
Journal of Computer Science & Systems Biology - Open Access

 JCSB/Vol.2 September-October 2009

J Comput Sci Syst Biol Volume 2(5): 266-271 (2009) - 266

ISSN:0974-7230 JCSB, an open access journal

Research Article OPEN ACCESS Freely available online doi:10.4172/jcsb.1000041

Investigating Performance of XML
Web Services in Real-Time Business Systems

Alaa M. Riad1, Ahmed E. Hassan2, Qusay F. Hassan3

1Head of Information Systems Department, Mansoura University, Egypt
2Teacher of Electrical Engineering in Faculty of Engineering, Mansoura University, Egypt

3PhD Researcher in Faculty of Computers and Information Systems, Mansoura University, Egypt

Abstract

Service-Oriented Architecture (SOA) is being one of the

widely accepted methodologies in software market for

building and integrating different kinds of software sys-

tems. This acceptance comes from the extreme benefits

that it offers to their adopters including agility, dynamicity,

and loose-coupling. These benefits are usually missed in

traditional software terminologies and practices. XML Web

Services is the most used technology for applying SOA

because it is easy to use and it allows high interoperability

between different systems due to its dependency on stan-

dards that are widely accepted and supported by almost

all large software vendors. However, XML Web Services

suffer from a number of drawbacks such as low perfor-

mance, bad utilization for hardware resources, and high

network latency. These pitfalls may prevent some adopt-

ers from utilizing SOA in large and complex systems. So,

these issues should be first addressed and resolved before

leveraging it into real-time systems. This paper presents

an experimental evaluation for the performance of XML

Web Services in real-time business systems. Furthermore,

it offers some tactics and strategies that might be used to

enhance the overall performance of XML Web Services.

*Corresponding author: Qusay F. Hassan, PhD Researcher in Fac-

ulty of Computers and Information Systems, Mansoura University, Egypt,

E-mail: qusayfadhel@yahoo.com

Received September 29, 2009; Accepted October 24, 2009; Published

October 29, 2009

Citation: Riad AM, Hassan AE, Hassan QF (2009) Investigating Perfor-

mance of XML Web Services in Real-Time Business Systems. J Comput

Sci Syst Biol 2: 266-271. doi:10.4172/jcsb.1000041

Copyright: © 2009 Riad AM, et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution License, which

permits unrestricted use, distribution, and reproduction in any medium,

provided the original author and source are credited.

Keywords: SOA; XML web services; Problem root causes;

Systems integration; Performance evaluation; Optimization tac-

tics and strategies

Introduction

Over the last few years, SOA has gained momentum from

almost all players in software market for building and integrat-

ing systems, especially complex ones that demand continuous

changes to meet market ever-changing requirements

(Papazoglou, 2003; Channabasavaiah, 2003).

Technically, many technologies could be used for realizing

and implementing service-oriented systems including message

queuing, remote procedure calls (RPCs), Common Object Re-

quest Broker (CORBA), and Common Object Model (COM)

(Krafzig et al., 2005). However, XML Web Services is the most

used technology for realizing SOA due to number of factors

including (Curbera et al., 2002):

• Ease-of-use: Using XML Web Services does not require

deep technical knowledge, as it is very easy to learn and use,

especially if compared with other tools like CORBA and

COM.

• Support: Because it has appeared as a result of cooperation

between large software vendors such as Microsoft, IBM,

BEA, and Sun Microsystems, it is supported in almost all

software tools, frameworks, and programming languages.

• Modularity: It is modular by nature, so, it is easy to encap-

sulate logic in terms of modules that could be deployed and

used separately according to business needs.

• Compose-ability: It is very easy to aggregate a number of

XML Web Services to construct a new one that covers more

complex needs.

• Low costs: It is much cheaper than traditional and propri-

etary technologies.

• Commonality with SOA model: The architectural model

of XML Web Services is almost identical to the basic model

of SOA, as they both have service provider, service con-

sumer, service registry, service contract, and service itself.

Unfortunately, the aforementioned advantages of XML Web

Services were not enough to enable SOA adopters to use it ef-

fectively in real-time business systems, as it still suffers from

number of problems such as low performance, bad utilization

for hardware resources, and high network latency. These issues

must be first addressed and resolved to allow optimum utiliza-

tion for SOA.

