

Investigate the Ability of 1000 Micron CaO to Absorb CO₂ Gas through Absorption - Desorption Process for Biomass Producer Gas in Malaysia

Mahadzir MM1* and Ismail NI2

¹Faculty of Mechanical Engineering, University of Technology, MARA (UiTM), Pulau Pinang Branch Campus, Malaysia

²Automotive Research and Testing Center (ARTeC), Faculty of Mechanical Engineering, University of Technology, MARA (UiTM), Pulau Pinang Branch Campus, Malaysia

*Corresponding author: Mahadzir MM, Faculty of Mechanical Engineering, University of Technology MARA (UiTM), Pulau Pinang Branch Campus, Malaysia, Tel: 60355442000; E-mail: mohdmahadzir@hotmail.com

Received date: September 10, 2015; Accepted date: September 14, 2018; Published date: September 27, 2018

Copyright: © 2018 Mahadzir MM, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Alternative source of energy such as biomass gasification can be used to generate power and electricity. Producer gas produced from biomass gasification consists of carbon monoxide (CO), hydrogen (H₂), methane (CH₄), carbon dioxide (CO₂) and nitrogen (N₂). It has low calorific value (LCV) around 4-6 MJ/Nm³ because of CO₂ content is about 10-20 % by volume. Calcium oxide, CaO can be used to absorb carbon dioxide (CO₂) of the producer gas to increase its low calorific value. In this paper, an investigation of the 1000-micron CaO ability to absorb CO₂ has been made and studied. The absorption-desorption process of CaO was studied with the thermogravimetric analyzer (TGA) over 1, 4 and a muticycle. Three different temperature (500, 600 and 700°C) were set a variable. The reaction rate of CaO was obtained. Results show that for number 1 cycle the CO₂ absorption reaction rate were obtained in rapid and slow absorption regime respectively. It is also observed that the CO₂ absorption reaction rates decreases when number of cycle's desorption-absorption process was increased.

Keywords: CO₂ Capture; Calcium Oxide; Producer Gas; Limestone

Introduction

In Malaysia, producer gas which is gas produced from biomass materials can be classified as renewable energy. However, there are several factors why the producer gas cannot be fully utilized. The gas has low calorific value (LCV) around 4-6 MJ/Nm³ because of CO₂ content is about 10-20 % by volume [1-4]. Removing CO₂ from the producer gas will inadvertently increase its heating value and improve the percentage of all combustible gas contents especially its hydrogen. Limestone or specifically calcium carbonate, CaCO₃ can be heated up to form calcium oxide, CaO where is used to absorb carbon dioxide (CO₂) of the producer gas to increase its low calorific value [5-7].

Recently, there are a few methods have been proposed for CO_2 capture. The methods for capturing CO_2 from flue gases are membrane separation, cryogenic fractionation and solvent absorption either physical or chemical sorption on solid surfaces [8-11]. However, these two methods such as membrane separation and cryogenic fractionation have not favored for CO_2 separation. Example membrane separation systems even though are highly efficient and have been employed for the separation of CO_2 , but due to their complexity, high energy cost, and limited performance, membrane systems are not entirely well suited. As well as cryogenic fractionation systems, it also required high energy requirements.

Solvent absorption, on the other hand is well recognized. It is using various solvents, for instance, Selexol as a physical solvent or monoethanol amine (MEA) as a chemical solvent [12,13]. However, according to Rao et al. [14] severe energy penalties and the high cost of the system are significant disadvantages of the method especially on the use of amine. The low concentration of CO_2 in the flue gases at atmospheric pressure and low temperature (40 - 150°C) required for the absorption and solvent recovery process leading to the high cost of system.

The only one of the most promising method is based on the reversible absorption of CO_2 on specific metal oxides at high temperature. CO_2 capture using sorbents based on the oxides of calcium, potassium, lithium, sodium and magnesium have been reported [15-19]. The most have attention owing among these is calcium oxide (CaO) based sorbents because of their wide availability, low cost, higher absorption capacity and high selectivity for CO_2 .

