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Introduction and Motivation
Most data sets include different types of variables. For instance in 

clustered or longitudinal designs, multiple variables are often measured 
or observed for each individual or at each occasion. This work is 
concerned with the evaluation of the framework proposed by Demirtas 
et al. [1] for simultaneously simulating binary and possibly nonnormal 
continuous data given the marginal characteristics of each variable as 
well as the linear association structure among variables in the system. 
The mechanism is built upon a combination of a few random variate 
generation routines that involve simulation of correlated binary 
data, multivariate normal data, a mix of binary and normal data, and 
multivariate nonnormal continuous data. Multivariate normal data 
generation is well-studied; and correlated binary data generation 
routine we utilize is predicated on computing tetrachoric correlations 
via solving a series of double integration equations assuming underlying 
normality before dichotomization at thresholds that correspond to 
the specified marginal proportions [2]. A computational routine for 
joint generation of a binary and normal data, proposed by Demirtas 
and Doganay [3], constitutes an intermediate stage before augmenting 
the continuous part so nonnormal data can be accommodated; and 
is driven by the relationship among phi coefficient, point-biserial 
and tetrachoric (biserial) correlations. Nonnormality is handled 
by an extension of Fleishman’s [4] power polynomials procedure of 
expressing any given variable by the sum of linear combinations of 
powers of a standard univariate normal variate to the multivariate 
case by finding intermediate correlations that reflect the correlation 
structure of multivariate normal data whose components yield the 
nonnormal data through the coefficients of powers of normal variates 
[4-6]. Once such data are simulated, variables in the subsequent 
analyses can be treated as predictors or outcomes.

The method assumes that all variables before any transformation 
jointly follow a multivariate normal density. Some components are 
designed to be dichotomized to obtain binary variables, and some 
components form a basis for generating continuous data with the 
intended distributional features. In this random number generation 
(RNG) system, the proportion parameters for binary data, symmetry 
and elongation parameters for continuous data (as measured by the 
third and fourth moments) and a linear association structure among 
all variables need to be specified.

The following relationships among correlations should be 
established: 1) for the binary-binary pairs, correlations before and 
after dichotomization (former is computed, latter is specified); 2) 
for the continuous-continuous pairs, correlations before and after 
power polynomial transformation (former is specified, latter is 
computed); 3) for the binary-continuous pairs, correlations before 
and after dichotomizing one of the variables (former is computed, 
latter is specified). Unknown quantities are tetrachoric correlations, 
intermediate correlations and biserial correlations for Items 1, 2 and 
3 above, respectively. The first one is computed through integration, 
the second one is involved with fairly rudimentary algebra, and the 
third one comes from a simple formula from the dichotomization 
literature. Once these operations are performed, one can form an 
overall correlation matrix for a multivariate normal distribution that 
would lead to the specified correlations after dichotomizing some of the 
variables via thresholds that are determined by marginal proportions 
for the binary part; and after applying the power transformation 
procedure for the continuous part. More detailed prescription is given 
in algorithm section. As long as some conditions outlined in algorithm 
hold, this method is capable of generating data that follow the specified 
linear association structure for all variables, means of the binary 
variables, and skewness and kurtosis behavior for continuous variables.

The organization of the rest of the article is as follows.  In Getting 
Ready: Fundamentals, I provide background information on how to 
generate multivariate normal data, multivariate binary data through 
dichotomization of an underlying bivariate normal distribution whose 
correlation is computed by solving a numerical integration problem. 
Repeating this process for each possible pair gives us the overall 
correlation matrix. The dichotomized versions are obtained by the 
specified marginal proportions. I also discuss how the magnitude of 
the correlation changes when only one variable is dichotomized for 
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Abstract
The use of joint models that are capable of handling different data types is becoming increasingly popular in 

biomedical practice. Evaluation of various statistical techniques that have been developed for mixed data in simulated 
environments requires concurrent generation of multiple variables. In this article, I comprehensively evaluate the unified 
framework proposed by Demirtas et al. for simultaneously generating binary and nonnormal continuous data given the 
marginal characteristics and correlation structure. I conduct this assessment in three simulated settings with synthetic 
bivariate and multivariate data as well as real depression score data from psychiatric research. Considering close 
agreement between the specified and empirically computed quantities on average, as measured by some key bias- and 
precision-related quantities, the methodology appears to have prospects to address the need of generating intensive 
data that have binary and continuous parts for simulation purposes.
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bivariate data. In addition, the technique of power polynomials for 
generating multivariate continuous data is delineated in detail. In 
Algorithm, I outline the methodology proposed by Demirtas et al. 
[1] to generate mixed data. In Simulations, I present three simulation 
studies that encompass a broad range of distributional setups for 
bivariate and multivariate cases for evaluating the performance of 
this RNG technique by commonly accepted accuracy and precision 
measures. Two of these simulated scenarios use synthetic data, and 
one is devised around a real depression score data from psychiatric 
research. Discussion includes discussion, concluding remarks and 
future directions. 

