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Introduction
HIV prevention strategies to reduce the spread of HIV remain a 

global public health priority. An effective HIV vaccine, if available, 
would have several advantages over behavioral and other biological 
prevention strategies as it would not need sustained behavior changes 
as well as strict adherence for the efficacy, in addition to probably 
providing long term protection. Although inactivated and live 
attenuated vaccines are being effectively used for other viral infections, 
they are not being considered favorably in case of HIV because of safety 
concerns. Hence most of the efforts towards HIV vaccine development 
have been focused on newer strategies such as synthetic envelope 
protein subunits or recombinant viral vectors carrying HIV-specific 
inserts or naked DNA [1]. Although most of these vaccine candidates 
have failed to elicit effective immune responses when used alone [2,3], 
their combined use has been shown to strengthen and broaden HIV-
specific immune responses [4-6]. Such a combination strategy is known 
as prime-boost strategy where the immune system primed by one 
vaccine candidate is boosted with either the same (homologous) or a 
different (heterologous) vaccine candidate. 

More than 100 non human primate and human clinical trials have 
been conducted so far to test the safety, immunogenicity and efficacy of 
different combinations of vaccine candidates [7]. The results of clinical 
trials have often been shown to differ from those seen in animal studies 
indicating critical need for reviewing them to understand the immune 
responses elicited by the vaccine candidates for use in humans [8]. 
Hence this review is focused on discussing the outcomes of different 
prime boost HIV vaccine clinical trials and factors responsible for 
them, which would have implications in guiding future vaccine trials 
based on prime boost strategy.

Basis of Prime Boost Strategy 
Boosting of immune responses by vaccines results in generation 

of larger numbers of effector cells required for mediating protection 
against pathogens at the time of infection [9]. Homologous strategy 
effectively boosts the humoral immunity but fails to boost cellular 
immunity (CMI). While heterologous prime-boost approach is 

known to effectively boost CMI, especially when vector based vaccine 
candidates are used, as it minimizes the interference by anti-vector 
immunity generated after priming (illustrated in Figure 1). Apart from 
enhancing the effector cells quantitatively, qualitative differences in 
secondary memory cells are also seen after the boosting. Secondary 
memory CD8 T cells, in contrast to primary memory cells, traffic much 
more efficiently to peripheral tissues and exhibit enhanced cytolysis 
facilitating effective countering of pathogens at the site of entry [10]. 
Additionally, heterologous prime boost strategy results in synergistic 
enhancement of immune response resulting in an increased number 
of antigen-specific T cells, selective enrichment of high avidity T cells 
and increased breadth as well as depth of the immune response [11,12]. 

However, heterologous prime boost regimens are still at the stage of 
clinical research and no regimen has been adopted in the immunization 
programs until now, as the critical evidence of translation of all these 
advantages is lacking. One of the major limitations of the prime boost 
strategy is its complex design. Multiple factors can contribute to its 
efficacy, which include combination of vaccine candidates, order of 
their administration, vaccine dose, interval between various antigen 
exposures, route of vaccine administration, pre-existing immunity to 
the vectors and relatedness of epitopes between the prime and booster 
antigens. Other limitations of the strategy include the requirement 
of multiple dosages of different vectors which might add to potential 
side effects and could be challenging for a vaccination programme. 
A phenomenon of ‘original antigenic sin’ may also occur where by 
immune response to original antigens present in the prime interfere in 
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the response elicited to new antigens present in the boost, if different 
insert sequences are used for priming and boosting [13]. 

Clinical trials of HIV-1 candidate vaccines using prime boost 
strategy

HIV vaccine trials are primarily focused on generation of 
neutralizing antibodies to prevent the establishment of infection or 
generation of T-cell responses effective in reducing viral burden in the 
post-infection phase [14,15]. However, since both these strategies alone 
failed to show protection from HIV infection [2,3,16], their combination 
was thought to be beneficial for protection and hence was evaluated 
in clinical trials by combining different strategies. The most frequent 
combinations tested in clinical trials include vector prime protein boost 
and DNA prime vector (pox or adenovirus) boost combinations.

