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Introduction
The history of the civilization on Easter Island has long interested 

archaeologists. The Easter Island is located in the Pacific Ocean, at 
the southeastern point of the Polynesian Triangle. It is famous for 
the culture and monumental stone statues, so called Moai. We know 
from archeological records, that at the time of the initial settlement, the 
island had many species of trees, e.g.,, palm species which grew up to 
15 meters or more. In 1786 comte de La Perouse’s visited to the island 
and found only 2000 inhabitants and no trees. People used the trees 
for construction and transportation of statues. An other factor was the 
extinction of plants species, was the appearance of the Polynesian rat. 
Studies have shown the dramatically effect of the rats in the ecosystem. 
These factors caused the population to collapse.

In 2008, Basener, Brooks, Radin and Wiandt presented an article in 
that, they created a mathematical model [1]. The invasive species model 
is a system of three differential equations, which describes the relations 
between the people, trees and rats. In this model, it is assumed that 
the amount of the resources available for the people is proportional 
to the number of trees. The growth rate of the human population is 
defined by the logistic equation. Analogically, the growth rate of the 
rat population is defined by the similar logistic equation where the 
carrying capacity is the amount of the trees. In the equation for the rat 
population we assume that the rats eat the seeds of the trees and the 
humans also decrease the amount of the trees. The stability property of 
this model is investigated both theoretically and numerically.

In this paper we suggest a natural modification of this model. 
Namely, we will investigate the case where the amount of the rats is 
decreased due to some external factor, e.g., exterminations by the 
people. We investigated the effect of this new added factor to the stability 
property of the model. We show that the system has a conditionally 
stable equilibrium point, and in this case the three populations live 
together. We also made numerical simulations with explicit numerical 
solvers which supports the theoretical result, namely, that the amount 
of the rats decreases because of the harvesting. The paper is organized 
as follows.

We gave the description of the invasive species model, given by 
Basener, Brooks, Radin and Wiandt. We define the equilibrium 
points for the system and investigate their stability. We analyze their 
stability property, by using Roughgarden theorem. We construct the 

discrete models by using the explicit Euler method on uniform mesh. 
We examine four different cases and the numerical results confirm 
our theoretical results. The paper is finished with some conclusion. 
We added an Appendix to the paper which includes some technically 
complex calculations in order to check the conditions of the stability. 

Invasive Species Model
The invasive species model describes the growth rate of the human 

population, the tree resource and the rat population. Trees are the 
primary resources for people, they build houses and canoes for the 
fishing and transporting the statues. The trees represent the primary 
resource for the rats, too.

In this model, we assume that the amount of the resources available 
for the people is proportional to the number of trees. The growth rate of 
the human population is defined by the logistic equation, in which the 
carrying capacity is the amount of trees: 

= 1 .dP PaP
dt T

 − 
 

             (1)

The seeds of the trees are nutriment for the rat population. The 
growth rate of the rat population is defined by the logistic equation and 
the carrying capacity is the amount of the trees, like in the model of the 
human population: 

= 1 .dR RcR
dt T

 − 
 

  (2)

The rats eat the seeds of the tress and the humans decrease the 
amount of the trees, too: 

= 1 .
1

dT b TT hP
dt fR M

 − − +  
  (3)

The system of equations (1-3) yields a system of nonlinear ordinary 
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differential equation. The parameter a shows the growth rate of the 
human population, parameter c represent the growth rate of the 
rat population and parameter b is the growth rate of the trees. The 
parameter f shows the effect of the rats, and h is the harvest by the 
human population. The parameter M denotes the carrying capacity of 
the trees. We measure P in people. The parameter T means the units of 
the amount of trees that would support one human. We measure R in 
the number of rats that would be supported by one tree unit. 

In article [1] the equilibrium points of the system (1-3) and their 
stability are analyzed. 