Getting Ready: Fundamentals
In this section, I give key characteristics of multivariate 

normal (MVN) and multivariate binary (MVB) data generation, 
dichotomization as well as univariate and multivariate Fleishman 
polynomials.

MVN data generation

Suppose Z ∼ Nd(μ,Σ), where μ is the mean vector, and Σ is 
symmetric, positive semidefinite, d×d variance-covariance matrix. 
A random draw from a MVN distribution can be obtained using the 
Cholesky decomposition of Σ and a vector of univariate normal draws. 
The Cholesky decomposition of Σ produces a lower-triangular matrix 
A for which AAT=Σ. If z=(z1, ...,zd) are d independent standard normal 
random variables, then Z=μ+Az is a random draw from the MVN 
distribution with mean vector μ and covariance matrix Σ.

MVB data generation

Although several multivariate binary data simulation routines 
appeared in the literature [7], the one that fits into our framework was 
proposed by Emrich and Piedmonte [2] who introduced a method for 
generating correlated binary data. Let Y1,...,Yj represent binary variables 
such that E[Yj]=pj and Cor(Yj ,Yk)=δjk, where pj (j=1,...,d) and δjk 
(j=1,...,d−1; k=2,...,d) are given, and where d ≥ 2. As Emrich and Piedmonte 
[2] noted, δjk is bounded below by ( )( / ) , ( / )j k j k j k j kmax p p q q q q p p− −

and above by ( )( / ) , ( / ) ,j k j k j k j kmin p q q p q p p q where qj=1−

pj. Let Φ[x1,x2,ρ] be the cumulative distribution function for a 
standard bivariate normal random variable with correlation 

coefficient ρ. Naturally, 2 1

1 2 1 2 1 2[ ], , ( ) ,, ,
x x

x x dzz zf dzρ ρ
−∞ −∞

= ∫ ∫Φ where.
11/2 2 2 22
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   = − × − + − −  f expz z z z z z . We could 
generate multivariate normal outcomes (Z’s) whose correlation 
parameters are obtained by solving the equation

Φ[z(pj), z(pk), ρjk]=δjk(pjqjpkqk)
1/2 + pjpk 		                              (1)

for ρjk (j=1,...,d − 1; k=2,...,d) where z(p) denotes the pth quantile of the 
standard normal distribution. As long as δjk is within the feasible range, 
the solution is unique. Repeating this numerical integration process 
d(d−1)/2 times, one can obtain the overall correlation matrix (say Σ) 
for the d-variate standard normal distribution with mean 0. However, 
it should be noted that positive semidefiniteness of Σ cannot be 
guaranteed. To create dichotomous outcomes (Yj) from the generated 
normal outcomes (Zj), we set Yj=1 if Zj ≥ z(1−pj) and 0 otherwise for 
j=1,...,d. This produces a vector with the desired properties.

Fleishman polynomials

Fleishman [4] argued that real-life distributions of variables are 
typically characterized by their first four moments. He presented a 

moment-matching procedure that simulates nonnormal distributions 
often used in Monte Carlo studies. It is based on the polynomial 
transformation, Y=a+bZ+cZ2+dZ3, where Z follows a standard normal 
distribution, and Y is standardized (zero mean and unit variance). The 
distribution of Y depends on the constants a, b, c and d, whose values 
were tabulated for selected values of skewness (ν1=E[Y3]) and kurtosis 
(ν2=E[Y4]‒3) in the original paper [4]. This procedure of expressing 
any given variable by the sum of linear combinations of powers of 
a standard normal variate is capable of covering a wide area in the 
skewness-elongation plane whose bounds are given by the general 
expression 2

2 1 2.ν ν≥ −

Assuming that E[Y]=0, and E[Y2]=1, by utilizing the first 12 
moments of the standard normal distribution, the following set of 
equations can be derived after simple but tedious algebra:

a=−c 						                      (2)

b2+6bd+2c2+15d2−1=0 			                                    (3)

2c(b2+24bd+105d2+2)−ν1=0 			                     (4)

24[bd+c2(1+b2+28bd)+d2(12+48bd+141c2+225d2)]−ν2=0                   (5)

These equations can be solved by the Newton-Raphson method, 
or any other plausible root-finding or nonlinear optimization routine. 
More details for the Newton-Raphson algorithm for this particular 
setting is given by Demirtas et al. [1], and a computer implementation 
can be found in Demirtas and Hedeker[8]. Note that the parameters are 
estimated under the assumption that the mean is 0, and the standard 
deviation is 1; the resulting data set should be back-transformed to the 
original scale by multiplying every data point by the standard deviation 
and adding the observed data mean.