Vector prime protein boost

Clinical trials carried out using vector prime protein boost regimen 
have mainly focused on the pox virus vectors for priming. Pox virus 
vector constructs have the ability to induce CTLs in humans but 
they have not been shown to elicit high-titer neutralizing antibodies 
[4,17,18]. However, the use of an envelope protein boost after the pox 
vector prime has been reported to generate higher levels of binding 
and homologous neutralizing antibodies in addition to development 
of antibody-dependent cell mediated cytotoxicity (ADCC), and 
helper T cell responses in several phase I clinical trials [18-20]. Non-

replicating poxvirus vectors, including Modified Vaccinia Ankara 
(MVA), and the genetically modified NYVAC vector, fowl pox and 
canary pox (ALVAC) vectors are preferred in clinical trials over 
replication competent vaccinia vector because of its safety concerns and 
poor immunogenicity, possibly due to existing anti-vector immunity 
resulting from global smallpox vaccinations [21,22]. Among all pox 
viruses, several Canarypox vector based constructs with multiple HIV-
1 gene inserts have undergone extensive safety and immunogenicity 
studies in humans [23,24]. Although the Canarypox prime-protein 
boost regimens have been shown to induce increased frequency and 
magnitude of HIV-1 lympho-proliferative activity, neutralizing activity 
and ADCC, the CTL responses induced by them were limited. Hence, 
several modifications have been made in the construct to improve 
CTL responses as illustrated in Figure 2. A phase III trial, RV144, 
using Canarypox (vCP1521) prime and AIDSVAX B/E boost has 
demonstrated modest protective efficacy when tested in Thailand 
[25]. But this strategy failed to control viremia or CD4 cell loss after 
the breakthrough infections among those who received the vaccines 
indicating inability of this strategy to alter the course of the disease. The 
protection in RV144 trial appeared to be short lasting, [26] and it would 
be interesting to evaluate the effect of additional boosters in RV144 
trial participants on recall responses and continuing protection among 
them. Indeed, in the AVEG studies (AIDS Vaccine Evaluation Group), 
a recall antibody response after delayed rgp160 boost at 4-5 years of 
ALVAC vaccinations has indicated induction of long term memory B 
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Figure 1: The role of heterologous prime boost strategy in overcoming anti-vector immunity 
Vector based vaccine candidates infect host cells including antigen presenting cells. Induction of immune response depends on antigen presented by host cells after 
uptake of the vector. Cellular and humoral immune responses are induced against vector and insert specific antigens through class I and class II MHC molecules, 
respectively, upon the antigen presentation. After boosting of immune response with the same vector, uptake of the vector by host cells gets hampered because of 
elimination of the vector by anti-vector immunity. This further affects antigen presentation and boosting of insert specific immune responses by the vector. Conversely, if 
a different vector is used for boosting, anti vector immunity induced by the prime cannot eliminate an antigenically different vector. Hence, the uptake as well as antigen 
presentation by the host cells is not affected, leading to boosting of insert specific immune responses. 
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cell responses [27]. 

DNA prime and & Poxvirus vector boost strategy 

DNA prime-viral vector boost regimens have become the primary 
choice for inducing T cell based immune responses [11,28,29]. Among 
all Poxvirus vector based vaccines, MVA based vaccines have been 
evaluated in combination with DNA priming in multiple clinical trials. 
However, the MVA vectors used in different trials differed from one 
another in terms of passage numbers, insertion sites, type of promoter 
used and the inserted HIV genes leading to non-comparability of the 
results reported in different clinical trials [30]. Advantage of adding the 
DNA prime to MVA based regimen remains questionable as it has been 
shown to induce only marginally higher T cell responses as compared 
to the homologous MVA boosting strategy [31,32]. Also antibody 
responses induced by the DNA/ MVA strategy were found to be inferior 
as compared to those induced by the homologous MVA boosting 
strategy [31,32]. Among the other poxvirus based vaccines evaluated 
in clinical trials, NYVAC based regimens appear to be promising in 
eliciting the immune responses [33-35]. On the other hand, fowl pox 
based regimens have been shown to be poorly immunogenic in humans 
[36,37] while they induced effective CD4 and CD8 T-cell responses in 
animal models [38]. 

