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Abstract
A new theory for 180° domain wall in ferroelectric perovskite material is presented in this work. The effect of flexoelectric coupling 

on the domain structure is analyzed. We show that the 180° domain wall has a mixed character of Ising and Bloch type wall and that the 
polarization perpendicular to the domain wall is not zero though it is very small compared to the spontaneous polarization in the case of 
tetragonal Barium Titanate. Finally, we present the effect of the new finding on the domain wall interaction with defects in the material.

*Corresponding author: Mbarki R, Department of Mechanical Engineering, 
The Australian College of Kuwait, Meshraf, Kuwait, Tel: 96525376111; E-mail:
rmbarki@uh.edu 

Received May 28, 2016; Accepted June 14, 2016; Published June 24, 2016

Citation: Mbarki R, Borvayeh L, Sabati M (2016) Investigation of the Flexoelectric 
Coupling Effect on the 180° Domain Wall Structure and Interaction with Defects. J 
Material Sci Eng 5: 264. doi:10.4172/2169-0022.1000264

Copyright: © 2016 Mbarki R, et al. This is an open-access article distributed under 
the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

Keywords: Flexoelectric; Coupling;  Dielectric; Piezoelectric;
Ferroelectric materials

Introduction
Perovskite ferroelectric materials are known for a superior 

dielectric and piezoelectric response. They have attracted attention for 
applications in technologies like capacitors, microelectromechanical 
systems (MEMS), nonvolatile memories as well as nonlinear optical 
applications. Ferroelectric materials usually display domains consisting 
of regions that are either ordered along the same axis but with opposite 
polarity also called 180o domain walls (Figure 1) or along different 
orthogonal axis. The existence of these domain walls has a significant 
influence on the material properties. The measured material properties 
have two contributions, an intrinsic response which is the property 
of a single domain material and the extrinsic response which consists 
of domain wall contribution. For example, it has been shown that for 
Lead zirconate titanate (PZT) at composition near the morphotropic 
phase boundary, the domain wall contribution represents more than 
half of the dielectric and piezoelectric response at room temperature 
[1]. Ghosh et al. [2] studied experimentally the effect of domain wall 
motion on the piezoelectric properties of ferroelectric material. They 
showed that the motion of the domain wall is responsible for the high 
permittivity and piezoelectric coefficient in Barium Titanate.

The 180° domain wall formed in ferroelectric materials is generally 
assumed to be an Ising type domain. However, it can generally be either 
an Ising or a Bloch type domain. In the Ising type, the polarization 
tends to switch sign by decreasing in magnitude in the plane of the 
domain wall. While in the Bloch type, the polarization tends to switch 
sign by rotating outside the plane of the wall and maintaining a 
constant magnitude (Figure 2). A mixture of Ising and Bloch types is 
possible where the polarization changes sign by rotating outside of the 
wall plane and decreasing in magnitude as it gets closer to the wall. 

Huang et al. [3] investigated the type of the domain that can form in the 
tetragonal phase of a ferroelectric perovskite. They showed theoretically 
that upon cooling material, the domain wall can switch from an Ising 
type to a Bloch type. Lee et al. [4] performed an ab initio calculation 
and showed that the 180° domain wall in ferroelectric perovskite shows 
a mixed character.

Ferroelectric domain walls have been studied by many researchers 
[5-9]. The work started by the Landau Devonshire theory where the 
Gibbs free energy density is expanded to sixth power of the polarization 
including a polarization gradient term. However, this formulation did 
not take into consideration the electromechanical coupling between 
strain and polarization. Further expansion of the Gibbs free energy 
is required to take into consideration the ferroelastic nature of this 
material. Later studies included this coupling e.g., Huang et al. [3] and 
Cao et al. [9].

In the last decade, ferroelectric materials have also been exploited 
and studied at small scales. Researchers have shown that at the 
nanoscale flexoelectricity becomes very important especially for 
perovskite materials which are known for their high flexoelectric 
coefficient [10,11]. Recent work by Yudin et al. [8] presented a new 
formulation for the domain wall energy in which, they included the 
flexoelectric coupling. They assumed that the polarization in the plane 

Figure 1: Example of 180° domain wall.

