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Abstract
An interruption of the iron metabolism with chelators can lead to a significant inhibition of cancer cell growth. 

1-(N-acetyl-6-aminohexyl)-3-hydroxy-2-methylpyridin-4-one or CM1, is a novel synthetic bidentate iron chelator which 
was successfully synthesized by our group. We have studied the characteristics and iron-chelating activity of this 
compound. Nevertheless, the anti-cancer activity of the chelator is largely unknown. In this study, we demonstrated the 
cytotoxicity and apoptogenic activity of CM1 against human leukemic cell lines-HL-60 and U937. 3-(4,5-Dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed for the cytotoxicity study. The results showed that
CM1 inhibited the cell growth and metabolic activity of the leukemic cells. Flow cytometric analysis clearly demonstrated
the dose and time-response of CM1-induced apoptosis in these two cells. CM1 arrested the cell populations in the sub
G1 phase after 24 hours of exposure. The cancer cells induced by the compound significantly decreased mitochondria
membrane potential (∆ψm), and increased the activation of caspase-2,-3,-8 and caspase-9 activities. Possibly, CM1
would interact with nonheme iron-containing enzymes, such as ribonucleotide reductase and depleting intracellular
iron essential for fast dividing cancer cells, leading to cell apoptosis. The CM1 may act as a reducing agent and help
to maintain the CM1-Fe2+ complex which can generate radicals.
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Introduction
Iron is essential to the cell viability of normal and cancer cells [1]. 

It is important in DNA synthesis because it modulates ribonucleotide 
reductase activity [2,3]. Iron is also crucial for normal mitochondrial 
electron transport and oxidative phosphorylation [4]. Many data from 
several sources suggest that iron depletion may be a useful target in 
the treatment of cancer, particularly those of a hematopoietic origin 
[5-7]. In cell cycle studies, iron chelator-treated cells are arrested in 
different phases of the cell cycle depending upon the cell type and 
the concentration and time of the exposure to chelators [8-10]. In 
addition, many reports have demonstrated that iron chelators induce 
apoptosis in several types of proliferating cells [11-13]. Therefore, it 
has been proposed that iron chelators are promising anti-proliferative 
agents in the treatment of human cancers. We have synthesized and 
characterized the chemical structure of a new bidentate iron chelator, 
1-(N-acetyl-6-aminohexyl)-3-hydroxy-2-methylpyridin-4-one (CM1), 
which is a 3-hydroxypyridin-4-one (HPO) derivative [14]. Previously, 
we reported that CM1 was able to chelate plasma non-transferrin 
bound iron (NTBI) in iron-loaded mice effectively, and was non-toxic 
to normal peripheral blood mononuclear cells (PBMC) and hepatocytes 
[15]. Nevertheless, the biological activity of CM1 is largely unknown. 
In this study, we investigated the cytotoxicity and apoptogenic activity 
of the CM1.

Materials and Methods
Cell cultures 

HL-60 cells (human promyelocytic leukemic cell line) and 
U937 cells (human leukemic monocyte lymphoma cell line) were 
maintained in RPMI 1640 medium (GibcoTM, Life Technologies, USA) 
supplemented with 10% heat inactivated fetal bovine serum (GibcoTM, 

Life Technologies, USA), and were incubated at 37°C in the humidified 
atmosphere of incubator containing 5% CO2. 

Iron chelator treatment 

The CM1 was prepared in the stock solution as 60 mM in 
phosphate buffer saline (PBS), and filtered through 0.2 µm membrane 
(cellulose type). Cells were treated with tested compounds in selected 
concentrations (0-600 µM) at 37°C for the indicated time. 

Cytotoxicity and cell growth inhibition study

Cytotoxicity was measured using 3-(4,5-dimethylthiazol-2-yl)-2, 
5-diphenyltetrazolium bromide, MTT (InvitrogenTM, Life Technologies, 
USA) assay [16]. The product was solubilized with dimetylsulfoxide
(DMSO) into a colored solution, and the absorbance was measured at
540 nm with a microplate reader (SynergyTM H4, BioTek, Singapore).
Cell-growth inhibition studies were done by trypan blue exclusion
assay [17].

Determination of cell cycle distribution and cell apoptosis 
induction 

Cell cycle distribution studies were performed with propidium 
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iodide (PI) staining (InvitrogenTM, Life Technologies, USA) staining 
[18,19]. Apoptotic cells were detected with fluorescent probes, 
ApopNexin™ FITC Apoptosis Detection kit (Millipore, Canada) [20], 
and both assays were analyzed using a flow cytometer (FACSCanto II, 
B.D Bioscience, USA).