Strategies using DNA and Adenoviruses 

Among the Adenoviral vector vaccine candidates, replication-
defective Ad5 candidate developed by the Merck group has been 
studied most extensively in human trials. This construct demonstrated 
good immunogenicity in Phase I clinical trials and reduced viral load 
in the SHIV/NHP model [13,39-42]. However, it failed to prevent new 
infections as well as to reduce post-infection viral RNA levels in the 
vaccinated individuals in phase IIb, test-of-concept, STEP trial [16]. In 
addition, participants with pre-existing antibodies against Ad5 vector 
showed increased HIV infection rates in the study, the cause of which 

is being evaluated at present. The pre-existing immune responses might 
have played a role in this as they are known to interfere in the HIV 
specific immune responses induced by Ad5 vector [41]. High rates of 
pre-existing humoral immunity (as high as 85% in South Africa) to Ad5 
have been shown in many parts of the world [43]. The heterologous 
prime boost strategy using DNA prime and Ad5 boost was thought to 
circumvent the problem of pre-existing immunity. It has been shown 
that the pre-existing Ad5 neutralizing antibodies did not affect the 
frequency and magnitude of T cell responses in the DNA/rAd5 prime-
boost recipients, as compared to participants who received rAd5 alone 
[44]. Although there are conflicting reports regarding the increased 
magnitude of immune response by DNA/Ad5 strategy over Ad5 
vaccine alone, the strategy was successful in inducing both CD4 and 
CD8 responses contrary to the DNA and Ad5 vaccine candidates alone 
which generated only CD4 or CD8 responses respectively [45,13]. Since 
the broad spectrum immune response consisting of both CD4 and CD8 
responses is desirable for protection against HIV, this strategy has been 
considered to be more suitable than homologous Ad5 vaccinations. 
However, in spite of robust immune responses induced by DNA/Ad5 
strategy in phase I and phase II trials [46], the strategy failed to show 
protection from new infections in a phase IIb, HVTN 505 trial, which 
had to be terminated prematurely [47]. Unfortunately the HVTN 
505 trial, like the STEP trial, showed a statistically insignificant trend 
towards more infections among the vaccine recipients [48]. 

Other adenovirus serotypes like Ad26 and 35, less commonly 
associated with human disease, are also being explored as vaccine 
candidates to obviate the interference from pre-existing immunity 
against Ad5 [49]. However, Nabs to Ad5 have also been shown to 
hamper CD4+ T-cell responses to DNA/rAd35 combination [50]. 

Factors affecting immunogenicity endpoints of the prime 
boost regimens

The clinical trials described in the preceding paragraphs differed 
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from each other in terms of vaccine candidates used, doses, schedule, 
route and mode of vaccination as well as the population in which 
the trials were conducted. Understanding these factors would help 
in optimizing the vaccination schedule to obtain high and persistent 
immune responses. 

Vaccine dose

Dose of a prime candidate may not be important as it was not found 
to influence the final immunogenicity results in the trials with all the 
three types of regimens [17,45,51]. This could be possible because higher 
antigen doses at priming generally favor the induction of effector cells, 
whereas lower doses may preferentially drive the induction of immune 
memory [52]. Hence higher dose of a prime, although desirable for 
immediate responses, may affect development of memory cells and 
adversely hamper the effect of high dose. Contrary to the prime dose, 
higher dose of the booster has been shown to induce higher magnitude 
of immune response in ALVAC/protein and DNA/MVA trials [51,53] 
as the greater availability of antigen might be driving higher number of 
memory B cells into differentiation, thereby amplifying the response. 
However, this effect was not seen when DNA/AD5 strategies with Ad5 
doses of 1010 and 1011 were compared [46]. This could be because of 
development of immune tolerance at such high doses. Similar results 
were also observed when only Ad5 based strategy was evaluated in a 
clinical trial [54]. 