According to Chen et al. [20-23] precursors such limestone (also known as Calcium Carbonate, CaCO₃), dolomite, calcium acetate and calcium sulphate hemihydrate can be processed to derive CaO. Among these, the most common CaO precursors are limestone. This is because of the availability and low cost of limestone as mention. According to Zulasmin [24], Malaysia country is blessed with abundant reserve of limestone resources. Extensive limestone resources are located in the states of Perak, Pahang, Kelantan, Kedah and Negeri Sembilan. It was estimated over 10 billion tonnes of limestone resources throughout the country. Example in the state of Perak, there is a 0.0405 km² limestone quarry and it estimated limestone reserve of 4 million tones. With current monthly usage of 5000 tonnes per month, the quarry can provide raw limestone for the next 66 years [25]. Talking about the price of raw limestone, it is sold for only RM60 a tonne compared to processed and value-added limestone that can fetch around RM390 a tonne, according to Elan [26].

The reaction of solid CaO with CO_2 can be shown as in Equation 1 called absorption, and this is a spontaneous exothermic process at ambient conditions. At elevated temperatures, the reversed endothermic reaction called desorption (Equation 2) occurs.

```
CaO(s) + CO_2(g) ? CaCO_3(s) (1)
CaCO_3(s) ? CaO(s) + CO_2(g) (2)
```

In theory the reactions in Equations 1 and 2 are fully reversible; thus, they can be appropriated to capture CO_2 from producer gas and upon desorption, CO_2 will be released. The cycle of desorption and absorption is repeated over and over. For such a process, two situations and temperatures are employed. Desorption is performed at higher temperature above 800oC and absorption at temperature below 800oC.

In this paper, an investigation of the CaO ability to absorb CO_2 has been made and studied. The absorption-desorption process of CaO was studied with the thermogravimetric analyzer (TGA) over 1, 4 and a multicycle. Three different temperature (500, 600 and 700°C) were set a variable. The reaction rate of CaO was obtained. The purpose of this work is to ensure the successful operation in CO_2 bubbling fluidized bed absorption reactor (CO₂ BFBAR).

Material and Methods

The operation of CO₂ absorption experiment is in the temperature range of 500 to 700°C under simulated gas (SG) conditions while desorption is performed under Nitrogen (N₂) gas conditions with temperature of 875°C. The SG used in absorption-desorption experiment contains 16% CO₂ and balance is N₂. For the first experiment, the system was run for 4 cycles using particle size of 1000 micron (**Figure 1**). Then, followed by 10 absorption-desorption cycles to know the ability of CO₂ absorption for multicycle condition using same particle size.

Absorption-desorption experiment was conducted using a Perkin-Elmer Pyris 1 thermogravimetric analyzer (TGA), a Perkin Elmer thermal analysis gas station (TAGS), and Pyris v 3.8 software from Perkin Elmer. TGA is performed by determining changes in weight of CaO material in relation to a temperature program in a controlled atmosphere. The effect of SG on the kinetics absorption of the gas-solid reaction between CO₂ and CaO is obtained from this experiment. The microbalance of the Pyris 1 TGA operates as a high gain electromechanical servo system which permits detection of weight change versus time as small as 0.1 μ g. The TAGS have four gas channels and can automatically switch on either of them to introduce gas over the sample according to the reaction program. The shift between SG and N₂ gas with their flows was accurately maintained by the TAGS and the reaction program. **Figure 2** shows the TGA instrumentation used.

Figure 1: Photograph of 1000 micron particle sizes of CaO.

Figure 2: TGA instrumentation.