Fleishman’s method has been extended in several ways in the 
literature. One extension uses the fifth-order polynomials in the spirit 
of controlling for higher-order moments [9]. The other one is in regard 
to a multivariate version of the power method [5] that plays a central 
role for the remainder of this paper. The procedure for generating 
multivariate continuous data begins with computation of the constants 
given in Equations 2-5, for each variable independently. The multivariate 
case can be formulated in matrix notation as shown below. First, let Z1 
and Z2 be variables drawn from standard normal populations; let z′ 
be the vector of powers 0 through 3, z′=[1, Z, Z2, Z3]; and let w′ be the 
weight vector that contains the power function weights a, b, c and d, 
w′=[a, b, c, d]. The nonnormal variable Y is then defined as the product 
of these two vectors, Y=w′z. Let 

1 2Y Yr be the correlation between two 
nonnormal variables Y1 and Y2 that correspond to the normal variables 
Z1 and Z2, respectively. As the variables are standardized, meaning 
E(Y1)=E(Y2)=0, 

1 2Y Yr =E(Y1Y2)=E(w′1z1z′2w2)= w′1w2, where  is the 
expected matrix product of z1 and z′2:
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where 
1 2Z Z∆  is the correlation between Z1 and Z2. After algebraic 

operations, the following relationship between 
1 2Y Yr and 

1 2Z Z∆  in 
terms of polynomial coefficients ensues:

1 2 1 2 1 2 1 2

2 3
1 2 1 2 1 2 1 2 1 2 1 2( 3 3 9 ) (2 ) (6 )Y Y z z z z z zr b b b d d b d d c c d d= ∆ + + + + ∆ + ∆     (6)
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Solving this cubic equation for 
1 2Z Z∆  gives the intermediate 

correlation between the two standard normal variables that is 
required for the desired post-transformation correlation 1 2Y Yr . Clearly, 
correlations for each pair of variables should be assembled into a 
matrix of intercorrelations that will be used in multivariate normal data 
generation. For a definitive source and in-depth coverage of Fleishman 
polynomials [6].

Correlation and dichotomization

A correlation between two continuous variables is conventionally 
computed as the common Pearson correlation. A correlation between 
one continuous and one dichotomous variable is a point-biserial 
correlation, and a correlation between two dichotomous variables 
is a phi coefficient (δjk in Equation 1). The point-biserial and phi 
coefficients are special cases of the Pearson correlation. That is, if we 
apply the Pearson formula to data involving one continuous and one 
dichotomous variable, the result will be identical to that obtained using 
a formula for a point-biserial correlation. Similarly, if we apply the 
Pearson formula to data involving two dichotomous variables, the result 
will be identical to that obtained using a formula for a phi coefficient. 
The point-biserial and phi coefficients are typically used in practice for 
analyses of relationships involving variables that are true dichotomies 
[10]. For example, one could use a point-biserial correlation to assess 
the relationship between sex and cholesterol level, and one could use a 
phi coefficient to measure the relationship between sex and smoking 
status (smoker vs. nonsmoker).

Some variables that are measured as dichotomous variables are 
not true dichotomies. An example would be a situation where the 
measured variable is dichotomous (obese vs. non-obese), but the 
underlying variable is continuous (body mass index). Special types 
of correlations, specifically biserial and tetrachoric correlations, are 
used to measure relationships involving such artificial dichotomies. 
Use of these correlations is based on the assumption that underlying 
a dichotomous measure is a normally distributed continuous variable. 
For the case of one continuous and one dichotomous variable, a biserial 
correlation provides an estimate of the relationship between the 
continuous variable and the other continuous variable underlying the 
dichotomy. For the case of two dichotomous variables, the tetrachoric 
correlation (ρjk in Equation 1) describes the relationship between the 
two continuous variables underlying the measured dichotomies. 

Suppose that X and Y follow a bivariate normal distribution with 
a correlation of ρXY. If X is dichotomized to produce XD, then the 
resulting correlation between XD and Y can be designated as 

DX Yρ  
(point-biserial correlation). The effect of dichotomization on ρXY 
(biserial correlation) is given by

( )/
DX Y XY h pqρ ρ=  			                    (7)

where p and q are the proportions of the population above and 
below the point of dichotomization, respectively, and h is the ordinate of 
the normal curve at the same point. The sign of correlation in Equation 
7 should not change with dichotomization, so high and low values of 
X are assigned 1 and 0, respectively. Of note, for the purposes of this 
work, artificial versus true dichotomies or terminology differences such 
as “biserial” versus “tetrachoric” are inconsequential.

Obviously, this is all based on normality. However, the specified 
correlations among nonnormal continuous variables, along with 
marginal characteristics of nonnormal data are used to compute the 
corresponding intermediate correlations among normal variables 
that underlie the nonnormal continuous ones through Equation 6. 

The way of handling the effect of Fleishman’s [4] transformation 
on the correlations between binary-normal and binary-nonnormal 
continuous pairs is described in Algorithm. Pearson correlations for 
the normal-normal pairs, phi coefficient for the binary-binary pairs 
and point-biserial correlation for the binary-normal pairs are obtained 
within the algorithmic stages, consistent with the dichotomization 
terminology given in this subsection. After performing calculations 
given in Equations 1 and 7, one finds an overall Pearson correlation 
matrix for the underlying multivariate normal realizations before 
dichotomizing some variables in the system.