Immunization schedule

It was observed that late boosts at 5 and 6 month interval induced 
higher T cell response as compared to the early boosts given at 2 and 
3 months interval in one of the trials with DNA/MVA prime/boost 
regimen [55]. The delayed boosting is helpful in avoiding interference 
in the primary responses induced by the prime [52]. It has been 
observed that although closely spaced (1–2 weeks) primary vaccine 
doses cause a rapid induction of immune response, the response is less 
persistent than when the same numbers of vaccine doses were given at 
longer intervals (1–2 months) [52]. A minimal interval of 4–6 months 
may also ensure optimal affinity maturation of memory B cells [52]. 
One of the DNA/Ad5 trials showed that the boosters, as late as at 35 
and 94 weeks, also increased the frequency and magnitude of T cell and 
antibody response [45], which was, in fact, better than in the other trials 
which employed boosting at 24 weeks. 

The number of doses required for inducing optimal immune 
response may differ based on the vaccine candidate. It has been found 
that 4 doses of ALVAC and 2 doses of DNA were optimum for inducing 
CTL and CD4 helper T cell responses respectively when used for 
priming [56,57]. There are conflicting reports regarding the number of 
MVA doses required for boosting. One study reported higher T cell 
response rate after 2 MVA doses [56], whereas diminution of response 
rate and magnitude after second MVA dose was reported in another 
trial [58]. Number and timing of protein boosts differed considerably 
in ALVAC/protein based trials as multiple combinations were 
evaluated with either sequential or simultaneous boosting. Although 
the simultaneous boosting showed early antibody responses [59], 
sequential boosting schedules were reported to elicit higher magnitude 
of neutralizing antibody response [57]. 

Route of administration and delivery systems used

Different routes and delivery systems have been evaluated for 
DNA constructs in prime–boost strategy. It has been shown that DNA 
constructs, administered by intra-dermal route induced better immune 
response compared to the intramuscular or subcutaneous routes 

[60,61]. Immunogenicity of DNA constructs depends on processing 
and presentation of antigens by antigen presenting cells (APCs) and 
the skin, unlike muscle tissue, has a large population of resident antigen 
presenting cells (APCs) that can facilitate the induction of vaccine-
specific immune responses [62,63]. Biojector and electroporation for 
delivering DNA have also shown to enhance antigen presentation by 
targeting larger area and enhancing uptake by the cells by the transient 
formation of pores in the cell membrane, respectively [62,64]. The 
biojector delivery system was observed to be better than administration 
by needle/ syringe as well as by electroporation in two HIV clinical 
trials [58,65]. A combination of biojector and electroporation has been 
shown to overcome dose restriction of DNA vaccines in preclinical 
studies whereby immune responses were shown to be enhanced when 
the dose of DNA was increased in clinical trials [66]. 

Adjuvants

Adjuvants are components of vaccines used for potentiating and/or 
modulating the immune responses to an antigen. Since DNA vaccines 
are weakly immunogenic, different adjuvants like Al3PO4 or CRL1005 
and immuno-modulators like GM-CSF were evaluated for enhancing 
their immunogenicity in the prime boost trials without success [13,51]. 
These adjuvants had shown promising effects in animal studies [51]. 
This also highlights the importance of determining immune responses 
in clinical settings. One of the trials which evaluated two adjuvants 
namely MF59 and Alum for the protein boosting showed that MF59 
adjuvanted protein subunit candidate induced better response than 
using Alum as an adjuvant [53,67]. MF59 has also shown to be more 
potent than alum based adjuvants in inducing both antibody and T-cell 
responses when evaluated as an adjuvant for flu vaccine and is being 
currently used in flu vaccine preparations [68]. 

Pre-existing immunity against the vectors

Prime boost strategy has been thought as one of the ways to 
circumvent the pre-existing immunity to vectors. However, DNA/
Ad5 based clinical trials have provided inconclusive evidence in this 
regard [44,13]. For ALVAC/protein based strategy, one study reported 
no significant differences in frequency or level of immune responses 
to ALVAC (with or without protein boost) between Vaccinia-naive 
or Vaccinia immune individuals [17], while another study reported 
decreased magnitude of Nabs in Vaccinia immune individuals 
compared to Vaccinia-naive [57]. Lower magnitude of cellular immune 
responses in persons with a history of Vaccinia vaccination has been 
reported in one of the DNA/MVA trials, which has been thought to 
be contributed additionally by effect of age in these individuals [51] 
indicating multifactorial etiology responsible for such variations. 