Definition 1: The points P*, T* and R* are equilibrium points for 
the system (1-3), when they are solutions of the following system of 
algebraic equations: 

*
*

*1 = 0,PaP
T

 
− 

 

*
*

*1 = 0,RcR
T

 
− 

 
                    (4)

*
* *

* 1 = 0.
1

b TT hP
fR M

 
− − +  

Hence, the system (4) results in the following equilibrium points: 

1(0, ,0)M                    (5)

2 (0, , )M M                   (6)

3
( ) ( ), ,0b h M b h M

b b
− − 

 
 

                     (7)

4
( ) ( ) ( ), , .b h M b h M b h M
b fhM b fhM b fhM

 − − −
 + + + 

                    (8)

Our aim is to analyse the stability of these points. 

Definition 2: An equilibrium solution * * * *= ( , , )i i P T R   to an 
autonomous system of first order ordinary differential equations is 
called: 

1. Stable if for every ε > 0, there exists δ > 0 such that every i  
initial values *|| ||<i i δ−  , than denote the solutions * *( ) = ( , )i iu t tΦ   

and ( ) = ( , )i iu t tΦ 

*|| ( ) ( ) ||<i iu t u t ε− . 

2. Asymptotically stable if stable and *|| ( ) ( ) ||= 0lim i i
t

u t u t
→∞

− . 

3. Unstable if is not stable. 

The analysis of the stability can be done with help of the eigenvalues 
of the Jacobian matrix denoted by λi. 

Theorem 1: An equilibrium point is 

1. Stable, if all Re(λi) ≤ 0. 

2. Asymptotically stable, if all Re(λi) < 0. 

3. Unstable, if Re(λi) > 0. 

As it is well-known, an equilibrium of a three-dimensional 
continuous dynamical system is asymptotically stable if and only if 
the real parts of the three eigenvalues of the Jacobian, evaluated at the 
equilibrium, are negative. 

The linear stability conditions are hard to check requires because it 

needs the knowledge of the eigenvalues of the Jacobian. The following 
statement gives an equaivalent formulation of this condition. 

Theorem 2: The linear stability is equivalent to the conditions [2].

( ) < 0tr J

( ) < 0det J

( ) > 0M J∑
( ) ( ) ( ) < 0,M J tr J det J−∑

Where tr(J) denotes the trace, det(J) the determinant of the Jacobian 
matrix and ΣM(J) means the sum of the principal minors. 

Let us analyse the stability properties of the different cases. 

1. In the first case, when the amount of the trees is the carrying 
capacity and there aren’t people and rats on the island, the point 1 is 
linearly unstable. Near the equilibrium point the amount of the people 
and rats decrease, and the trees increase. 

2. In the case of 2, the trees and rats are at the carrying capacity 
and there are no humans. The result is similar to that of the first case, 
so 2 is linearly unstable. 

3. If the equilibrium point is 3, there are no rats, only the human 
population and trees. In this situation the point 3 is unstable. 

4. The last case is the most interesting one, where all the three 
populations (people, trees and rats) live together. The point 4 is 
conditionally stable and the three populations tend to the same 
equilibrium point. 

The above results are given in article [1], where the authors 
investigated the stability of these cases. 

Invasive Species Model with Harvesting
In this section we present a new model, which is obtained by some 

generalization of the system (1-3). As we have seen in Basener et al. [1] 
and Basener et al.[3], the human population and the rat population 
decrease the amount of the trees. We will investigate the case where 
the rats are continuously harvesting. It can be interesting, if we assume 
that, the amount of the rats is decreased, e.g., exterminations by the 
people. We assume that the harvesting function is given as - gR, this 
gives the number of individuals harvested per unit of the time. Hence, 
the systems of equations (1-3) is modified into a form which depends 
on both the growth rate and the harvesting rate:

= 1 .dR RcR gR
dt T

 − − 
 

                  (9)

We assume that we can decrease the amount of the rats, and the 
harvesting is proportional to the number of the rats. In this case instead 
of equation (2), we use the equation (9). With the harvesting, we would 
like to achieve, that the amount of the trees and the human population 
increase. In the presence of harvesting our model turns into the system 

= 1dP PaP
dt T

 − 
 

= 1
1

dT b TT hP
dt fR M

 − − +  
                 (10)

= 1dR RcR gR
dt T

 − − 
 

Where a, b, M, f, h, c and g are given positive parameters. We study 
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is the following: 

6

2

0 0

( ) = 0 .
1 1

0 1 2 1

a
bJ h

gfM
c

g gc c g c
c c

 
 
 
 
 

− −  + −  
  

 
    − − − −        

  

Hence, the eigenvalues of this matrix are: 

1 = ,aλ

2 = ,
1 1

b
gfM
c

λ −
 + − 
 

3 = 2 1 .gc g c
c

λ  − − − 
 

Since λ1 > 0, the equilibrium point 6 is unstable. 