All steps of the absorption and desorption experiments, including heating and cooling the CaO sample, and shifting gases between SG (16% CO2 + balance N2) and 99.9% N2 were programmed. A 29 mg 1000-micron CaCO₃ powder was placed in a platinum pan and heated from 100°C to the desorption temperature, 875°C at a heating rate of 25°C/min. Once the sample reached the desorption temperature, the program was automatically switched to isothermal (constant temperature) process for 20 min. Desorption time was set as 20 min to allow CaCO₃ to be converted into CaO completely. The time was intentionally kept that short to prevent possible sintering effect of sorbents. The CaO sample then was cooled to the absorption temperature, 500°C at a rate of 25°C/min. For all these processes, N2 gas was used. The program was automatically switched to absorption process for 60 min in order to get relatively high uptake capacity of CO₂. After that, immediately the 25 ml/min of SG was automatically switched into the system to react with CaO powder sample. When the absorption process was completed, the temperature was increased at a heating rate of 25°C/min to 875°C and N2 gas was automatically switched back for desorption process.

The equilibrium partial pressure of CO₂ increases with increasing temperature. Since the feed simulated gas composition has been set, the equilibrium absorption temperature is purely a function of the CO₂ partial pressure. Here, the equilibrium temperature for a CO₂ partial pressure 0.16 atm is approximately 790°C. Thus, the maximum absorption temperature was set at 700°C in order to have an appropriate CO₂ concentration gradient for the reaction to proceed. The minimum absorption temperature was set at 500°C, as temperatures lower than this value result in extremely slow rates of absorption. Based on the minimum and maximum temperatures, the process of absorption-desorption has been repeated until 4 cycles. Three temperatures were chosen for absorption process. The temperatures were 500, 600 and 700°C to provide adequate kinetic data needed for comparison purpose. For multiple cycle experiment, 10 cycles of absorption and desorption process were conducted. During the entire process, the sorbent weight together with the temperature were continuously recorded and stored in a Microsoft Excel file automatically.

Results and discussion

Figure 3 illustrates the comparison in the CO_2 capture capacity of the first cycle CaO sorbent for three different absorption temperatures (500, 600 and 700°C). The CO_2 capture capacity has been defined by the weight CO_2 absorbed into the CaO sorbent.

Figure 3: (a) Data recorded **(b)** CO_2 capture capacity for number 1 cycle of absorption/desorption process at 500, 600 and 700°C. Size: 1000 micron, $T_{desorption} 875°C$ for 20 min.

It was found that the absorption reaction of CaO proceeds through two reaction stages, a very rapid absorption followed by a slower absorption stage. In the first stage, the slope of the linear line for 3 different temperatures (isothermal 500, 600 and 700°C) are very similar where 0.302, 0.336 and 0.337 mg/min were obtained using Equation 3 and 4 [27-28].

Weight capture(%):
$$C = \frac{W_t - W_o}{W_o} \times 100$$
 (3)
Absorption reaction (%/min) = $\frac{dc}{dt}$ (4)

Where, W_t and W_o are the weight of the CaCO₃ desorption at a given time, t and at the beginning of the absorption reaction respectively, dt is the absorption time.

These rapid absorptions occurred approximately for 20 minutes duration time. Compared to the second stage where 0.056, 0.065 and 0.064 mg/min were found; these values were less than the first stage. The values of the slope obtained were from the line graph that was describing the CO_2 absorption reaction rate. It shows that the rates of absorption increase with temperature, peak at 700°C and decrease above 700°C as a result of the thermodynamically favored reverse $CaCO_3$ decomposition reaction. This situation can be seen in **Figure 4** for 1st and 2nd reaction stages.

At the first linear stage, absorption reaction is rapid because the rate is typically kinetically-controlled for a chemically rate-controlling mechanism at the surface of CaO. The rapid surface reaction between CaO and CO₂ leads to the formation of a CaCO₃ product layer which shields the sorbent surface and slows the flow of CO₂ to the unreacted CaO core in the second stage. The formation of the CaCO₃ layer also block small pores which prevent the CO₂ diffusion through the solid CaCO₃ layer. The kinetically-controlled regime then changes to the diffusion-controlled regime process. The result found for number 1 cycle of absorption- desorption process as shown in **Figure 3** is in agreement with the result obtained by Ozcan et al. [29].