Assessment of mitochondria membrane potential 

Mitochondrial membrane potentials (∆ψm) were measured by 
staining the cells with DiOC6 (3) (3,3’-dihexyloxacarbocyanine iodide) 
[21]. Briefly, 5×105 treated cells were incubated for 20 minutes at 37 °C in 
500 μl of 100 nM DiOC6(3), and this step was immediately followed by 
analysis on a flow cytometer, with excitation and emission wavelengths 
of 488 nm and 525 nm, respectively. 

Caspase activity assay

Treated cells (5×106 cells) were lysed in 50 µl of chilled cell lysis 
buffer and kept on ice for 10 minutes. Cell lysates were centrifuged 
for 1 minute at 10,000×g to collect the cytosolic extract. Assay protein 
concentration was measured by Bradford’s method [22]. The cytosol 
extract was diluted to a concentration of 50-200 µg protein per 50 µl cell 
lysis buffer (1-4 mg/ml). The reaction buffer was added to each sample, 
as well as the substrates that were contained in the caspase colorimetric 
sampler kit (Norvex®, Life Technologies, USA), and they were then 
incubated at 37°C for 2 hours, before absorbance was measured at 405 
nm using a microplate reader.

Statistical analysis

The results were expressed as mean + SEM. Statistical significance 
was determined using a one-way analysis of variance (ANOVA), in 
which p<0.05 was considered significant.

Results
Cytotoxicity study of CM1 in human leukemic HL-60 and 
U937 cell lines 

We found that the higher concentrations of CM1 significantly 
decreased viability of HL-60 and U937 cells (Figure 1). The IC50 of 
CM1 in HL-60 and U937 cells after a 24-hour period was 300 and 

330 µM, respectively. In addition, we determined cell numbers using 
trypan blue exclusion assay, and the results showed that the numbers 
of treated cells significantly decreased in a dose and time-dependent 
manner (Figure 2). 

Effect of CM1 on cell cycle distribution and apoptosis 
induction

Apparently, the accumulation of both cells in the sub G1 phase 
was increased by the iron chelator treatment (Figure 3). Basically, the 
accumulation of cells in the sub G1 phase indicates DNA fragmentation, 
which is a common marker of apoptosis. In order to investigate the type 
of cell death induced by CM1, phosphatidylserine (PS) externalization 
were then investigated for their involvement in CM1-induced human 
leukemic cells apoptosis. After 24 or 48 hours of treatment, Anexin 
V/FITC and PI staining were performed and analyzed using a flow 
cytometer. Results in Figure 4 showed that CM1 markedly induced cell 
apoptosis in HL-60 cells for up to 65 ± 3 % of the apoptotic cells, after 
they were treated with CM1 (600 µM) for 24 hours. Treatment with 
300 µM CM1 achieved partial induction of cell apoptosis over 24-hour 
period, but increased the apoptotic cells significantly after 48 hours of 
treatment. Additionally, the treated U937 cells showed a slight increase 
in the percentages of the apoptotic cells, and were found respond in 
a dose and time-dependent manner. Therefore, the experimental 
results in the study suggested that CM1 treatment could arrest cell 
cycle and induce apoptosis in human leukemic HL-60 and U937 cells. 
SubG1 peak indicates DNA fragmentation and late apoptosis event. 
Anexin V/FITC staining indicates apoptotic cell population expressing 
phosphatidylserine (PS) exposure. We expected that CM1 treatment 
would cause cell death by apoptosis, or/and necrosis, giving high subG1 
peak that was not related to the Anexin V positive cells (apoptotic cells).

Dose-response of CM1 on mitochondria membrane potentials 
(∆ψm) alteration

Mitochondrial membrane potential (ψ∆m) indicates mitochondrial 
function and energy production. Decrease in ∆m can give rise to 
release of cytochrome c, which is one of the apoptosis markers. Early 
event in apoptosis appears to be the reduction of ∆ψm. To further 
understand this, the treated cells were investigated for ∆ψm alteration 
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Figure 1: Cytotoxicity test of CM1 treatment on HL-60 and U937 cells for 24 and 48 hours. Data were expressed as mean  ±  SEM. *p<0.05 when compared to non- 
treatment.
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with DiOC6 (3) staining. Loss of DiOC6 (3) uptake indicated a decrease 
of ∆ψm value that was observed in response to apoptotic proceeding. 
Flow cytometric analysis showed that the percentage of decreasing 
DiOC6 (3)-accumulated cells was elevated in both leukemic after 24 
hours of CM1 exposure (Figure 5). ψ∆m values of the HL-60 and U937 
cells were decreased in concentration-dependent manner. Significant 
decrease in ψ∆m of the HL-60 and U937 cells was maximal (29.10 + 
0.06 and 29.23 + 0.03 %, respectively), when the cells were treated with 
600 µM CM1. It is possible that the cells may not be induced apoptotic 
death via mitochondria-independent (extrinsic) pathway, resulting 
in less efficiency of ψ∆m. This experiment could suggest that CM1 
significantly decrease ∆ψm, which is an important marker for apoptotic 
processes. 