After laying the groundwork, I summarize the methodology 
proposed by Demirtas et al. [1] for generating mixed data in the next 
section. 

Algorithm
Finding the coefficients of powers of normal components of 

any continuous distribution can be performed by solving a set of 
nonlinear equations, and employing these coefficients in determining 
the intermediate correlations among those normal components are 
explained in Fleishman polynomials. MVN and MVB generation with 
underlying normal distribution are well-understood, and along with 
the mathematical connection between point biserial and tetrachoric 
correlations described in MVN data generation and MVB data 
generation, one can generate a set of binary and normal variables in 
a unified manner given marginal proportions and a set of correlations 
before conducting a transformation from normal to nonnormal 
variates. More specifically, algorithmic steps are given below. In what 
follows, B, N and C stand for set of binary, normal and nonnormal 
continuous variables, respectively.

Let X1,X2, ...,Xj be a set of binary variables with proportion 
parameters p1,p2...,pj, and let Ym represent the set of continuous 
variables with known or calculable skewness (ν1m) and kurtosis (ν2m), 
where m=1,2,...,k. The (j+k)×(j+k) correlation matrix is Σ. Without 
loss of generality, assume that variables are arranged in a certain 
order where similar types of variables are grouped together. Then, Σ 
is comprised of three components: ΣBB, ΣBC, and ΣCC, where B and C 
correspond to binary and continuous parts, respectively. In this setup, 
ΣBB is a j×j submatrix and ΣCC is a k×k submatrix of Σ that stand for the 
correlations between the binary-binary and continuous-continuous 
combinations, respectively. Similarly, ΣBC represents a j×k submatrix 
whose elements are the correlations between binary and continuous 
variables.

Required parameter values (p for binary variables, ν1 and ν2 for 
continuous variables, and the correlation matrix Σ whose partitions are 
ΣBC, ΣBB and ΣCC) are either specified or estimated from a real data set 
that is to be mimicked.

1. Check if Σ is positive semidefinite.

2. Find the upper and lower correlation bounds for the BB part 
using the information given in MVB data generation.

3. Repeat Step 2 for the BC and CC parts by the approximation 
method proposed by Demirtas and Hedeker [11].

4. Make sure all elements of Σ are within the plausible range.

5. Compute tetrachoric correlations for the BB combinations 
using Equation 1. This has to be done for each and every binary pair, 
separately.

6. Work with centered and scaled versions of the continuous 
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multivariate settings with varying underlying distributional shapes via 
marginal and associational quantities in artificial and real data-based 
scenarios.

Bivariate case

The bivariate simulations consist of one binary and five different 
continuous distributions whose densities, key shape characteristics and 
population values for skewness (ν1) and kurtosis (ν2) are given below. 

1. Uniform distribution: f(y|a,b)=(b−a)−1, a ≤ y ≤ b, where a and b 
are the lower and upper bounds of the support of y. We take (0,1) for 
(a,b). Here, the density is flat and symmetric around its mean (ν1=0 
and ν2=−1.2).

2. Laplace distribution: ,( | ) ( ),
2

| |λα λ λ α−= −exf py y where α 
and λ>0 are the location and inverse scale parameters, respectively. We 
set α=1, and λ=1. Its shape is symmetric and more peaked than normal 
(ν1=0 and ν2=3).

3. Normal mixture distribution: 
2 2

1 2
1 2 1 2

1 21 2

1 (1 ) 1( | , , , , ) ,
2 22 2

p pf p exp expµ µµ µ σ σ
σ σσ π σ π

      − − −   = − + −            

y yy
 

where 0<p<1 is the mixing parameter. We set (μ1,μ2,σ1,σ2,p) to 
(1,3,1,1,0.5) leading to a symmetric, platykurtic, bimodal density (ν1=0 
and ν2=−0.9582). 

4. Beta distribution: 1 1( )( | , ) (1 ) ,
( ) ( )

f α βα βα β
α β

− −Γ +
= −
Γ Γ

y y y 0<y<1, 

where α>0 and β>0 are the shape parameters. We take α=4 and β=2, 
which makes the shape negatively skewed and less peaked than normal 
(ν1=−0.4677 and ν2=−0.375).

5. χ2 distribution: /2 1 /2
/2

1( | ) ,
2 ( / 2)

k
kf e

k
− −=

Γ
yy k y  y≥0, where k>0 

is the degrees of freedom. k is chosen to be 32. The density is positively 
skewed and leptokurtic (ν1=0.5 and ν2=0.375).

This set of continuous distributions covers flat, unimodal and 
bimodal symmetric, right-and left-skewed shapes in terms of the third 
moments (skewness); and leptokurtic and platykurtic shapes in terms 
of the fourth moments (elongation).