Relatedness of insert sequences or heterologous inserts

Not enough clinical data are available for comparing immune 
responses induced by heterologous insert sequences. The results of the 
ALVAC/protein based clinical trials having insert gp120 sequences from 
the same or different strains of HIV-1 do not differ much from each 
other. Although they are thought to improve global epitope coverage or 
cellular immune breadth, they failed to demonstrate this in an animal 
study [69]. The phenomenon of original antigenic sin also needs to be 
kept in mind before devising strategies based on heterologous inserts. 

Can Prime Boost Vaccine Strategy Fulfil the Possible Criteria 
for an Ideal HIV Vaccine to be Protective? 

Although immunogenicity results are available from multiple phase 
I and II trials based on the prime boost strategy, they are not sufficient 

http://en.wikipedia.org/wiki/Antigen


Citation: Shete A, Thakar M, Mehendale SM, Paranjape RS (2014) Is Prime Boost Strategy a Promising Approach in HIV Vaccine Development? J 
AIDS Clin Res 5: 293. doi:10.4172/2155-6113.1000293

Page 5 of 9

Volume 5 • Issue 4 • 1000293
J AIDS Clin Res
ISSN: 2155-6113 JAR an open access journal Vaccine Research: HIV

to predict the efficacy of the strategy. Analyses of immune responses 
observed in large scale efficacy trials are, therefore, important as they 
are likely to provide clues about protective immune responses in HIV 
infection. The difference in the immune responses elicited in RV144 
prime boost trial that demonstrated modest protection and VAX003/
VAX004, AIDSVAX alone, trials need to be carefully analyzed to 
delineate the factors that might have contributed to the protection. 
Based on results of such efficacy trials as well as data from animal 
studies using SIV challenge, different factors that possibly play role in 
efficacy of the immune response can be deciphered. 

Type of immune response

Although broadly neutralizing antibodies are considered to be an 
important component of vaccine induced immune responses, it has 
not been possible to induce them in any of the clinical vaccine trials 
conducted so far. Antibody based phase III vaccine trials have utilized 
monomeric gp120 presenting linear antigens, not considered to be 
optimum for induction of neutralizing antibodies. Since conformational 
epitopes are considered to be more potent in inducing neutralizing 
antibodies, candidates presenting envelope antigens in their native 
configuration would be more appropriate for vaccine development. 
Virus-like particles and trimeric gp140 antigens have shown promise 
in induction of neutralizing antibodies [70,71] and can be employed in 
prime boost combinations for effectively inducing broadly neutralizing 
antibodies. 

Non-neutralizing antibodies have also been shown to play a role 
in protection from HIV infection in the RV144 trial. IgG antibodies 
specific to the V1/V2 region of HIV-1 gp120 correlated with a decreased 
risk of infection with evidence of a virus sieve effect in infected vaccine 
recipients at this gp120 region [72,73]. Although the exact mechanism 
mediating protection by these antibodies in the trial is not yet known, 
they are thought to block T-cell associated integrin, a4b7, which is 
involved in HIV-1 entry in activated CD4+ T-cells [74,75]. The role 
of these antibodies in mediating protection from HIV needs to be 
confirmed further.

As against the neutralizing antibodies, responses like CTLs and 
ADCC act after infection of the cells and eliminate the infected cells 
decreasing overall burden of HIV by blocking further multiplication 
of virus. RV144 trial data showed that high level of ADCC activity 
was inversely correlated with infection risk. For mediating such 
activity, specificity and Fc related functions of the antibodies would 
be the important determinants. Antigens expressed on cells would be 
important for mediating ADCC activity and it may be possible that 
these antigens were expressed by infected cells upon uptake or infection 
by ALVAC vector and antibodies against them were subsequently 
boosted by gp120 protein boost. It was also observed that the IgG 
isotypes in case of RV144 trial participants were IgG1 and IgG3, which 
have the ability to bind and stimulate the NK cells efficiently through 
binding with CD16 [76]. Compared to the RV144 results, VAX003 trial 
participants had higher titres of IgG4, which show poor ADCC activity 
[76]. The future vaccine trials based on vector prime protein boost 
strategy should be equipped to explore the role of ADCC activity in 
the protection. 