This paper examines the performance of XML Web Services

in building and integrating real-time business systems taking a

hypothetical scenario for banking solutions as an example to

these systems in order to compare found results with those of

using other traditional methods. Additionally, it discusses root

causes of found problems in order to give some tactics and strat-

egies that could be leveraged to make better use of XML Web

Services.

Root Causes

Many studies have discussed the performance of XML Web

Services from different perspectives, and they all concluded that

poor performance goes back to a number of reasons including:

• XML data format: The technology of XML Web Services

depends on XML (Extensible Markup Language) for repre-

Journal of Computer Science & Systems Biology - Open Access

 JCSB/Vol.2 September-October 2009

J Comput Sci Syst Biol Volume 2(5): 266-271 (2009) - 267

ISSN:0974-7230 JCSB, an open access journal

senting data being transmitted between different systems and

nodes. As known, XML is a tag-based language rich with

different capabilities that allow easy and powerful integra-

tion between different systems. For example, it offers differ-

ent mechanisms for validating, querying, and transforming

data (XML, 2004). These capabilities made XML the pre-

ferred choice of software vendors who look for

interoperability and loose-coupling between integrated sys-

tems. However, this richness causes data files to be bloated

with long named tags, complex data structures, and big

amounts of plain-text data that make their generation and

processing very complex, heavy, and slow.

• Encoders/decoders: XML Web Services use encoders to

transform data into a sequence of bytes before transmission,

and on the other side, they use decoders to return transmit-

ted data to its original form. ASCII was one of the most used

encoding formats in legacy systems. Depending on ASCII

format in XML Web Services is very expensive and slow

especially for numerical values and floating points (Chiu et

al., 2002).

• Parsing techniques: XML being transmitted between dif-

ferent nodes must be parsed and validates before any further

processing. Using inefficient parsing techniques may require

much hardware resources (including RAM and processing

cycles) and long times to complete required tasks.

• Serialization/de-serialization: Serialization (marshaling) is

the process that converts the state of objects in a form that

can be transmitted over network media (such as wires and

Wi-Fi) between different nodes. Conversely, de-serialization

(de-marshaling) process is responsible for bringing the state

information to original formats. Efficient serialization tech-

niques must be very fast and generate serialized data in com-

pact formats. Depending on bad serialization techniques may

generate very large data outputs that might clog network

during transmission process. As mentioned, XML Web Ser-

vices serialize data using XML format, and because XML is

text-based format, then generated messages are always very

large in size if compared to original data (before serializa-

tion) (Chiu et al., 2002; Bustamante et al., 2000).

• Transport protocol: XML Web Services use Simple Ob-

ject Access Protocol (SOAP) as a lightweight communica-

tion framework that is based on XML. Although SOAP mes-

sages can use any transport protocol to send requests and

receive responses, it uses HTTP as a default transport proto-

col. HTTP is a request-response protocol that supports only

synchronous interaction between clients and servers, and this

makes it ill-suited for message-based communications that

require asynchronous interactions (Fielding et al., 1999).

• Network infrastructure: There is no question that, network

is one of the most important factors for the success of any

client/server implementations, and thus, depending on weak

and slow networks can lead to unreliable, inefficient, and

intermittent interactions between clients and servers. Fur-

thermore, slow networks may lead to less utilization for avail-

able processing power because CPUs will wait longer times

until data arrives to be processed.

• Extra elements in software stack: In service-oriented sys-

tems, XML Web Services are defined in a separate layer that

accepts clients’ requests to be formatted before sending them

to underlying components. As known, the more layers and

processing logic defined in any software architecture, the

slower performance of overall system. This is due to extra

processing that is needed to reach final element in software

stack including discovery, reflection, initialization, instanti-

ating, and invocations of needed components and objects as

well as transformations for incoming requests and out-com-

ing data formats.

Technical Scenario

Integrating different systems together is a very common sce-

nario in software field, and leveraging SOA for building and

integrating different business systems like banking solutions

offers many advantages over other traditional integration meth-

ods including simplicity, dynamicity, agility, and loose-coupling

between integrated systems (Riad et al., 2008; Hassan, 2008).

For this reason, we are going to illustrate one of these scenarios

in subsequent sections.