The stability of 7: In this situation there are no rats on the island, 
only the human population and trees. We investigate the stability of the 
equilibrium point 7, the Jacobian matrix has the form 

7

0

( ) = 2 ( ) .

0 0

a a
MJ h h b f b h h
b

c g

− 
 
 − − − −
 
 − 

  

The eigenvalues of this matrix are: 

1 = c gλ −
2 2

2,3
2 ( ) 4 4

= .
2

a b h a b hb h
λ

− − + ± − − +

If the eigenvalues λ2 and λ3 are negative and c<g, which means that 
the harvesting rate of rats is larger than the growth rate of the rats, the 
equilibrium point 7 is stable. 

The stability of 8: The second case is more interesting both 
mathematically and ecologically, because it is the equilibrium that 
corresponds to the coexistence of all three biological populations: the 
people, the trees and the rats. For this point the Jacobian matrix has 
the form 

8 2

2

0
( 2 ) ( )( ) = .

(1 )1 1

0 1 2 1

a a
b M E bfE E MJ h

fR MgM fE
c

g gc c g c
c c

 
 
 
 − 

− − 
− +   + −     
 
    − − − −        


 

We use Theorem (4) and we get the conditions of the stability (5). 
The equilibrium point 8 is conditionally stable. 

Numerical Simulations
In this section we describe the numerical solution of the system by 

using the well-known explicit Euler method. We define a sequence of 
the meshes on the solution domain [0, L]. 

Let 

the existence and the stability of the equilibrium points of this model, 
which has great importance from ecological point of view. 

The system has four equilibrium points, which we get by solving 
the following algebraic system of equations: 

*
*

*1 = 0,PaP
T

 
− 

 
*

* *
*1 = 0,RcR gR

T
 
− − 

 
*

* *
* 1 = 0.

1
b TT hP
fR M

 
− − +  

Hence, the equilibrium points of the system (10) are the following: 

5 (0, ,0)M                     (11)

6 0, , 1 gM M
c

  −  
  

                 (12)

7
( ) ( ), ,0M b h M b h

b b
− − 

 
 

                  (13)

8 , , 1 ,gE E E
c

  −  
  

                 (14)

where we used the notation: 

( )= .
( )

cM b hE
cb fhM c g

−
+ −

                  (15)

Stability of the equilibrium points

The Jacobian-matrix of the system (10) is:

2

2

2

2

2

2 0

( 2 ) ( )( , , ) = .
(1 ) (1 )

20

aP aPa
T T

b M T bfT T MJ P T R h
fR M fR M

cR cRc g
T T

 
− 

 
 − −

− + + 
 

− − 
 

 

For studying the stability of the points, we use this matrix at the 
equilibrium points. 

The stability of 5: The first case shows the state of the island when 
there are no people and rats, and the trees are at their carrying capacity. 
At the equilibrium point 5 the Jacobian has the form 

5

0 0
( ) = 0 .

0 0

a
J h b

c g

 
 − − 
 − 

  

Hence, the eigenvalues of this matrix are: 

1 = ,aλ

2 = ,bλ −

3 = .c gλ −

Since λ1 > 0, the equilibrium point 5 is unstable. 