Figure 2: Different types of domain wall: a) Ising type b) Bloch type.
Figure 2: Different types of domain wall: a) Ising type b) Bloch type.
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of the domain wall is not zero and that the polarization perpendicular 
to the wall vanishes because of the depoling field across the wall. Such 
assumption can reduce the accuracy of the calculation especially with 
the existence of a high strain gradient across the domain which induces 
polarization in the perpendicular direction due to the flexoelectric 
coupling. In this work, we develop a theory for perovskite ferroelectrics 
in the tetragonal phase. We present numerical results for 180° domain 
wall in Barium Titanate material with a random defects distribution. 
We show that the flexoelectric effect transforms the 180° domain wall 
to a mixture of Bloch and Ising type. Then, we show the effect of the 
flexoelectricity on the defects interaction with the domain wall.

Model Formulation
Let us consider a thin film of perovskite material with a 4 mm 

symmetry in the tetragonal phase occupying a volume in the space 
(Figure 3). [x1; x2; x3] is the cubic crystallographic direction. The 180° 
domain wall lies in the (100) plane. Two platinum electrodes are fixed 
on each surface of the thin film. Upon cooling to temperature below the 
Curie temperature Tc, the material tends to reduce its total free energy 
by creating the domain structure. The creation of the domain structure 
is accompanied by the distortion of the unit cell which induces a 
spontaneous strain εs and the generation of spontaneous polarization 
Ps. Far away from the domain wall, the strain and the polarization are 
defined by these vectors. Near the domain wall, it is reasonable to assume 
that the polarization varies significantly although the elastic strain 
remains small. The equilibrium state is defined by the spontaneous 
polarization Ps, the spontaneous strain εs and the spontaneous strain 
gradient ηs. The polarization gradient is zero at equilibrium. The free 
energy density can be expanded around the equilibrium state
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where WL(P, ε8, 0, η8) is the Landau free energy given by the following 
expression
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During the phase transition from cubic to tetragonal phase, the 
free energy given by equation 1 can describe the limit transition. 
If we match Equation 1 with the free energy in the cubic phase, it is 
possible to determine an expressions for the spontaneous strain and the 
spontaneous strain gradient. The free energy density in the cubic phase 
Wc is given by the following expression 
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where C is the elastic tensor given by the following expression
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d is the fourth order tensor introduced by Mindlin in the polarization 
gradient theory [12]
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and f is the fourth order flexoelectric tensor 
2

ijkl
l ij,k

Wf =
P
∂

∂ ∂ε
                                                                                                                                                (6)

It is obvious that the spontaneous polarization Ps, the spontaneous 
strain εs and the spontaneous strain gradient ηs are function of the 
polarization. In order to determine the expressions of these tensors, a 
matching between the equations 1 and 3 is necessary.

The term coupling the polarization and the strain in equation 1 is 
the piezoelectric tensor e given by the following expression

2We =
P
∂
∂ ∂ε

                                                                                                                         (7)

In the cubic phase, the material is not piezoelectric so there is no 
coupling between polarization and strain. However, at the transition 
limit between cubic and tetragonal phases, deriving the free energy in 
the cubic phase given by Equation (3) with respect to the polarization 
and the strain, we should be able to find an equivalent to this coupling.
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The integration of the equation 8 gives the following result
s s s s= (P ) - S : e(P - P )ε ε                                                                                                                           (9)

where S = C-1 is the elastic compliance.

Same procedure used to determine the spontaneous strain gradient 
ηs gives the following result

s -1 s= -G : f(P - P )η                                                                                                                                   (10)

Equation 1 can be rewritten as follow:
s s s s s
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The governing equations of polarization and strain evolution are 
obtained as the gradient flow associated with the Gibbs free energy. 
For further information on how to obtain these equations, the reader is 
advised to refer to Zhang et al. [13]:
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Subjected to the corresponding boundary conditions on∂Ω :
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where n is the outward normal vector to the surface ∂Ω , Φ is the 
electrostatic potential, µ and v are respectively, the inverse of the 
polarization and strain mobility.Figure 3: 180° domain wall with two platinum electrodes on each side.
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The 180° domain wall can be described as 1D problem where all 
the variables are function of one independent variable x1. There are no 
assumptions on the polarization vector. The spontaneous polarization 
can be described by the following equations:

s 0 1 2 1 2
1

s 0 1 2 1 2
2

P P + P P - PP = (tanh( )+ tanh( ))
2 l l
P P + P P - PP = (tanh( ) - tanh( ))
2 l l

                                    (16)

where P0 is the magnitude of the spontaneous polarization at large 
distance from the domain wall, and l is a shape factor that controls 
how fast the spontaneous polarization changes across the domain wall. 
The component of the polarization P2 is parallel to the domain wall 
and the component P1 is normal to the wall. We consider two cases: 
the first case is a perovskite crystal without defects and the second 
case is a doped perovskite crystal with random oxygen vacancies. The 
electrostatic equation for the first case is the solution of the Poisson 
equation:

0.(- + P)= 0ε Φ∇ ∇                                                                                                                                        (17)

0n.(- + P)= 0ε Φ∇                                                                                                                                         (18)
In the presence of defects in crystal, the electrostatic potential Φ, 

the polarization P and the charge density ρ are related by the Maxwell 
equation
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The charge density at any point is
+
d c v= q(N - n + n )ρ                                                                                                                                       (21)

where q is the electron charge, +
dN is the density of ionized donors, nc 

is the density of electron in conduction band and nv is the density of 
holes in the valence band. +

dN , nc and nv are given by the Fermi-Dirac 
Distribution for fermions:
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µ µ µ µ + are the electrochemical potentials. Ec is the 
energy at the bottom of the conduction band, Ev is the energy on the 
top of the valence band and Ed is the donors level and β = (KbT)-1.

The space charge evolution in Ω is given by:
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With the corresponding boundary conditions:
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Where k1, k2, k3 are rate constants for the species interconversion 
reactions, K1, K2 are diffusion constants and Φe is the work function of 
the electrodes. 

The expression of the spontaneous strain is
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where αt = 0:9958 and βt = 1:0067 are the two stretch components for 
tetragonal distortion [14-16]. The equation 12 becomes
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The equation 13 becomes:
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The Boundary conditions become:
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Numerical Simulation
The problem is defined in bidirectional space with one independent 

spatial variable x1. The size of simulation cell is taken as twice bigger 
than the domain wall transition distance. In the case of our simulations, 
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the domain wall was transiting in 120 nm for P2 and much smaller for 
P1. Thus the simulation cell size was chosen to be 250 nm to guarantee 
that the boundary conditions will not induce any artificial effect. All 
boundary conditions in terms of strain are given in both direction x1 
and x2 to accommodate the spontaneous strain geometrical constraint. 
Equations 32-39 are discretized through finite differences on a 2500 
grid with a constant grid size ∆x = 0.1 nm. The grid size was chosen 
small enough to provide good resolution in order to allow a better 
observation of the transition phenomena. All variable are assumed to 
be zero in the start of the simulation then the strain at ±∞ is imposed 
to be equal to the spontaneous strains. Equations 32-35 are explicitly 
integrated from time tn to tn+1 = tn + ∆ t to compute the new value for 
polarization and strain.

Equations 19-30 are only used when there are defects in the 
material. In the case of defects, the space charge is also integrated 
explicitly in parallel to the strain and the polarization. The gradient flow 
method is also described in much reference [14,15]. The convergence 
of the method is slow especially when the calculation becomes close to 
the final solution. The parameters chosen were slightly costly in terms 
of computation resource showever, the results were guaranteed to 
converge [17-20]. The numerical parameters used are given in Table 1. 

Results and Discussion
180° domain wall in perfect Barium Titanate crystal

Figure 4 presents the variation of the normal polarization P1 and 
the parallel polarization P2 across the domain wall. Both polarizations 
are normalized with respect to the spontaneous polarization magnitude 
P0. The Normal polarization P1 is small compared to the polarization P2 
but it is not zero as it was always assumed. Similar results were found 
by Yudin et al. [8] and Gu et al. [21], where they found a polarization 
with a 2 order of magnitude smaller then P2. The existence of the non-
zero polarization induced an electric field around the domain wall with 
its potential shown in Figure 5. The effect of this polarization is clear in 
the Figure 6 where the induced electric field causes further distortion 

of the structure. The strain variation shows the response of the material 
due to the force exerted by the non-zero polarization. 

180° domain wall in oxygen vacancy doped Barium Titanate 
crystal

In this section, we check the effect of exoelectricity on the defects 
interaction with the domain wall. The typical values of doping in 
Barium Titanate ranges from 10 to 1000 ppm corresponding to value of 

Parameters Values Ref
a1 (Nm2/C2) 6.6 × 105(T -110) [17]
a2 (Nm2/C2) 1.44 × 107(T -175) [17]
a3 (Nm2/C2) 3.94 × 109 [17]
a4 (Nm2/C2) 3.96 × 1010 [17]
a5 (Nm2/C2) 2.39 × 1014 [17]
a0 (Nm2/C2) 10-7  
c11 (N/m2) 275 × 109 [18]
c12 (N/m2) 179 × 109 [18]
f11 (C/m) 0.35×10-9 [19]
f12 (C/m) 5 × 10-6 [20]
e12 (C/N) -34.5 [22]
e22 (C/N) 85.6 [22]
e61 (C/N) 392 [22]
Ec (eV ) -3.6 [7]
Ev (eV ) -6.6 [7]
Ed (eV ) -4.0 [7]

Nc;Nv (m
-3) 1024 [7]

K1 (1=(eV ms)) 1013 [7]
K2 (1=(eV ms)) 1011 [7]

k1 (s
-1) 1011 [7]

k2; k3 (s
-1) 108 [7]

k4 (m
-2s-1) 1024 [7]

Table 1: Material properties.