Like ADCC, CTLs are also important in eliminating HIV infected 
cells and their role in controlling HIV progression has been well 
documented from studies on Long Term Non Progressors (LTNPs), 
exposed but uninfected individuals and in non human primate models 
[77-79]. However, it has not been possible to attribute a role to CTLs 
in controlling HIV infection in clinical vaccine trials conducted so far. 

In theRV144 trial showing moderate protection, a CTL response was 
reported in only 19.7% of vaccinees [25]. On the other hand, the Ad5 
based STEP and HVTN 505 trials failed to prevent HIV-1 infection or 
reduce early viral level, in spite of induction of a CTL response in 75% 
and 64% of the vaccinees respectively [16,47]. However, despite the lack 
of vaccine efficacy in the STEP trial, participants with specific human 
leukocyte antigen (HLA) alleles demonstrated an evidence of vaccine-
elicited immune pressure on the founder virus resulting in specific 
escape mutations. They also had lower viral load highlighting the role 
of CTL response in controlling viral multiplication in the trial [80].

Dynamics of immune response

Antibodies are usually long-lived and hence once generated are 
usually available at the time of exposure to deal directly with the incoming 
viral inocula resulting in protection [81]. However, this is not the case 
with CTL based vaccines. Effectors and effector memory cells (TEM), 
which are considered to be important for immediate action against 
any pathogen are short lived and tend to disappear after the clearance 
of the antigens leaving behind central memory T cells (TCM). Hence 
soon after vaccination with the non persistent vaccine candidates, only 
TCM type of cells persist, which shows inherent delay in development 
of anti-viral effectors limiting the utility of CTL based vaccines [81]. On 
the contrary, persistent vectors like Rhesus cytomegalovirus (RhCMV) 
were shown to induce persistent, high-frequency, SIV-specific TEM 
responses at mucosal sites resulting in stringent control of highly 
pathogenic SIVMAC239 infection after mucosal challenge in rhesus 
macaques when used alone or in prime boost combination [82,83]. 
Hence the use of persistent vectors needs to be evaluated further in 
clinical trials for developing of effective CTL based vaccines. However, 
such vaccine approaches also carry a risk of developing CD4 TEM 
providing a higher frequency of activated target cells at mucosal sites 
[81]. Hence vaccine regimens eliciting a predominant CD8 response 
would be important for balancing potentially infection-suppressing 
and infection-facilitating mechanisms. 

Site of immune response

Mucosal immune responses are considered to be important for 
restricting the virus multiplication at the site of entry before systemic 
dissemination occurs. The factors which favor development of 
mucosal immune responses include the mucosal or trans cutaneous 
immunization and the replicating nature of the vaccine agents [84,85]. 
A prime boost strategy with heterologous routes of administration 
based on the combination of mucosal and parenteral delivery has 
been attempted in a murine model for inducing immune responses 
at both mucosal and systemic levels [86]. Although mucosal route for 
vaccination is desired for its ease of administration and development 
of local immunity, mucosal vaccinations are faced with safety concerns 
and problems of lesser efficacy [87]. Therefore, only a few vaccines 
have become available for mucosal use until now. Since many of the 
HIV vaccine trials have used live viral vectors and percutaneous 
route, mucosal immune responses might have been generated in the 
vaccinees. Unfortunately information on mucosal immune responses 
in HIV vaccine clinical trials is scarce. It is important that the future 
trials should assess immune responses generated at the mucosal level. 

Prime boost strategy has also been shown to generate secondary 
memory cells which tend to localize in peripheral tissues causing 
effective an immune response at the site of infection [10]. However, 
these cells tend to localize poorly in lymph nodes which are the major 
sites of HIV replication [10]. Hence these cells may not play a role 
in controlling viremia once the virus escapes the mucosal immune 
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responses. Hence it would be important to balance mucosal as well as 
systemic T cell responses in order to effectively control the infection. 
Other limitations of mucosal immune responses include generation 
of activated CD4 cells at mucosal sites, which might serve as potential 
targets for HIV infection. Also mucosal reactions can increase blood-
borne IgA secreting plasma cells which are known to be derived from 
mucosal immune responses [88]. HIV-1 Env-specific plasma IgA 
responses have shown direct correlation with HIV infection risk in 
the RV144 trial, which could be by blocking protective IgG antibodies 
mediating ADCC activity [89]. 

