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Abstract
In this paper, we define invariant tensor product and study invariant tensor products associated with discrete 

series representations. Let G(V1)×G(V2) be a pair of classical groups diagonally embedded in G(V1⊕V2). Suppose that 
dimV1<dimV2. Let π be a discrete series representation of G(V1⊕V2). We prove that the functor *)1(VG⊗π  maps unitary 
representations of G(V1) to unitary representations of G(V2). Here we enlarge the definition of unitary representations 
by including the zero dimensional representation. 

Invariant Tensor Products
Various forms of invariant tensor products appeared in the literature 

implicitly, for example, in Schur’s orthogonality for finite groups [1]. 
In many cases, they are employed to study the space HomG(π1, π2) 
where one of the representations π1 and π2 is irreducible. In this paper, 
we formulate the concept of invariant tensor product uniformly. We 
also study the invariant tensor functor associated with discrete series 
representations for classical groups. For motivations and applications 
[2-4].

Definition 1

Let G be a locally compact tomography group and dg be a left 
invariant Haar measure. Let (,Hπ) and 1 1

( , )Hππ  be two unitary 
representations of G. Let V and V1 be two dense subspaces of Hπ and 

1
Hπ . Formally, define the averaging operator

*
1 1: ( )V V V V⊗ → ⊗ 

as follows, ∀u,v∈V, u1,v1∈V1, 

(v⊗v1)(uu1)=∫G((π⊗π1)(g)(v⊗v1),(uu1))dg (1)

=∫G(π(g)v,u)(π1(g)v1,u1)dg. (2)

 Suppose that  is well-defined. The image of  will be called the 
invariant tensor product. It will be denoted by V⊗GV1. Whenever we 
use the notation V⊗GV1, we assume VGV1 is well-defined, that is, the 
integral (1) converges for all u,vV,u1,v1∈V1. Denote (v⊗v1) by vGv1. 
Define

(v⊗Gv1,u⊗Gu1)G=∫G(π(g)v,u)(π1(g)v1,u1)dg.

For any unitary representation (π,) of G, let (πc,c) be the 
same unitary representation of G equipped with the conjugate linear 
multiplication. If V is a subspace of , let Vc be the corresponding 
subspace of c.

Lemma 1.1

Let G be a unimodular group. Suppose that V⊗GV1 is well-defined. 
Then the form (,)G is a well-defined Hermitian form on V⊗GV1.

 The main result proved in this paper is as follows.

Theorem 1.1: Let G(m+n) be a classical group of type I with 
m>n. Let (G(n),G(m)) be diagonally embedded in G (see Def. 2).
Suppose that (π,Hπ) is a discrete series representation of G(m+n) and
(1,H1) is a unitary representation of G(n). Let π

∞  be the space of 
smooth vectors in Hπ. Then ( ) 1G nπ

∞ ⊗   is well-defined. Suppose 
that ( ) 1 0G nHπ

∞ ⊗ ≠ . Then (,)G(n) is positive definite. Furthermore, 
( ) 1 ( )( ,(,) )G n G nHπ

∞ ⊗   completes to a unitary representation of G(m).

Example: π1 Irreducible
Example I

Let G be a compact group. Let (π,Hπ) and 1 1
( , )Hππ  be two unitary 

representations of G. Then 
1GH Hπ π⊗  is always well-defined. Suppose 

that π1 is irreducible. Then the dimension of 
1GH Hπ π⊗  is the the 

multiplicty of *
1π  occuring in Hπ.

Example II

Let G be a real reductive group. Let π and π1 be two discrete series 
representations. Then 

1GH Hπ π⊗  is always well-defined. It is one 
dimensional if and only if π1≅ π∗. Otherwise, it is zero dimensional.

Theorem 2.1: Let 1 be an irreducible unitary representation of G. 
Suppose that V1 and V are both closed under the action of G. Suppose 
that V1⊗GV is well-defined. Then  induces an injection from V1⊗GV 
to 1Hom ( , )c h

G V V , the space of G-equivariant homomorphisms from 
Vc to the Hermitian dual 1

hV .

Proof: For each v1∈V1, v,u∈V, define 1 1( )( ) hv v u V⊗ ∈  as follows:

∀u1∈V1, (v1⊗v)(u)(u1)=(v1⊗v,u1⊗u)G.