The number 4 cycles of the absorption and desorption reaction process is represented in **Figure 5**. As can be seen in the figure, there is a different in CO_2 absorption capacity in weight (mg) when compared to a number 1 cycle. As expected, the weight of $CaCO_3$ desorption at a given time is lower which is around 18 mg for 3 different temperatures compared to 24-26 mg in cycle number 1.

Figure 5: CO_2 capture capacity for number 4 cycle of absorption/ desorption process at 500, 600 and 700°C. Size: 1000 micron, $T_{desorption} 875°C$ for 20 min.

The CO_2 absorption reaction rate obtained in the kineticallycontrolled regime are 0.126, 0.144 and 0.143 mg/min for temperatures 500, 600 and 700°C, respectively which is small compared to number 1 cycle. For the diffusion-controlled regime process, the slopes obtained are 0.005 to 0.008 mg/min CO_2 absorption reaction rate. The trend of results is similar to the research done by Bhatia et al. [30,31]

To determine the recyclability of the sorbent, a multicyclic absorption-desorption test was conducted and the results are shown in

Figure 6. Ten cycles have been conducted and the operation time is around 1090 minutes. As seen in the figure, it was found that CaO (in weight mg) experienced a decline during the absorption process in each cycle.

Figure 6: Cyclic desorption/absorption for 1000-micron CaO, desorption at 875°C with N_2 and absorbed at 600°C with 16% CO₂, and balance N_2 .

The decreasing phenomenon is caused by the loss of small pores and surface area of CO_2 absorbing material during the sintering process at high temperature according to Manovic et al. [15]. The similar trend of the multicyclic absorption-desorption process is also obtained by researchers [32-34].

Figure 7 shows the CO₂ absorption reaction rate versus number of cycles absorbed at 600°C with 16% CO₂ and balance N₂. It was found that the CO₂ absorption reaction rates decreases when number of cycle desorption/absorption process increases. The curve line obtained is similar to Abanades et al. [35] as shown in **Figure 8**.

As mention earlier, the decreasing of CaO weight (mg) is caused by the loss of small pores and surface area of CO₂ absorbing material during the sintering process at high temperature. This sintering causes a reduction in the reactive surface affecting in the drop-off in reactivity. Sintering is the bonding together of compacted powder particles at temperatures below the melting point. Sintering is resulted in the pore closure, particle aggregation or decreasing in surface area and pore volume Zhen et al. [36]. When this happens, the micropores closure occurs when CaO is converted to CaCO₃. Therefore, the closed pores lead to defective CO₂ absorption reaction rate in each subsequent cycle.

Sintering of CaO increases at higher temperatures, durations of calcinations, and also with impurities. This condition is also agreed by researchers [37-40]. Others factors that reduce the activity of sorbents are the loss of bed material through attrition of sorbent grains during the process causing elutriation of fines, and chemical inactivation and ash fouling.

Conclusion

This research has achieved its objectives, where the CO_2 absorptiondesorption using TGA have been conducted and presented. The ability to absorb has been successful and can be verified by referring to the absorption techniques described in the literature. The absorptiondesorption process of CO_2 was conducted using Thermogravimetric analysis (TGA). Using a small amount of $CaCO_3$ approximately 29 mg then produced 16 mg CaO, the CO_2 absorption occurred in 2 stages, a very rapid absorption followed by a slower absorption stage when 16% CO_2 and 84% N₂ was used. From the graphs plotted show that at rapid absorption, 0.302, 0.336 and 0.337 mg/min CO_2 reaction rate were obtained at 3 different temperatures. While, only 0.056, 0.065 and 0.064 mg/min of CO_2 reaction rate were found at slower absorption stage. Apart from that, it is also observed the CO_2 absorption reaction rates decreasing when number of cycle desorption-absorption process was increased.