Assume that we have the following two banking systems that

need to be integrated together with minimum impacts on under-

lying architecture and components:

• Core-bank: It is a legacy monolithic system that acts as a

back-end for other operational (front-end) systems. Core-

bank system consists of different business modules includ-

ing (customer management, deposits, foreign exchange, com-

mercial loans, Islamic loans, etc). Additionally, this system

offers some non-functional features such as transaction sup-

port, role-based security, and auditing and logging for user

actions. The core-bank system allows users to send requests

and receive responses via its GUI while all processing oc-

curs into database itself. This database consists of large num-

ber of precompiled stored procedures, and each stored pro-

cedure takes a huge number of input parameters to process

them and return back generated result sets.

• Loan-origination: It is a front-end system built with .NET

framework 2.0 and c# language and it is responsible for al-

lowing bank clients to issue loans, define installments, sched-

ule payments, etc. Because all information about bank cli-

ents and loans are stored into the core-bank system, we have

to integrate our loan-origination system with it. To enable

this integration, we will build an XML Web Service that

comprises a large number of methods responsible for ac-

cepting requests from different client (front-end) applica-

tions including the Loan-Origination application, and pass-

ing them to stored procedures that reside under the core-

banking system. To enable efficient use of the new XML

Web Service, software components should be built to wrap

available stored procedures and encapsulate their logic. These

components will divide underlying business logic that is

scattered over different stored procedures into modules that

could be easily used and modified whenever needed (Sneed,

2006; Zhang, 2004). Defined components could be realized

(designed and built) with any modern programming envi-

ronment (such as J2EE or .NET) that supports advanced fea-

tures like OOP, RAD, XML Web Services, etc. After realiz-

ing needed components, they will be placed into a new layer

that resides between the new XML Web Service and under-

Journal of Computer Science & Systems Biology - Open Access

 JCSB/Vol.2 September-October 2009

J Comput Sci Syst Biol Volume 2(5): 266-271 (2009) - 268

ISSN:0974-7230 JCSB, an open access journal

lying stored procedures to act as a mediator/wrapper that

accepts different invocations from XML Web Service and

turn them into formats that could be accepted by stored pro-

cedures. Figure 1 illustrates a high level view for integration

architecture of our systems, whereas, Figure 2 illustrates

simple request and response messages that are handled by

the system.

Performance Evaluation

Due to high dependency on XML Web Services, the illus-

trated architecture slightly suffers from low performance. In fact,

leveraging SOA is always hampered by large sizes of XML files

being transferred between clients and servers. These large data

files always clog network and drain almost all hardware resources

including RAM, CPU, and storage infrastructure. In original

architecture the core-banking system was entirely built over a

set of stored procedures to execute needed business logic, but it

now depends on a service layer that acts as a wrapper that re-

ceives client requests and maps them to appropriate stored

procedure(s). Figure 3 illustrates a comparison between the to-

tal times needed for receiving the response message of the re-

quest that gets basic information about one bank client using

both methods.

Optimization Tactics and Strategies

As illustrated, the original method that uses stored procedures

is 4 times faster than the new XML Web Services method. To

mitigate this problem, many experiments have been conducted

to yield the following list of recommended tactics and techniques:

• Utilize better encoders/decoders: Utilizing or even cus-

tomizing more optimized encoders/decoders and encoding

formats can save much of time needed for preparing data.

UTF8 is a well known and standard encoding format that

has been tuned to replace the traditional slow ASCII format.

It is now known to be one of the fastest encoding options

available in software market that supports almost all com-

monly used characters as well as special characters (Under-

standing Encodings).

Figure 1: Integration Architecture.

Figure 2: An Example for Request/Response Messages.

Figure 3: Invocation Time needed for Database Stored Proce-

dure vs. XML Web Service.

Figure 4: Performance of Binary Serialization vs. XML Seri-

alization.

Branch Automation Call Cener

Service Layer

Components Layer

Database Layer

XML Web
Service

Database

Loan Origination

Request Message Response Message

<?xml version = “1.0”?>
<Request ID=“86C86720-42A0-
1069-A2E8-08002B30309D”
 Date =“1/1/2008 4:30:35 PM”>
<CustomerProfile>
<CustomerID>10028160</CustomerID>
<BankID>10</BankID>
<BranchID>2</BranchID>
</CustomerProfile>
</Request>