We have for every λ∈,

(v1v)(u)(u1)=λ(v1⊗v)(u)(u1);

(v1⊗λv)(u)(u1)=(v1⊗v)(u)(u1);

1 1 1 1( )( )( ) = ( )( )( );v v u u v v u uλ λ⊗ ⊗ 

1 1 1 1( )( )( ) = ( )( )( ).v v u u v v u uλ λ⊗ ⊗ 

We see that (v1⊗v)(u) is in the Hermitian dual of V1. In addition, 
(v1⊗v) is G-equivariant: 	

(v1⊗v)(π(g)u)(u1)=∫hG(1(h)v1,u1)(π(h)v,π(g)u)dh	 (3)
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=∫hG(1(h)v1.u1)(π(g−1h)v,u)dh			                  (4)

=∫hG(1(gh)v1,u1)(π(h)v,u)dh			                  (5)

=∫hG(1(h)v1,π(g−1)u1)(π(h)v,u)dh			                 (6)

=(v1⊗v)(u)(1(g−1)u1)				                  (7)

1 1 1= [ ( ) ( )( )]( ).h g v v u uπ ⊗ 			                  (8)

Here dh is a left invariant measure if G is not unimodular. Now it 
is easy to see that (v1⊗v)(u)=0 for every u if and only if v1⊗Gv=0. So

1 1: Hom ( , )c h
G GV V V V⊗ →

is an injection.

Corollary 2.1: Under the same assumption as in Theorem 2.1, let 
G be a real reductive group and K a maximal compact Lie group of G. 
Suppose that V and V1 are both smooth and K-finite. Then  induces an 
injection from V1⊗GV into Hom

g,K(Vc,V1).

 Proof: When V is K-finite, (v1⊗)(u) will land in the K-finite 
subspaces of 1

hV  which is isomorphic to V1.

A Geometric Realization
Let G be a Lie algebra group and dg a left invariant Haar measure. 

Let X be a manifold with a continuous free (right) G action. Suppose 
that X/G is a smooth manifold. Let (π,) be a unitary representation of 
G. For any f∈Cc(X), v∈, define

0(f⊗v)(x)=∫Gf(xg)π(g)vdg.

Then 0(f⊗v) is a -valued function on X. We shall see that it realizes 
f⊗Gv in the following sense.

Theorem 3.1: Let G be a Lie group and dg a left invariant Haar 
measure. Let X be a manifold with a continuous free (right) G action 
such that the topological quotient X/G is a smooth manifold. Suppose 
there exist measures (X,µ) and (X/G,d[x]) such that

Xf(x)dµ(x)=∫[x]∈ X/G∫ Gf(xg)dgd[x].

Let Cc(X)be the set of continuous functions with compact support. 
Let (π,) be a representation of G. Then 0(f⊗v)∈Cc(XG,X/G) where 
Cc(XG,X/G) is the set of continuous compactly supported sections of 
the vector bundle

X×G→ X/G.

Furthermore,

Cc(X)⊗G≅0(Cc(X)⊗),

and for every fCc(X) and v,

(f⊗Gv,fGv)G=(0(f⊗v),0(f⊗v))X/G.

 Proof: Let f∈Cc(X) and v∈. It is easy to see that 0(f⊗v) is 
compactly supported in X/G. In addition 	

0 1 1 0
1 1 1 1G G

( )( ) = ( ) ( ) d = ( ) ( ) = ( ) ( )( ).f v xg f xg g g v g f xg g g vdg g f v xπ − −⊗ π π ⊗∫ ∫ 

So 0(f⊗v)∈Cc(X×G, X/G). Observe that 

(f⊗Gv,fGv)G					                      (9)

=∫G(R(g)f,f)(π(g)v,v)dg				                    (10)

= ( ) ( ) ( ( ) , )
G X

f xg f x dx g v v dgπ∫ ∫ 			                     (11)

1 1 1/
= ( ) ( )( ( ) , ) [ ]

G X G G
f xg g f xg g v v dg d x dgπ∫ ∫ ∫ 	                 (12)

1
1 1 1/

= ( ) ( )( ( ) , ) [ ]
X G G G

f xg f xg g g v v dg dgd xπ −∫ ∫ ∫ 	                 (13)

1 1 1/
= ( ) ( )( ( ) , ( ) ) [ ]

X G G G
f xg f xg g v g v dg dgd xπ π∫ ∫ ∫ 	                  (14)

=∫ X/G(∫Gf(xg)(g)vdg,∫Gf(xg1)π(g1)vdg1)d[x]		                (15)

 Absolute convergence are guaranteed since f(g) is compactly 
supported. Notice that

	
0(f⊗v)(x)=∫Gf(xg)π(g)vdg.

We have

	  
(f⊗Gv,fGv)G(0(f⊗v),0(f⊗v))X/G.

Clearly, Cc(X)⊗G≅0(Cc(X)⊗).