Magnitude of immune response

Potent immune responses of higher magnitude are desirable to deal 
with a higher inoculum of the virus. Prime-boost combination vaccines 
have been found to elicit a dramatic enhancement in the magnitude of 
anti-viral CD8+ T cell responses after infection (often >10-fold) [81]. 
Hence a prime boost strategy can be used for enhancing potency of the 
cell mediated immune responses. 

Breadth of immune response

The vaccine strategies that expand breadth of cellular immune 
response have been considered to be critical for achieving immunologic 
coverage of the enormous global genetic diversity of HIV-1 [90]. 
Importance of breadth of immune response has also been highlighted 
from studies in chronically infected patients and macaque models 
[91,92]. The STEP trial, which failed to show protection, demonstrated 
limited breadth of response [93]. To increase the breadth of response and 
to cover global HIV-1 sequence diversity, polyvalent 'mosaic' antigens 
have been designed, which have been shown to induce markedly 
augmented breadth and depth of response without compromising 
the magnitude of T cell responses in Rhesus monkeys [90]. Protective 
efficacy of the mosaic antigens has also been demonstrated in Macaques 
[94]. Clinical studies evaluating Ad26/MVA regimens expressing HIV 
-1 mosaic antigens have been planned and would provide clinical data 
in this regard. 

Immune responses against conserved epitopes

Targeting conserved epitopes by the immune response has also 
been considered to be an important component of vaccine induced 
immunity to overcome HIV diversity and mutations. However, 
conserved epitopes have been found to elicit subdominant responses 
during both primary and chronic infection [95] as well as in a vaccine 
trial. The immune response has been seen to be biased towards non 
conserved epitopes, which might mask responses to conserved epitopes 
enabling HIV to escape immune surveillance mechanisms [96]. 
The prime boost strategy could be exploited to boost specifically the 
responses against the conserved epitopes by using these epitopes in the 
boost candidates. 

Analysis of correlate of risk

As against the correlates of protection, analysis of correlates of 
increased risk of HIV acquisition has become imperative as a result 
of findings in Ad5 based STEP and HVTN 505 trials. The STEP study 
reported an increased risk of HIV acquisition among MSM who were 
uncircumcised or had neutralizing antibodies to Ad5 at the enrolment 
[16]. In spite of extensive research to identify biological reasons for 
such an increased risk, no evidence is available yet. The subgroups 
of participants showing enhanced risk in STEP trial were excluded 
from HVTN 505 trial. However, a trend of increased risk of HIV 
acquisition was also reported in the HVTN 505 trial demonstrating 

the susceptibility of these subgroups for the enhanced risk. Based 
on the HVTN 505 results, the results of the STEP trial also need to 
be re-evaluated with a different focus as the pre-existing immunity 
against Ad5 alone may not be playing a role in enhancing the risk of 
HIV acquisition. Possibility of occurrence of such a risk with other 
adenovirus serotypes should also be ruled out before proceeding to the 
clinical trials using these constructs. 

Conclusion 
The available evidence suggests that the heterologous prime-boost 

vaccination approach has some promise in HIV vaccine development. 
However, the prime-boost strategy has major operational and analytical 
complexities. Also the efficacy results have churned out surprises quite 
in contrast to the preclinical as well as immunogenicity data available 
from phase I and II trials. This may be due to the lack of confirmed 
knowledge about the correlates of protection in HIV infection. Hence, 
analysis of correlates of protection is critical for designing effective 
vaccine trial strategies. Two vaccine efficacy trials based on prime boost 
strategy, the RV144 and HVTN 505 trials, have demonstrated exactly 
opposite outcomes. The results of these trials need to be evaluated 
carefully to determine correlates of protection and increased risk of 
HIV acquisition for balancing protective and enhancing mechanisms 
in future vaccine trials. Up till now, only RV144 vaccine trial has been 
successful in demonstrating moderate, but short lasting protection 
against HIV infection. The search for the most appropriate regimen for 
eliciting effective and sustained immune responses must be continued 
till an effective preventive vaccine strategy is devised.
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