<?xml version = “1.0”?>
<Response ID=“8664DA16-DDA2-42AC-926A-
C18F9127C302” Date=“1/1/2008 4:30:40 PM”
RequestID=“86C86720-42A0-1069-A2E8-08002B30309D”>
<CustomerProfile>
<CustomerID>10028160</CustomerID>
<CustomerName>Qusay Fadhel</Customer Name>
<CustomerStatus>Active</CustomerStatus>
<CustomerType>V.I.P</CustomerType>
<Address>
<Country>Egypt</Country>
<City>Cairo</City>
<Street>Free Zone, Nasr City</Street>
</Address>
<BankID>10</BankID>
<BankName>HSBC</BankName>
<BranchID>2</BranchID>
<BranchName>HSBC-Cairo-Al Mohandeseen</BranchName>
<Accounts>
<Account1>
<AccountNumber>00001110012586</AccountNumber>
<AccountType>Checking</AccountType>
<AccountStatus>Open</AccountStatus>
</Account1>
</Accounts>
</CustomerProfile>
</Response>

T i
m

e
In

 M
ill

es
ec

on
ds

 P
er

 R
eq

ue
st

Stored Procedure Web Service

350

300

250

200

150

100

50

0

Total Number of Columns: 5 Columns
Total Number of Serialized Rows: 20 Rows
Elapsed Time of Xml Serialization: 290 ms
Elapsed Time of Binary Serialization: 8 ms

ID LastName FirstName Courtesy Address

100100 Davolio Nancy Ms. 507 - 20th Ave. E.Apt. 2A

100101 Fuller Andrew Dr. 908 W. Capital Way

100102 Leverling Janet Ms. 722 Moss Bay Blvd.

100103 Peacock Margaret Mrs. 4110 Old Redmond Rd.

100104 Buchanan Steven Mr. 14 Garrett Hill

100105 Suyama Michael Mr. Coventry HouseMiner Rd.

100106 King Robert Mr. Edgeham HollowWinchest...

100107 Callahan Laura Ms. 4726 - 11th Ave. N.E.

100108 Dodsworth Anne Ms. 7 Houndstooth Rd.

100109 John Fuller Mr. 15 Garrett Hill

100110 Rod Jakson Mr. 16 Garrett Hill

Serialization Benchmark

Evaluate

Journal of Computer Science & Systems Biology - Open Access

 JCSB/Vol.2 September-October 2009

J Comput Sci Syst Biol Volume 2(5): 266-271 (2009) - 269

ISSN:0974-7230 JCSB, an open access journal

• Leverage binary XML: As mentioned, most of current

XML implementations depend on using plain-text format

that causes data files to be very complex and large in size.

W3C has announced that formatting XML data using binary

format is more efficient for both network and hardware uti-

lization (Geer, 2005). Different techniques might be utilized

to use binary data, for example, the data being transmitted

between network nodes might be serialized (marshaled) and

de-serialized (un-marshaled) using binary format instead of

text-based XML format. Figures 2, 3 illustrate the results

generated by a simple benchmark (windows forms) applica-

tion that was written (using c# language and .NET Frame-

work 3.5) to estimate the serialization time needed by bi-

nary and text-based serialization techniques on a PC that

uses Intel Dual Core 2.6 GHz processor and 2 GB memory.

As depicted, the application shows that XML serialization

takes 290 milliseconds to serialize some of stored (dummy)

information. The amount of data is represented in 20 rows

and 5 columns (948 bytes), whereas, the binary serialization

takes only 8 milliseconds to serialize the same data. This

means that binary serialization in our scenario saves more

than 97% of time needed by XML serialization. Certainly

the serialization time will vary according to number of fac-

tors including amount and complexity of data being serial-

ized, for instance, if we serialized 10,000 rows of the afore-

mentioned data (569,808 bytes) on the same PC, the XML

serialization will take 709 milliseconds versus 322 millisec-

onds for binary serialization, which means that binary seri-

alization saves more than 55% of total serialization time.

We should note that there is a fixed time that is needed in

each method whatever the size and amount of data to initial-

ize serialization process. This initialization operation is solely

needed to read the schema of data being serialized. Figure 5

illustrates a simple comparison between total times needed

for binary serialization versus XML (text-based) serializa-

tion to return the response of a simple request.