The stability of 6: In this case we analyze the island before the 
arrival the Polynesian settlements. There are no people on the island, 
only the rat population and trees. The trees are at their carrying 
capacity and the amount of the rats depends on the growth rate c and 
the harvesting rate g. At the equilibrium point 6 the Jacobian matrix 
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= = , = 0,1, , 1, =
1n

Lt n n N
Nτω τ τ + + 

                (16)

be an equisdistant mesh, where N ∈ N and τ is the step-size of the mesh. 
We use the explicit Euler method to solve (10) and we get the following 
system: 

1 = 1n n n
n

n

P P PaP
Tτ

+  −
− 

 
                 (17)

1 = 1
1

n n n
n n

n

T T Tb T hP
fR Mτ

+ −  − − +  
                 (18)

1 = 1 ,n n n
n n

n

R R RcP gR
Tτ

+  −
− − 

 
                (19)

Where Pn, Tn, Rn denote the approximation to the solution of 

the system at time tn, and a, b, c, f, h, g, M are given constants. We 
denote by P(0), T(0) and and R(0) the initial conditions of the system: 
respectively 

0 0 0(0) = , (0) = , (0) =P P T T R R                  (20)

are. Formulas (17)-(20) define a one-step iteration, where in the 
knowledge of (Pn, Tn, Rn) we can directly calculate (Pn + 1, Tn + 1, Rn + 1). 

First we make numerical simulations for the case where, the 
harvesting rate of the rats is zeros (g=0). We choose the parameters 
according to the article radin 2008a. Assume that the growth rate of the 
human population a=0.03, the growth rate of the rats is c=10 and b=1. 
The carrying capacity of trees is M=12000 and the parameter h is 0.25. 
When f=0.001 and g=0, the system (1-3) is stable [4]. 

Figure 1 shows the numerical solution the system of differential 

Figure 1: The numerical solution when the harvest rate of the rats is g=0.

Figure 2: The numerical solution when the harvest rate of the rats is g=5.
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Figure 3: The numerical solution when the harvest rate of the rats is g=0.5.

equations. The equilibrium point is linearly stable, people, trees and 
rats tend to the same value. 

We make numerical simulations to investigate the stability of the 
system. We set the growth rate of the human population to a=0.03, the 
growth rate of the rats to c=10 and b=1. The carrying capacity of trees 
is M=12000 and the parameter h is 0.25. When f=0.001 and g=5, the 
equilibrium point 8 is stable. 

Figure 2 shows the numerical solution of the system of differential 
equations. The equilibrium point is linearly stable, people and trees 
tend to the same value. The harvest rate of the rat population is large, 
hence the size of the population decreases. 

In the following case we set the growth rate of the human population 

Figure 4: The numerical solution when the harvest rate of the rats is g=15.

to a=0.03, the growth rate of the rats to c=10 and b=1. The carrying 
capacity of trees is M=12000 and the parameter h is 0.25. When f=0.001 
and g=0.5, the equilibrium point 8 is stable. 

Figure 3 shows the numerical solution of the system of differential 
equations. The equilibrium point is linearly stable, people and trees tend 
to the same value. The harvest rate of the rat population is small, hence 
the number of the rats is close to that of the other two populations. 

In the next case, we set the growth rate of the human population 
to a=0.03, the growth rate of the rats is c=10 and b=1. The carrying 
capacity of trees is M=12000 and the parameter h is 0.25. When f=0.001 
and g=15, the equilibrium point 7 is stable. 

Figure 4 shows the numerical solution of the system of differential 
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equations. The equilibrium point is stable, people and trees tend to the 
same value. The harvest rate of the rat population is larger than the 
growth rate of the rats, hence the number of the rats tends to zero. 

Conclusion
The invasive species model describes the connections between 

three species: people, trees and rats. The model is interesting both 
mathematically and from a biological point of view. We changed the 
model and investigated the equilibrium points and stability of the 
invasive species model with harvesting. We have shown that the system 
has a conditionally stable equilibrium point, in this case the three 
populations live together. We made numerical simulations, too, and 
saw the amount of the rats decrease because of the harvesting. 

In the future we plan to extend the model in different other 
direction, too, by involving some further effects, e.g., the diffusion of 
the seeds of then trees. We also plan to develop the numerical model 
in different ways. Namely, by using the operator splitting method to 
increase the efficiency of the model. The use of implicit numerical 

models may increase the numerical stability of the discrete model 
therefore we also aim to involve such approach into the numerical 
modelling. 
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