Acknowledgments

The authors would like to express their appreciation to The Research University Grant Scheme (Grant No. MEKANIK/811122) for providing financial support for this study. Citation: Mahadzir MM and Ismail NI (2018) Investigate the Ability of 1000 Micron CaO to Absorb CO₂ Gas through Absorption - Desorption Process for Biomass Producer Gas in Malaysia. Chem Sci J 9: 193. doi:10.4172/2150-3494.1000193

Page 5 of 5

References

- Monarca D, Colantoni A, Cecchini M, Longo L, Carlini M, et al. (2012) Energy characterization and gasification of biomass derived by helzenut cultivation: analysis of produced syngas by gas chromatography. Mathematical problems in engineering.
- Zainal ZA (1996) Performance and Characteristics of A Biomass Gasifier System. Ph.D Dissertation, University of Wales, College of Cardiff, United Kingdom.
- 3. McKendry P (2002) Energy production from biomass (part 2): conversion technologies.
- 4. Bioresource Technology 83: 47-54.
- Rezaiyan J and Cheremisinoff NP (2005) Gasification Technologies: A Primer for Engineers and Scientists. CRC Press, Taylor and Francis Group, United Stated of America.
- Jeonghyeon P, Kwang BY (2012) Effects of preparation method on cyclic stability and CO2 absorption capacity of synthetic CaO–MgO absorbent for sorption-enhanced hydrogen production, Int. J. Hydrogen Energy 37: 95–102.
- Grasa, GS, Abadanes JC, Alonso M, Gonzalez B (2008) Reactivity of high cycled particles of CaO in the carbonation/calcination loop. Chemical Engineering Journal 137: 561–567.
- 8. Chen Z, John G, Jim CL (2007) Study of limestone particle impact attrition.Chemical Engineering Science 62: 867-877.
- Dindore, VY, Brilman, DWF, Feron, PHM, Versteeg GF (2004) CO2 absorption at elevated pressure using hollow fiber membrane contactor. Journal of Membrane Science 235: 99-109.
- Mohammed AJ, Gary TR (2006) Absorption of CO2 in aqueous blends of diglycolamine and morpholine. Chemical Engineering Science 61: 3830-3837.
- 11. Hsein HK, Tan RBH (2006) Life Cycle Investigation of CO2 Recovery and Sequestration. Environmental Science & Technology 40: 4016-4024.
- Gupta H and Fan LS (2002) Carbonation-calcination cycle using high reactivity calcium oxide for carbon dioxide separation from flue gas, Industrial & Engineering Chemistry Research 41: 4035-4042.
- 13. Kohl AL, Nielsen RB (1997) Gas Purification, 5th ed, Gulf Publishing: Houston.
- Filburn T, Helble JJ, Weiss RA (2005) Development of Supported Ethanolamines and Modified Ethanolamines for CO2 Capture. Industrial & Engineering Chemistry Research, 44:1542-1546.
- Rao AB, Rubin ES (2002) A Technical, Economic and Environmental Assessment of Amine-based CO2 Capture Technology for Power Plant Greenhouse Gas Control. Environmental Science & Technology 36: 4467-4475.
- Manovic V, Charland JP, Blamey J, Fennell PS, Lu DY, et al. (2009) Influence of calcination conditions on carrying capacity of CaO-based sorbent in CO2 looping cycles. Fuel 88 :1893-1900.
- Lee SC, Choi BY, Lee TJ, Ryu CK, Ahn YS, et al. (2006) CO2 absorption and regeneration of alkali metal-based solid sorbents. Catalysis Today 111:385-390.
- Fauth DJ, Frommell EA, Hoffman JS, Reasbeck RP, Pennline HW (2005) Eutectic salt promoted lithium zirconate: Novel high temperature sorbent for CO2 capture. Fuel Processing Technology 86 :1503-1521.
- Knuutila H, Svendsen HF, Anttila M (2009) CO2 capture from coal-fired power plants based on sodium carbonate slurry; a systems feasibility and sensitivity study. International Journal of Greenhouse Gas Control 3: 143-151.
- Chen Lee, Chae SC, Lee HJ, Choi SJ, JC Kim (2008) Development of Regenerable MgO-based Sorbent Promoted with K2CO3 for CO2 Capture at Low Temperatures. Environmental Science & Technology 42: 2736-2741.