• Apply data compression techniques: Since XML is a text-

based format, and XML documents always have too many

white spaces, then using traditional compression algorithms

such as ZIP/GZIP for compressing data transferring between

clients and servers can get rid of many bytes of the volume

out of data files. To apply compression technique on travel-

ing data, both requestors and responders must understand

the used compression algorithm to be able to recognize and

use these data. This assurance should be identified and guar-

anteed by SOA governance team during preliminary imple-

mentation phases. Figure 8 illustrates the results generated

by a benchmark (console) application that has been written

(using c# language and .NET Framework 3.5) to calculate

total save in size of Response document that was illustrated

in figure 2 using ZIP/GZIP algorithms. The results shows

that the original size of Response document was 771 bytes,

whereas, the size of compressed file is only 550 bytes which

means that ZIP/GZIP algorithms save 221 bytes (approxi-

mately 29%) from original document size. Another way that

could make XML documents smaller is to avoid long ele-

ment and attribute names. For example, the Response docu-

ment illustrated in figure 2 could be abbreviated as illus-

trated in figure 9. The size of new abbreviated Response

document takes only 559 bytes with total save 212 bytes

(approximately 28%) from original document size. This op-

tion will only be applicable where the human readability of

request/response messages is not required. Combining two

techniques together in our scenario allowed us to eliminate

about 57% (the most) of total document size which is excel-

lent to our issue while keeping the great benefits of SOAFigure 5: Binary Serialization vs. XML Serialization.

Figure 6: Invocation Time needed for XML Serialization vs.

Binary Serialization.

Figure 7: Invocation Time needed for Stored Procedures vs.

Binary Serialization vs. XML Serialization.

Ti
m

e
in

 M
ill

es
ec

on
ds

Number of Rows

XML Serialization
Binary Serialization

1200

1000

800

600

400

200

0

1 10 100 1000 10000 20000

Ti
m

e
In

 M
il

le
se

co
nd

s
P

er
 R

eq
ue

st

XML Serialization Binary Serialization

350

300

250

200

150

100

50

0

Ti
m

e
In

 M
il

le
se

co
nd

s
P

er
 R

eq
ue

st

XML SerializationBinary SerializationStored Procedure

350

300

250

200

150

100

50

0

Journal of Computer Science & Systems Biology - Open Access

 JCSB/Vol.2 September-October 2009

J Comput Sci Syst Biol Volume 2(5): 266-271 (2009) - 270

ISSN:0974-7230 JCSB, an open access journal

including the ease-of-use and simplicity of XML Web Ser-

vices and overall architecture. Certainly, these values may

vary depending on the structure and size of original docu-

ments being compressed, however, saving total size of docu-

ments (especially complex and large ones) being processed

and transmitted over network has with no doubt positive

impact on memory consumption, network utilization, and

transmission time. One note that we should take into con-

sideration regarding to applying ZIP/GZIP algorithms is that

processing compressed data may require more CPU usage

at the receiving (last) node, as it will be a part of its respon-

sibilities to unzip data in order to be able to use it in any

further processing. This issue can be easily resolved by us-

ing more powerful servers that use high speed multi-pro-

cessing cores.

• Use better parsers: SAX and DOM are the most popular

parsing techniques available in XML market. Many bench-

marks on their throughputs have shown that they require

slightly long times to parse XML files at different sizes and

complexity levels. The long time is mainly needed because

these parsers read data files more than once (at least two

times) to be able to discover their structure and to validate

entire data. Furthermore, big amount of memory might be

needed to store extracted data during parsing phase, and this

of course may degrade overall performance of used CPUs

Figure 8: Total Save in Response Document Using ZIP/GZIP

Algorithms.

when no more memory is available (in paging and caching

operations performed by operating system). To resolve this

issue, we may depend on faster and more efficient techniques

such as Virtual Token Descriptor XML (VTD-XML) which

depends on “non-extractive” tokenization approach to parse

XML files (VTD-XML: The Future of XML Processing).

Additionally, using schema-specific parsers rather than gen-

eral purpose parsers can greatly enhance the performance of

parsing phase (Chiu et al., 2002). Using more enhanced pars-

ing algorithms and tools can save time needed to parse data

which in turn save the overall processing time and resources.

• Pre-generate serialization assemblies: Many of develop-

ment tools (including .NET 2.0 and latter) allow developers

to pre-generate and cache serialization assemblies that could

be deployed with applications to save time needed for dis-

covering, extracting, and recognizing structures of objects

being serialized and de-serialized (XML Serializer Genera-

tor Tool’ (Sgen.exe)).