Figure 4: Variation of the polarization P1 and P2 across the 180°domain wall 
in a perfect crystal.

Figure 5: Variation of electrostatic potential Φ across the 180° domain wall in 
a perfect crystal.

Figure 6: Variation of strain ϵ11 across the 180° domain wall in a perfect crystal.
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Nd=1024-1026 m-3. In this work, we take Nd equal to 1024 m-3. The platinum 
electrode has a work function Φe=5.3 eV. Figure 6 shows the variation 
of polarization across the domain wall. The introduction of defects into 
the material has no apparent effect on the polarization. The polarization 
magnitude remains the same as well as the geometrical distortion of the 
structure. As illustrated in Figure 7, the electrostatic potential shows an 
average rise compared to the perfect crystal although the electric field 
remains the same. The total number of ionized donors varies with the 
electrostatic potential. Figure 8 presents the variation of the ionized 
donors distribution across the domain wall. At room temperature, 
the majority of the ionized donors are diffused to the right side of the 
domain wall. The defects distribution profile shown in this Figure 7 is 
normalized with respect to the total number of donors in the material. 
The diffusion of the ionized donors in the domain wall leads to the 
pinning of the domain wall. In fact, the electrons freed from the ionized 
donors are swept by the electrostatic potential and they get attracted 
to the high potential level. The mobile ionized donors are attracted 
to the potential with low level [22]. The energy required for domain 
wall motion becomes higher due to the required energy to counter 
the new electric field created by the distribution of the ionized donors 
near the domain wall. Xiao et al. [23] studied the interaction between 
domain walls and oxygen vacancies in tetragonal Barium Tianate. The 
authors found that the 180° domain has no effect on oxygen vacancy 
distribution however for the 90° domain wall, the result was similar to 
what we found in this paper. Yang et al. [24] presented an experimental 

Figure 8: Variation of ionized donor’s distribution dN+ across the 180° domain 
wall in a doped crystal.

Figure 7: Variation of electrostatic potential Φ across the 180° domain wall in a doped crystal. 
Figure 7: Variation of electrostatic potential Φ across the 180° domain wall in 
a doped crystal.

study of domain wall pinning where they showed that a 180° domain 
wall can get pinned to defects and impurities in the material which 
can stop the motion of the domain wall. This behavior is analogous 
to the electron behavior in high injection of carriers in a PN junction 
of a semiconductor (such as diode); where it causes to violate one of 
the approximations made in the derivation of the ideal characteristics, 
namely that the majority carrier density equals the thermal equilibrium 
value. One can observe that the majority carrier (electron) density 
increases beyond the doping density and tracks the minority carrier 
(hole) density in an extended region away from the junction. High 
injection of carriers causes to violate one of the approximations 
made in the derivation of the ideal diode characteristics, namely that 
the majority carrier density equals the thermal equilibrium value. 
Excess carriers will dominate the electron and hole concentration. 
The carrier concentrations decay due to recombination as we move 
away from the depletion region. A similar behavior was observed in 
metal-semiconductor contacts for which a synthesis of the thermionic-
emission and diffusion approaches has been proposed by Crowell et 
al. [25] that is derived from the boundary condition of a thermionic 
recombination velocity near the metal-semiconductor interface [26].

Conclusions
In this work, we presented a new theory for a ferroelectric material 

which takes into consideration the flexoelectric coupling between the 
polarization and the strain gradient. We showed that the 180° domain 
wall has mixed character of Ising and Bloch type. The magnitude 
of the normal polarization was found to be small compared to the 
spontaneous polarization. However the mixed character of the domain 
wall induced a new interaction with defects distribution. It was shown 
from this analysis that oxygen vacancies are attracted to the domain 
wall which can pin it and change the piezoelectric properties of the 
ferroelectric materials. Different parameters are used in this study and 
although the numerical results were carried only for tetragonal Barium 
Titanate, the results remain valid for all ferroelectric materials, though, 
the effect can be either negligible or it can be more important.
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