2×2×2=8 combinations were employed where the binary 
proportion p, the correlation Σ12 and sample size n take the values 
(0.3,0.5), (−0.3,0.4) and (100,10000), respectively, for each of the five 
continuous distributions above. The experiment was repeated N=1000 
times for each of the 2×2×2×5=40 scenarios. Results for the large sample 
case were tabulated in Table 1 due to space limitations as the small 
sample case yielded little or indiscernible deviations. The parameters 
of interest are three marginal quantities (p,ν1,ν2) and one associational 
quantity (Σ12). The mean estimates that were obtained by averaging 
the results across N=1000 simulation replicates are reported in Table 
1, focusing on the accuracy aspects (the other two simulation studies 
that we describe in Multivariate case and Real data-driven case include 
a precision measure as well). Very close resemblance between the 
specified and empirically computed quantities on average throughout 
all scenarios strongly indicates that the procedure is working properly.

Multivariate case

Following the notation in Algorithm, there are two binary (X1 and 
X2) with respective proportions p1=0.4 and p2=0.7, and four continuous 
variables (Y1, Y2, Y3 and Y4) that follow Laplace, Normal mixture, Beta 
and χ2, respectively, in our simulated multivariate setting. The specified 

variables (the mean and standard deviation could be specified via 
a distribution or come from a real data set). Note that correlations 
remain unchanged with a linear transformation. Estimate the power 
coefficients (a,b,c,d) for each of the continuous variable by Equations 
2-5 given corresponding ν1 and ν2 values.

7. For each CC combination, using the constants in Step 6, find the 
intermediate correlation by solving Equation 6.

8. For each BC combination, suppose that two identical standard 
normal (N) variables, one is the normal component of the continuous 
variable and the other one is the underlying the binary variable 
before dichotomization. With this setup, ( ),  /Cor B N h pq= using 
Equation 7, substituting +1 for the biserial correlation (as they are 
identical before dichotomization).

9. Solve for Cor(C,N) assuming Cor(B,C)=Cor(B,N) ∗ Cor(C,N). It 
means that the linear association between B and C is assumed to be 
fully explained by their mutual association with N. In this equation, 
Cor(B,C) is specified, and Cor(B,N) is found in Step 8.

10. Compute the intermediate correlation between C and N by 
Equation 6. Notice that for standard normal variables, b=1 and a=c=d=0. 
So intermediate correlation is the ratio, Cor(C,N)/(b+3d), where b and 
d are the non-zero coefficients of the nonnormal continuous variable.

11. Construct an overall correlation matrix, Σ* using the results 
from Steps 5, 7, 8, 9 and 10.

12. Check if Σ* is positive semidefinite. If it is not, find the nearest 
positive semidefinite correlation matrix.

13. Generate multivariate normal data with a mean vector of 
(0,...,0)k+j and correlation matrix of Σ*.

14. Obtain binary variables by the thresholds determined by 
marginal proportions using quantiles of the normal distribution.

15. Obtain continuous variables by the sum of linear combinations 
of standard normal using the corresponding (a,b,c,d) coefficients.

16. Go back to the original scale for continuous variables by reverse 
centering and scaling.

There are a few operational issues that need to be addressed. First, 
two specification violations can occur if the set of parameter values is 
specified by the user. In Step 1, the correlation matrix Σ should pass the 
positive semidefiniteness check. In case of failure, the whole process 
is aborted. Steps 2 and 3 are designed to protect against correlation 
bound violations. Correlations among variables are typically not free 
to vary between −1 and 1, with bounds determined by the marginal 
distributions. The sorting method of Demirtas and Hedeker [11] can be 
employed to identify any bound violations that arise from a specification 
error. If the parameter values are estimated from a complete real data 
set, positive semidefiniteness condition for Σ must hold and unfeasible 
correlation range can never ensue. Second, Fleishman polynomials do 
not cover the entire skewness-elongation plane. Therefore, most but 
not all not (ν1,ν2) specifications are plausible. Third, even when no 
above-mentioned possible complications exist, the final correlation 
matrix, Σ*, is not guaranteed to be positive semidefinite. In such cases, 
I recommend the method of Higham [12] to proceed with the nearest 
positive semidefinite correlation matrix. Caveats aside, these days 
many software packages are capable of performing these algorithmic 
steps with relative ease from a practical standpoint.

Simulations
The performance of the method has been evaluated in bivariate and 
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correlation matrix Σ is

1.00 0.28 0.31 0.32 0.28 0.32
0.28 1.00 0.14 0.41 0.39 0.18
0.31 0.14 1.00 0.69 0.12 0.67
0.32 0.41 0.69 1.00 0.37 0.74
0.28 0.39 0.12 0.37 1.00 0.16
0.32 0.18 0.67 0.74 0.16 1.00

 
 − − − 
 − −

∑ =  − − 
 − − −
 

− − 

After applying the algorithm, the final, overall correlation 
correlation matrix Σ* of the multivariate normal distribution that plays 
a central role in obtaining subsequent dichotomization and power 
transformation to yield the data with desired properties turned out to 
be

*

1.0000000 0.4727247 0.3986457 0.4124133 0.3604596 0.4085918
0.4727247 1.0000000 -0.1871262 -0.5492216 0.5218483 -0.2388874
0.3986457 -0.1871262 1.0000000 0.7227679 -0.1235806 0.6839571
0.4124133 -0.5492216 0.7227679 1.