• Divide large files: It is known that large files always have

bad impacts on the utilization of hardware resources

(memory, processor, and network) and processing time. Di-

viding large and complex data files into smaller pieces (if

possible) can deliberately enhance both processing and net-

work performance.

• Install silicon-based XML engines: Many silicon-based

engines are available now to handle XML at higher speeds.

These engines can be embedded into different network and

hardware equipments including switches, routers, load bal-

ancers, PCI-cards and servers (WebSphere DataPower SOA

Appliances).

• Apply parallelism techniques: Data files could be yielded

and processed in parallel using grid-based technologies that

depend on mutli-threaded systems (one thread for each pro-

cess/sub-process) to allow faster processing and better utili-

zation of available hardware resources including processing

cycles, memory, and storage infrastructure (Pan et al., 2007;

Lu et al., 2008; Cameron et al., 2008).

• Utilize high speed networks: There are now Ethernet imple-

mentations that enable enterprises to have transmission speed

that varies from traditional cdfdc x10Mbits/s Ethernet to

100Gigabit Ethernet (http://www.ieee802.org/3/ba/PAR/

par_0308.pdf; http://www.ieee802.org/3/hssg/; http://

www.ieee802.org/3/ba/public/index.html; Ambrosia, 2009).

Also, fiber channels and links could be installed to allow

high speed and reliable transmission for data encapsulated

into XML requests and replies.

Conclusion

This paper has presented an evaluation for XML Web Ser-

vices in real-time business systems by illustrating a common

scenario for two banking systems that need to be integrated to-

gether with contemporary SOA methodologies and terms. The

use of XML Web Services in our scenario caused a number of

problems including slow performance and bad utilization for

hardware and network recourses over RPC implementation

(stored procedures) that is widely used in traditional point-to-

point integration methods. These pitfalls could not be accepted

under any circumstances in real-time business systems that re-

Figure 9: Abbreviated Request/Response Messages.

******** Test Compression on XML Data Files ********

F i l e Name : c : \ R esp ons e.xml

Or i g i n a l S i z e : 7 71 B y t e s

C o m p r e s s e d S i z e : 5 5 0 By te s

To t a l S av e i n F i l e S i z e : 2 2 1 Bi te s

S av e Pe r c e n t a g e : 2 9 %

file:///C:/My Projects/GZipSample/GZipSample/bin/Debug/GzipSample.EXE

<?xml version = “1.0”?>
<Req ID=“86C86720-42A0-1069-
 A2E8-08002B30209D” Date =
“1/1/2008 4:30:02 PM”>
<CustProf>
<CustID>10028160</CustID>
<BkID>10</BkID>
<BrchID>2</BrchID>
</CustProf>
</Req>

Request MessageRequest Message
Request Message Response Message

<?xml version = “1.0”?>
<Res Id=“8664DA-DDA2-42AC-926A-C18F9127c302”
Date=“1/1/2008 4:30:29 PM”
ReqId=“86C86720-42A0-1-69-A2E8-
08002B30209D”>
<CustProf>
<Id>10028160</Id>
<Name>Qusay Fadhel Hassan</Name>
<Stat>Active</Stat>
<Type>V.I.P</Type>
<Addr>
<Ctry>Egypt</Ctry>
<Cty>Cairo</Cty>
<Strt>Free Zone, Nasr City</Strt>
</Addr>
<Bk>
<Id>10</Id>
<Name>HSBC</Name>
<Brch>
<Id>2</Id>
<Name>HSBC-Cairo-Al Mohandeseen</Name>
<Brch>
<Accts>
<Acct1>
<Num>00001110012586</Num>
<Type>CK</Type>
<Stat>Open</Stat>
</Acct1>
</Accts>
<Bk>
</CustProfe>
</Res>

Journal of Computer Science & Systems Biology - Open Access

 JCSB/Vol.2 September-October 2009

J Comput Sci Syst Biol Volume 2(5): 266-271 (2009) - 271

ISSN:0974-7230 JCSB, an open access journal

ceive and handle tons of requests every single second. For that

reason, the paper has given some tips and recommended ac-

tions that could be taken by implementers to allow efficient and

better use of SOA and XML Web Services in building and inte-

grating real-time business applications and systems.

References

1. Ambrosia JD (2009) IEEE P802.3ba Objectives.

2. Bustamante FE, Eisenhauer G, Schwan K, Widener P (2000)

Efficient wire formats for high performance computing. Pro-

ceedings of the 2000 Conference on Supercomputing.