Activation of caspase activity in human leukemic cells

Cell apoptosis can be marked by phosphatidylserine (PS) exposure, 

increase of caspase enzyme activity, DNA fragmentation, apoptotic 
protein expression and mitochondrial membrane damage. Following 
24 hours of treatment of the cells with the different concentrations 
of CM1, activities of caspase-2,-3-8 and caspase-9 were found to be 
elevated in 300 µM and 600 µM compared to those of non-treated cells 
(Figure 6). Treatment with 300 µΜ CM1 tended to increase activity 
of the caspase enzymes (1.3, 1.3, 1.17 and 1.2 fold for caspase-2, 3, 8 
and 9, respectively) of HL-60 cells when compared to non-treatment. 
Similarly, the treatment tended to increase activity of the caspase 
enzymes (1.9, 2.3 and 1.14 fold for caspase-2, 3 and 8, respectively) of 
U937 cells. Therefore, 300 µM CM1 could induce apoptosis in these 
two cells. Under the same treatment, dramatically decreased viability of 
the cells may come from both cell apoptosis and cell necrosis.

Discussion and Conclusions
Iron plays an important role at the active site of ribonucleotide 
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Figure 2: Numbers of HL-60 and U937 cells after being treated with CM1 (0-600 μM) for 24 and 48 hours. Data were expressed as mean ± SEM. *p<0.05 when 
compared to non-treatment. Regarding to U937 cells treated with CM1 at 150 µM for 48 hours, the cell viability was decreased around 40% (p<0.05), while numbers of 
the cells were decreased around 22% (∆1.6×105 cells/ml). Possibly, U937 cells would be more resistant to 150 µM CM1 treatment even incubation for 48 hours. Most 
of the cells treated with higher CM1 concentrations (300 and 600 µM) died at 24 hours, and the remaining cells were not able to divide as usual.
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reductase in DNA replication [23-26], and can affect expression of the 
molecules involved in cell cycle control [27-31]. Cellular iron depletion 
is a potent way to inhibit cell proliferation [32-34]. Iron chelators showed 
inhibitory effect on the proliferation of hematopoietic malignant cells, 
resulting in induction of cancer cells apoptosis [35-37]. For instance, 

tachpyridine, desferrioxamine (DFO) and dipyridyl can activate a 
caspase cascade pathway. Induction of apoptosis by tachpyridine 
is characterized by an early activation of caspase-9, followed by the 
sequential activation of caspase-3, caspase-8, and the mitochondrial 
pathway makes an important contribution to iron chelator-mediated 
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cell death [38]. Our preliminary results demonstrated that CM1 was 
effective in removal of plasma NTBI in iron-loaded mice, and found 
to be less toxic to normal peripheral blood mononuclear cells (PBMC) 
and cultured hepatocytes. In examining cytotoxicity and apoptogenic 
activity of the CM1, we evaluated its effect on the proliferation of 
human leukemic HL-60 and U937 cells using MTT and trypan blue 
exclusion assays. Promising iron chelators such as DFO, deferiprone 
(DFP) and deferasirox (DFX) exhibit anti-proliferative effect on HL-
60 and U937 cells [40-43]. We found that CM1 seemed to be less 
effective in inhibiting the division of HL-60 and U937 cells than CM1 
at equivalent doses. Nonetheless, CM1 is more lipophilic (Kpart=0.53) 
and less toxic (LD50>5.0 g/kg) than DFP (Kpart=0.17; LD50=1.2 g/
kg), the compound would be used more efficiently in vivo, as results 
of more cell-penetrating capacity and safety. The anti-leukemic 
mechanism is supposed to be iron deprivation-induced apoptosis 
[43,44], and activation of caspase activity during apoptosis [38,45]. 
Other iron chelators also show such anti-leukemic activity [46-48]. 
Here, we have showed that CM1 strongly inhibited cell viability and 
decreased numbers of leukemic cells that responded in dose- and time-
dependent manners. Flow cytometric analysis elucidated that CM1 
significantly increased the accumulation of cell populations in the sub 
G1 phase. Probably, CM1 would be an inducer of apoptosis at high 
concentrations over 24 hours of exposure in HL-60, while apoptosis 
of U937 cells was partially induced by CM1 as well. In consistent, CM1 
significantly decreased mitochondria membrane potential with high 
concentrations (>300 µM) in both leukemic cells. It might suggest 
that CM1-induced apoptosis mediated the mitochondrial pathway. 
Most importantly, CM1 strongly enhanced activities of all the studied 
caspase enzymes of HL-60 cells with a high concentration. Apparently, 
caspase-2 and caspase-3 were activated in U937 cells with the medium 
and high concentrations of CM1. 

It can be concluded that CM1 could have anti-proliferative and 
apoptogenic activities in human leukemic cells. Nonetheless, other 
biological activities of the CM1 should be further investigated.
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