- Chen Z, Song HS, Portillo M, Lim CJ, Grace JR, et al. (2009) Long-Term Calcination/Carbonation Cycling and Thermal Pretreatment for CO2 Capture by Limestone and Dolomite Energy Fuels 23:1437-1444.
- Alvarez D, Pena M, Borrego AG (2007) Behavior of Different Calcium-Based Sorbents in a Calcination/Carbonation Cycle for CO2 Capture. Energy Fuels 21:1534-1542.
- 23. Lu H, Khan A, Smirniotis PG (2008) Relationship between Structural Properties and CO2 Capture Performance of CaO-based Sorbents Obtained from Different Organometallic Precursors. Industrial & Engineering Chemistry Research 47: 6216-6220.
- Akiti TT, Constant KP, Doraiswamy LK, Wheelock TD (2002) A Regenerable Calcium-Based Core-in-Shell Sorbent for Desulfurizing Hot Coal Gas. Industrial & Engineering Chemistry Research 41: 587-597.
- 25. Zulasmin W (2007) Towards a Sustainable Quarry Industry in Malaysia.
- 26. Zantat Sdn. Bhd. (2009). Limestone Quarry.
- 27. Elan P (2011) Foreign firms buy limestone cheaply for resale at a higher price. The StarOnline.
- Yu FC (2011) Reactivation Mechanism Studies on Calcium-Based Sorbents and its Applications for Clean Fossil Energy Conversion Systems. PhD Dissertation, Ohio State University.
- Ozcan DC (2010) Development of a sorbent for carbon dioxide. MSc. Dissertation, Iowa State University, Ames, Iowa.
- Grasa GS, Abadanes JC, Alonso M, Gonzalez B (2008) Reactivity of high cycled particles of CaO in the carbonation/calcination loop. Chemical Engineering Journal 137: 561-567.
- Bhatia SK, Perlmutter DD (1983) Effect of the product layer on the kinetics of the CO2- lime reaction, American Institute of Chemical Engineers Journal 29: 79-86.
- 32. Abanades JC, Anthony EJ, Lu DY, Alvarez D, Salvador C (2004) Capture of CO2 from combustion gases in a fluidized bed of CaO. American Institute of Chemical Engineers Journal 50: 1614-1622.
- Silaban A, Harrison DP (1995) High temperature capture of carbondioxide: Characteristics of the reversible reaction between CaO(s) and CO2(g). Chemical Engineering Communication 137: 177-190.
- Salvador C, Lu D, Anthony EJ and Abanades JC (2003) Enhancement of CaO for CO2 capture in an FBC environment. Chemical Engineering Journal 96:187-195.
- Abanades JC (2002) The maximum capture efficiency of CO2 using a carbonation/calcination cycle of CaO/CaCO3, Chemical Engineering Journal 90: 303-306.
- 36. Abanades JC, Alvarez D (2003) Conversion limits in the reaction of CO2 with Lime.
- 37. Energy & Fuels 17: 308-315.
- Zhen SL, Ning SC, Yu YH, Hai JH (2005) Synthesis, Experimental Studies and Analysis of a New Calcium-Based Carbon Dioxide Absorbent. Energy & Fuels 19: 447-1452.
- Grasa GS, Abanades JC (2006) CO2 Capture Capacity of CaO in Long Series of Carbonation / Calcination Cycles. Industrial & Engineering Chemistry Research, 45: 8846-8851.
- Laursen K, Duo W, Grace JR, Lim CJ (2004) Cyclic Steam Reactivation of Spent Limestone. Industrial & Engineering Chemistry Research, 43: 5715-5720.
- Iyer MV, Gupta H, Sakadjian BS, Fan LS (2004) Multicyclic Study on the Simultaneous Carbonation and Sulfation of High Reactivity CaO. Industrial & Engineering Chemistry Research 43: pp 3939.
- 42. Sun P, Grace JR, Lim CJ, Anthon E (2007) The Effect of CaO Sintering on Cyclic CO2 Capture in Energy Systems. American Institute of Chemical Engineers 53: 2432-2442.