3. Cameron RD, Herdy KS, Lin D (2008) High Performance

XML Parsing Using Parallel Bit Stream Technology. http://

www.cs.sfu.ca/~cameron/parabix-study-preprint.pdf

4. Channabasavaiah K, Holley K, Tuggle E (2003) Migrating

to a service-oriented architecture. Part 1, 2. http://www-

128.ibm.com/developerworks/library/ws-migratesoa

5. Chiu K, Govindaraju M, Bramley R (2002) Investigating

the limits of SOAP performance for scientific computing.

Proceedings of the 11th IEEE International Symposium on

High Performance Distributed Computing pp246-254.

6. Curbera F, Duftler M, Khalaf R, Nagy W, Mukhi N, et al.

(2002) Unraveling the web services web: An introduction to

SOAP, WSDL, UDDI. IEEE Internet Computing 6: 86-93.

7. Extensible Markup Language (XML) Specification Version

1.0 (2004) W3C. http://www.w3.org/tr/rec-xml/

8. Fielding R, Gettys J, Mogul J, Frystyk H, Masinter L, et al.

(1999) Hypertext transfer protocol - HTTP/1.1, 1999. IETF

RFC 2616. http://www.ietf.org/rfc/rfc2616.txt

9. Geer D (2005) Will Binary XML Speed Network Traffic?.

IEEE Computer Society.

10. Hassan QF (2008) Important Aspects of SOA: A Survey.

The 2nd International Conference on Business and Infor-

mation Technologies. New approaches 24-25.

11. http://www.ieee802.org/3/ba/PAR/par_0308.pdf

12. http://www.ieee802.org/3/ba/public/index.html

13. http://www.ieee802.org/3/hssg/

14. Krafzig D, Banke K, Slama D, (2005) Enterprise SOA Ser-

vice-Oriented Architecture Best Practices. Prentice Hall.

15. Lu W, Chiu K, Pan Y A (2008) Parallel Approach to XML

Parsing. http://grid.cs.binghamton.edu/projects/publications/

parallel-Grid06/parallel-Grid06.pdf

16. Pan Y, Zhang Y, Chiu K, Lu W (2007) Parallel XML Parsing

Using Meta-DFAs. Third IEEE International Conference on

e-Science and Grid Computing (e-Science 2007) pp237-244.

17. Papazoglou MP (2003) Service-Oriented Computing: Con-

cepts, Characteristics, and Directions”, Proceedings of the

fourth IEEE international conference on web information

systems engineering (WISE’03).

18. Riad AM, Hassan A, Hassan QF (2008) Leveraging SOA in

Banking Systems’ Integration. Journal of Applied Econom-

ics Science 2: 145-157.

19. Sneed HM (2006) Integrating legacy Software into a Ser-

vice oriented Architecture. Proceedings of the Conference

on Software Maintenance and Reengineering (CSMR’06),

IEEE.

20. Understanding Encodings. http://msdn.microsoft.com/en-us/

library/ms404377.aspx

21. VTD-XML: The Future of XML Processing. http://vtd-

xml.sourceforge.net/

22. WebSphere DataPower SOA Appliances. http://www-

01.ibm.com/software/integration/datapower/

23. XML Serializer Generator Tool’ (Sgen.exe). http://

msdn.microsoft.com/en-us/library/bk3w6240.aspx

24. Zhang Z, Yang H (2004) Incubating Services in Legacy Sys-

tems for Architectural Migration. Proceedings of the 11th

Asia-Pacific Software Engineering Conference (APSEC’04),

IEEE.