∑ = .
0000000 -0.3807853 0.7576686

0.3604596 0.5218483 -0.1235806 -0.3807853 1.0000000 -0.1631147
0.4085918 -0.2388874 0.6839571 0.7576686 -0.1631147 1.0000000

 
 
 
 
 
 
 
 
 

Denoting the elements of *
ij∑ where i=1,2,...,6 and j > i, Σ12 (the 

BB combination) is computed through the relationship between 
the tetrachoric correlation and phi coefficient given in Equation 1 
(Step 5 in the algorithm). The entries *

3, 4≥ ≥∑ (the CC combinations) 
are calculated by first finding the power coefficients in Step 6 and 
subsequently finding intermediate correlations via Equation 6 (Step 7). 
The entries *

3, 3< ≥∑ (the BC combinations) are computed by Steps 8-10.

The parameters of interest are the odds ratio between X1 and X2 and 
15 nonredundant correlation parameters. 1000 simulated data sets were 
generated with n=1000 rows. The true values (TV), average estimates 
(AE), raw biases (RB), percentage biases (PB) and 95% coverage rates 
(CR) across 1000 replicates are shown in Table 2. If the parameter of 

interest is ˆ ˆ, ( ) , 100 ( ( ) ) / .RB E PB Eθ θ θ θ θ θ= − = ∗ −  AE, RB and PB 
are accuracy measures, and CR is a hybrid measure of accuracy and 
precision. Subject to unbiasedness, CRs that are close to the nominal 
level (95%) suggest that the standard errors are neither too small nor 
too large; Type 1 and Type II error rates are properly controlled [13]. Of 
note, we worked with logarithm of odds ratio and Fisher transformed 
versions of correlations, since they are more likely to follow a normal 
distribution, which gives more accurate results when we construct 
confidence intervals. The results tabulated in Table 2 reveal that the 
average estimates are very similar to the specified values; raw biases are 
negligibly small and percentage biases are within 5% (overwhelming 
majority of them are less than 2% in either direction); and coverage 
rates are in the neighborhood of the ideal (expected) 95% level.

Real data-driven case

The real data-based simulation study comes from the National 
Institute of Mental Health Schizophrenia Collaborative Study [14]. 
Patients were randomly assigned to receive one of three anti-psychotic 
medications or a placebo. As mentioned by the authors, performance 
of the three drugs was quite similar; following their approach, I 
collapsed the subjects from the three drug treatments into a single 
group. The out- come of interest, severity of illness, was measured on 
an ordinal scale ranging from 1 (normal) to 7 (extremely ill), which 
I treat as continuous. Measurements were planned for weeks 0, 1, 3, 
and 6, but missing values occurred primarily due to drop-out. A few 
subjects had missing measurements and subsequently returned; for 
simplicity I have removed these. A small number of measurements 
were also taken at intermediate time points (weeks 2, 4, and 5) which 
I also ignore. The sample contains 312 patients who received a drug 
and 101 who received a placebo. For the purposes of this work, I focus 
on the complete data. There were 248 and 64 completers in the drug 
and placebo groups, respectively. Hedeker and Gibbons [14] noted 

Distribution p Σ12 ν1 ν2 p̄
12∑ 1ν 2ν

Uniform (0, 1) 0.3 -0.3 0 -1.20 0.3000 -0.3013 0.0001 -1.1930

0.3 0.4 0 -1.20 0.3000 0.4009 0.0001 -1.1971

0.5 -0.3 0 -1.20 0.5000 -0.3017 0.0000 -1.1923

0.5 0.4 0 -1.20 0.5000 0.4019 -0.0002 -1.1969
Laplace (1,1) 0.3 -0.3 0 3.0 0.3000 -0.2986 -0.0003 2.9982

0.3 0.4 0 3.0 0.3000 0.3943 0.0007 2.9991

0.5 -0.3 0 3.0 0.5000 -0.2969 -0.0006 3.0130

0.5 0.4 0 3.0 0.5000 0.3988 0.0011 2.9976
Normal mixture
(1, 3, 1, 1, 0.5)

0.3 -0.3 0 -0.9582 0.3000 -0.3015 -0.0002 -0.9581

0.3 0.4 0 -0.9582 0.3000 0.4021 -0.0003 -0.9582

0.5 -0.3 0 -0.9582 0.5000 -0.3033 0.0001 -0.9580

0.5 0.4 0 -0.9582 0.5001 0.4008 0.0000 -0.9579
Beta(4,2) 0.3 -0.3 -0.4677 -0.375 0.3000 -0.3009 -0.4673 -0.3756

