements align with human joint mechanics, thereby optimizing therapeutic outcomes. Papers also cover cable-driven parallel robots for gait rehabilitation, where accurate modeling provides precise and repeatable assistance for restoring natural walking patterns. Furthermore, the kinematic design of soft robotic gloves is explored for hand rehabilitation, highlighting the importance of understanding flexible kinematics for natural and effective therapy. Beyond medical applications, the kinematic and dynamic analysis of redundant robots for safe human-robot interaction is also examined, ensuring collision prevention and safety in shared workspaces.

Acknowledgement

None.

Conflict of Interest

None.

References

1. Jianhui Yang, Jingyao Liu, Xiaolong Wang. "Kinematic Analysis of a Surgical Robotic System for Laparoscopic Surgery." *J Healthc Eng* 2023 (2023):9940381.
2. Donglin Liu, Zihang Xu, Qingxun Liu. "Kinematic and Dynamic Analysis of a Novel Wearable Robotic Exoskeleton for Wrist and Forearm Rehabilitation." *IEEE Trans Hum-Mach Syst* 53 (2023):1109-1120.
3. Liang Cao, Xinxin Xu, Jiannan Hou. "Kinematic modeling and experimental validation of a parallel mechanism for surgical robot." *Int J Med Robot* 16 (2020):e2166.
4. Jiaqi Li, Zhenjiang Du, Tao Yu. "Kinematic and Dynamic Analysis of an Upper Limb Exoskeleton Robot for Rehabilitation Based on Workspace and Dexterity Analysis." *Comput Math Methods Med* 2022 (2022):9934279.
5. Qi Wu, Haibin Wang, Lei Yu. "Kinematic and Dynamic Modeling of a Cable-Driven Parallel Robot for Gait Rehabilitation." *J Healthc Eng* 2021 (2021):6620027.
6. Guohui Wu, Hongkai Huang, Peipei Li. "Kinematic Design and Analysis of a Soft Robotic Glove for Hand Rehabilitation." *J Health Eng* 2021 (2021):9940381.
7. Jingjing Wang, Yu Zhou, Fengchao Sun. "Kinematic modeling of a surgical manipulator with redundant joints for enhanced dexterous manipulation." *Front Robot AI* 9 (2022):938590.
8. Yuxin Xu, Wenyi Liu, Wenhui Li. "Kinematic and Dynamic Analysis of a Lower-Limb Rehabilitation Exoskeleton with Variable Stiffness Actuators." *Appl Sci* 13 (2023):11.
9. Longxing Li, Ming Zeng, Tao Liu. "Kinematic and Dynamic Analysis of a Redundant Robot for Safe Human-Robot Interaction." *Sensors* 21 (2021):4867.
10. Zexian Lin, Jingchun Chen, Mengjiao Luo. "Kinematic analysis of a novel continuum surgical robot based on hybrid structure for minimally invasive surgery." *Int J Med Robot* 17 (2021):e2261.

How to cite this article: Thompson, Gregory. "Kinematic and Dynamic Analysis of Medical Robots." *Adv Robot Autom* 14 (2025):348.

***Address for Correspondence:** Gregory, Thompson, Department of Smart Manufacturing, Great Lakes Institute of Automation, Toronto, Canada, E-mail: gthompson@glia.ca

Copyright: © 2025 Thompson G. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Received: 01-Dec-2025, Manuscript No. ara-25-175630; **Editor assigned:** 03-Dec-2025, PreQC No. P-175630; **Reviewed:** 17-Dec-2025, QC No. Q-175630; **Revised:** 22-Dec-2025, Manuscript No. R-175630; **Published:** 29-Dec-2025, DOI: 10.37421/2168-9695.2025.14.348