» CrossRef » Google Scholar

» CrossRef » Google Scholar

» CrossRef » Google Scholar

» CrossRef » Google Scholar

» CrossRef » Google Scholar

» CrossRef
» Google Scholar

» CrossRef » Google Scholar

» CrossRef » Google Scholar

» CrossRef » Google Scholar

» CrossRef » Google Scholar

» CrossRef » Google Scholar

» CrossRef » Google Scholar

» CrossRef » Google Scholar

http://portal.acm.org/citation.cfm?id=370417
http://scholar.google.co.in/scholar?hl=en&q=Efficient+wire+formats+for+high+performance+computing&btnG=Search&as_sdt=2000&as_ylo=&as_vis=0
http://portal.acm.org/citation.cfm?id=1463811
http://scholar.google.co.in/scholar?hl=en&q=High+Performance+XML+Parsing+Using+Parallel+Bit+Stream+Technology&btnG=Search&as_sdt=2000&as_ylo=&as_vis=0
http://home.ewha.ac.kr/club/ebk42/public_html/clubboard/1403/%5BSOA,Webservice%5DMigrating%20to%20a%20service-oriented%20architecture.pdf
http://scholar.google.co.in/scholar?hl=en&q=Migrating+to+a+service-oriented+architecture&btnG=Search&as_sdt=2000&as_ylo=&as_vis=0
http://www.computer.org/portal/web/csdl/doi/10.1109/HPDC.2002.1029924
http://scholar.google.co.in/scholar?hl=en&q=Investigating+the+limits+of+SOAP+performance+for+scientific+computing&btnG=Search&as_sdt=2000&as_ylo=&as_vis=0
http://www.computer.org/portal/web/csdl/doi/10.1109/4236.991449
http://scholar.google.co.in/scholar?hl=en&q=Unraveling+the+web+services+web%3A+An+introduction+to+SOAP%2C+WSDL%2C+UDDI.+IEEE+Internet+Computing&btnG=Search&as_sdt=2000&as_ylo=&as_vis=0
http://www.cindoc.csic.es/cybermetrics/articulos.asp?art=196&offset=0
http://scholar.google.co.in/scholar?hl=en&q=Hypertext+transfer+protocol+-+HTTP%2F1.1%2C+1999&btnG=Search&as_sdt=2000&as_ylo=&as_vis=0
http://www.geercom.com/r4016.pdf
http://scholar.google.co.in/scholar?hl=en&q=Will+Binary+XML+Speed+Network+Traffic&btnG=Search&as_sdt=2000&as_ylo=&as_vis=0
http://portal.acm.org/citation.cfm?id=1513923.1513966
http://scholar.google.co.in/scholar?hl=en&q=Parallel+Approach+to+XML+Parsing&btnG=Search&as_sdt=2000&as_ylo=&as_vis=0
http://www.computer.org/portal/web/csdl/doi/10.1109/E-SCIENCE.2007.55
http://scholar.google.co.in/scholar?hl=en&q=Parallel+XML+Parsing+Using+Meta-DFAs&btnG=Search&as_sdt=2000&as_ylo=&as_vis=0
http://www.computer.org/portal/web/csdl/doi/10.1109/WISE.2003.1254461
http://scholar.google.co.in/scholar?hl=en&q=Service-Oriented+Computing%3A+Concepts%2C+Characteristics%2C+and+Directions&btnG=Search&as_sdt=2000&as_ylo=&as_vis=0
http://www.jaes.reprograph.ro/articles/Riad.pdf
http://scholar.google.co.in/scholar?hl=en&q=Leveraging+SOA+in+Banking+Systems%E2%80%99+Integration&btnG=Search&as_sdt=2000&as_ylo=&as_vis=0
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1602353
http://scholar.google.co.in/scholar?hl=en&q=Integrating+legacy+Software+into+a+Service+oriented+Architecture&btnG=Search&as_sdt=2000&as_ylo=&as_vis=0
http://www.computer.org/portal/web/csdl/doi/10.1109/APSEC.2004.61
http://scholar.google.co.in/scholar?hl=en&q=Incubating+Services+in+Legacy+Systems+for+Architectural+Migration&btnG=Search&as_sdt=2000&as_ylo=&as_vis=0

	Title

	Authors

	Affiliations

	Corresponding author
	Dates

	Citation
	Copyright

	Abstract
	Keywords
	Introduction
	Root Causes
	XML data format
	Encoders/decoders
	Parsing techniques
	Serialization/de-serialization
	Transport protocol
	Network infrastructure
	Extra elements in software stack

	Technical Scenario
	Core-bank
	Loan-origination

	Performance Evaluation
	Optimization Tactics and Strategies
	Utilize better encoders/decoders
	Leverage binary XML
	Apply data compression techniques
	Use better parsers
	Pre-generate serialization assemblies
	Divide large files
	Install silicon-based XML engines
	Apply parallelism techniques
	Utilize high speed networks

	Conclusion
	Figures

	Figure 1

	Figure 2

	Figure 3

	Figure 4

	Figure 5

	Figure 6

	Figure 7

	Figure 8

	Figure 9

	References