0.3 0.4 -0.4677 -0.375 0.3000 0.3979 -0.4676 -0.3758

0.5 -0.3 -0.4677 -0.375 0.5000 -0.3019 -0.4681 -0.3751

0.5 0.4 -0.4677 -0.375 0.5000 0.4013 -0.4678 -0.3754

χ2 (32) 0.3 -0.3 0.5 0.375 0.3000 -0.2987 0.4996 0.3752
0.3 0.4 0.5 0.375 0.3000 0.4013 0.4998 0.3751

0.5 -0.3 0.5 0.375 0.5000 -0.3000 0.4992 0.3755
0.5 0.4 0.5 0.375 0.5000 0.3999 0.4994 0.3744

Table 1: Specified parameter values for proportion, correlation, skewness and kurtosis, and empirical estimates averaged  across  N=1000 simulation replicates for five 
continuous distributions in a bivariate setting with n=10000 data points.
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that the mean response profiles are approximately linear when plotted 
against the square root of week, and they express time on the square-
root scale in their models. Adopting this convention, I define WEEK 
to be the square root of week. The data set is in public domain and can 
be downloaded at http://tigger.uic.edu/∼hedeker/SCHIZREP.DAT.txt. 
Although the total number of subjects in this study was 437, of these 
subjects, only 312 had complete data at all time points. I only considered 
complete cases as this article is concerned with generating data that 
resemble complete data. Obviously, one can simulate incomplete data 
set by first generating full data, and then imposing missing values by 
some nonresponse mechanism [3,15,23-25].

In the data generation process, I simulated one dichotomous 
variable (DRUG) and four continuous variables (Y0,Y1,Y3,Y6) that 
correspond to the severity of illness at weeks 0, 1, 3 and 6, respectively, 
with n=312 subjects as in the original data set.

Specified true values of marginal (proportion of drug patients, 
skewness and kurtosis of Y s) and associational parameters (correlation 
matrix of five variables in the data) directly come from the data 
themselves. In addition to these descriptive measures, model-based 
quantities (regression coefficients) were also considered.

The regression model is based on well-known linear mixed-effects 
model [16]. Let 1( ,..., )

i

T
i i in=y y y denote the responses for subject i. 

The model is

yi=Xiβ + Zibi + εi, 				                  (8)

where Xi(ni×p) and Zi(ni×q) contain covariates, β contains fixed 
effects, bi ∼ N(0,ψ) contains random effects, and εi ∼ N(0, σ2Vi). Times 
of measurement are often incorporated into Xi and Zi, allowing 
the response trajectories to vary by subject. In the current context, 
i=1,2,...,312, ni=4, outcome Y denotes illness severity, Xi consists of an 
intercept, DRUG, WEEK, DRUG ∗ WEEK, Zi includes an intercept 
and WEEK (random slope model), and Vi is the identity matrix. The 
parameters of interest are the β coefficients of the terms that appear 
in the fixed effects regressor matrix. Of note, this may not be the best 
analysis model, one may build more complex models. However, as long 
as the same model is used for finding the true parameter values from 
the original complete data and for analysis after simulating data, using 
a suboptimal model does not have any impact on the plausibility of 
data-generation method which is a key theme in this work.

In total, four regression coefficients, four skewness and kurtosis 
parameters, one proportion and 10 correlation parameters were 
examined. N=1000 data sets were generated by the characteristics of the 
data; and the evaluation criteria in Multivariate case were used to assess 
how unbiased and precise the estimates are. The results are tabulated 
in Table 3. As before, discrepancies between the average estimates 
and specified values are almost nonexistent, leading to extremely 
small biases. Coverage rates are strikingly close to the nominal levels, 
demonstrating that the magnitude of variability in the system is almost 
ideal1.

Some logistical and computational details

• All computations were carried out in R [17].

• Misspecification check in Step 1 was done by is.positive.definite 
function in R package corpcor [18].

1Coverage rates for ν1 and ν2 in the real data example were not 
computed due to heavily non normal sampling distribution of these 
quantities.

• All specified correlation terms should be within the feasible range; 
this has been checked by the method of Demirtas and Hedeker [8] for 
each pair of variables (Steps 2 and 3 in the algorithm).

• Tetrachoric correlations in Step 5 were found by tetrachoric 
function in R package psych [19].

• Power transformation coefficients in Step 6 were found via the R 
function given in Demirtas and Hedeker [9].

• Although it was not needed in this particular work, working with 
the closest positive semidefinite matrix can be done by nearPD function 
in R package Matrix [20], which is an application of Higham [12].

• Multivariate normal data generation in Step 13 was conducted by 
rmvnorm function in R package mvtnorm [21].

• Implementation of linear mixed effects model in the real data 
application (Real data-driven case) was performed by lmer function in 
R package lme4 [22].

Discussion
The method is concerned with repeatedly generating synthetic data 

with specified distributional features or data that on average mimic real 

Parameter TV AE RB PB CR

1.40617 1.41273 0.00656 0.47 94.9

1 2,X X∑ 0.28 0.27989 -0.00011 -0.04 95.5

1 1,X Y∑ 0.31 0.30839 -0.00161 -0.52 96.8

1 2,X Y∑ 0.32 0.32569 0.00569 1.78 95.9

1 3,X Y∑ 0.28 0.27748 -0.00252 -0.90 95.5

1 4,X Y∑ 0.32 0.32420 0.00420 1.31 96.4

2 1,X Y∑ -0.14 -0.13793 0.00207 -1.48 95.5

2 2,X Y∑ -0.41 -0.41520 -0.00520 1.27 94.2

2 3,X Y∑ 0.39 0.40287 0.01287 3.30 92.5

2 4,X Y∑ -0.18 -0.17933 0.00067 -0.37 94.3

1 2,Y Y∑ 0.69 0.68936 -0.00064 -0.09 96.1

1 3,Y Y∑ -0.12 -0.11858 0.00142 -1.18 95.8

1 4,Y Y∑ 0.67 0.66967 -0.00033 -0.05 94.9

2 3,Y Y∑ -0.37 -0.36874 0.00126 -0.34 94.7

2 4,Y Y∑ 0.74 0.73989 -0.00011 -0.02 95.7

3 4,Y Y∑ -0.16 -0.15885 0.00115 -0.72 94.1

Table 2: Results for one odds ratio and 15 correlation parameters in a multivariate 
setting with n=1000 rows and N=1000 replications, where X1  and X2  are binary 
variables with p1=0.4 and p2=0.7; Y1, Y2, Y3 and Y4 follow Laplace (1,1), Normal 
mixture (1,3,1,1,0.5), Beta (4,2) and χ2 (32) distributions, respectively.  TV, AE, RB, 
PB and CR stand for true value, average estimate, raw bias, percentage bias and 
coverage rate, respectively.

)
1 2X ,Xlog(OR
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data with a mix of binary and continuous variables to assess validity 
and plausibility of statistical techniques. Parameters that govern the 
hypothetical process that leads to observed data are either specified by 
users or preferably estimated from a real data set. The technique relies 
on well-established multivariate data generation techniques for binary 
and normal data with added operational utility of power polynomials 
to preserve marginal characteristics of data as well as the association 
structure among the variables. There are some points that deserve 
attention.

• This method does not require specialized tools, it can be 
implemented by existing software.

• True versus artificial dichotomies and terminological complexities 
such as phi coefficient, biserial, point-biserial, tetrachoric correlations 
are unimportant and just procedural. These are different variants of 

the Pearson correlation, historically have been used to differentiate 
correlations among variables of different nature, and computational 
formula is the same for all.

• As long as initial and final correlation matrices (Σ and Σ*, 
respectively) are positive semidefinite; correlation bounds among 
variables are not violated; and symmetry-peakedness (skewness-
elongation) behavior for continuous variables is within the region 
that can be handled by power polynomials, this approach works well 
(including situations where the binary variables are highly skewed with 
major proportion of 1s or 0s). If input parameters come from a real 
complete data set, the initial positive semidefiniteness (Step 1 in the 
algorithm) and correlation boundary problems (Steps 2 and 3) can 
never be encountered. However, the final positive semidefiniteness 
condition (Step 12) may not hold for all given specifications. In this 
case, one can resort to the technique proposed by Higham [12], to work 
with the nearest positive semidefinite correlation matrix.

• The original real data in Real data-driven case have some missing 
values, but I considered complete cases for the purpose of illustration 
without regard to missing data issues which are beyond the scope of 
this manuscript. This is not a limitation, because one can simulate 
incomplete data set by first generating full data, and then imposing 
missing values by some nonresponse mechanism [3,15,23-25].

• One appealing feature of this methodology is that simulated 
variables can be treated as outcomes or predictors in subsequent 
statistical analyses as the variables are being generated jointly.

• More comprehensive simulation studies with a broader range 
of parameters could have been investigated, but I believe that these 
designs adequately accommodate salient marginal parameters such as 
proportion, skewness and kurtosis, and association parameters such as 
odds ratio, correlation and regression coefficients.

• As far as continuous part of the data is considered, the method 
can handle nonnormal features such as skewness, multimodality, 
boundary at the mode, low or high peakedness.

• This technique is currently designed to accommodate linear 
associations; modelling nonlinear associations is an important future 
direction.

• Ideas presented in this paper can be incorporated into the 
RNG algorithms that involve multivariate ordinal data, proposed 
by Demirtas [26] and Demirtas and Yavuz [27], to produce binary-
ordinal-continuous combinations.

Given its computational simplicity, generality and flexibility, the 
method is likely to be a handy addition to practitioners’ toolkit. It is 
particularly useful for studies that involve longitudinal or clustered 
designs as well as other situations where multiple binary and 
continuous variables are collected. When biomedical researchers need 
to regenerate the original data trends in simulated environments, they 
could implement this technique in their favorite platform and software 
with ease.
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