Invariant Tensor Product and Representation Theory
Definition 2

Let G be a classical group that preserves a nondegenerate sesquilinear 
form  Ω. Write G=G(V,Ω) or simply G(V), where V is a vector field 
over =,, equipped with the nondegenerate sesquilinear form 
Ω. Let V=V1V2 such that Ω(V1,V2)=0. Let 1 1 1

= ( , | )VG G V Ω  and 
2 2 2

= ( , | )VG G V Ω . For each g1G1,g2G2, let (g1,g2) acts on V1⊕V2=V 
diagonally. We say that G1×G2 is diagonally embedded in G.

Definition 3

Let (G1,G2) be diagonally embedded in G. Let (π,π) be a unitary 
representation of G and 1 1

( , )ππ   be a unitary representation of G1. 
Let V be a subspace of π

∞  that is invariant under G2. Let V1 be a 
subspace of 

1π
∞  such that 11GV V⊗  is well-defined. Define a linear G2-

representation 1 11
( , )G GV Vπ π⊗ ⊗  as follows:

1 2 1 2 1 2 2 1 11 1 1
( )( )( ) = ( ) ( , , ).G G Gg u u g u u g G u V u Vπ π π⊗ ⊗ ⊗ ∈ ∈ ∈

Since the Lie group action of G2 commutes with the integration over 
G1, the action of G2 on 11GV V⊗  is well-defined.

 The linear representation 1 11 1
( , )G GV Vπ π⊗ ⊗  is not neccessarily 

continuous because no topology has been defined on 11GV V⊗ .

Lemma 4.1

The form 
1

(,)G  on 11GV V⊗  is G2-invariant.

Proof: Let u,v∈V;u1,v1∈V1 and g2∈G2. Write 11
= Gσ π π⊗ . Then

2 1 11 1 1
( ( )( ), )G G Gg u u v vσ ⊗ ⊗ 			                 (16)

1 2 1 1 1 1 1
1

= ( ( ) ( ) , )( ( ) , )
G

g g u v g u v dgπ π π∫ 		                 (17)

2 1 1 1 1 1 1
1

= ( ( ) ( ) , )( ( ) , )
G

g g u v g u v dgπ π π∫ 		                (18)
1

1 2 1 1 1 1 1
1

= ( ( ) , ( ) )( ( ) , )
G

g u g v g u v dgπ π π−∫ 		                  (19)
1

1 2 11 1 1
= ( , ( ) )G G Gu u g v vπ −⊗ ⊗ 			                   (20)

1
1 2 11 1 1

= ( , ( )( ))G G Gu u g v vσ −⊗ ⊗ 			                 (21)

Hence 
1

(,)G  is G2-invariant.

ITP Associated with Discrete Series Representations
Let G(m+n) be a classical group preserving a nondegenerate 

sesquilinear form. Let (G(n), G(m)) be diagonally embedded in G. 
For any irreducible unitary representation  of G(m+n), let π

∞  be the 
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Frechet space of smooth vectors.

Theorem 5.1: Suppose that (π,π ) is a discrete series 
representation of G(m+n). Suppose that m>n and (π1,H1) is a unitary 
representation of G(n). Then ( ) 1G nπ

∞ ⊗   is well-defined. Suppose 
that ( ) 1 0G nπ

∞ ⊗ ≠  . Then (,)G(n) is positive definite. Furthermore, 

( ) 1 ( )( ,(,) )G n G nπ
∞ ⊗   completes to a unitary representation of G(m).

 The key of the proof is to realize ( ) 1G nπ
∞ ⊗   as a subspace of the 

L2-sections of the Hilbert bundle

1 G(n) G(m+n)→ G(n)\ G(m+n).

Proof: Write G= G(m+n). Fix a maximal compact subgroup K of 
G such that

( ) = ( ), ( ) = ( )K m K G m K n K G n∩ ∩

are maximal compact subgroups of G(m) and G(n) respectively. Let a 
be a maximal Abelian subalgebra in the orthogonal complement of k 
with respect to the Killing form (,)K, such that

	 a=(a∩g(m))⊕(a∩g(n)).

Let A be the analytic group generated by a. The function log:Aa is 
well-defined. Let H2=(H,H)K for each Ha.

Since (π,) is a discrete series representation, without loss of 
generality, realize  on a right K-finite subspace of L2(G). So  ⊆L2(G)K.

Let ΞG(g) be Harish-Chandra’s basic spherical function. Let CS(G) 
be the space of Harish-Chandra’s Schwartz space. It is well-known that 
every ( )f CS G∞

π∈ ⊆   satisfies f(g) ≤CfΞG(g) for some Cf (see for 
example Ch. 12.4 [?]). For every h∈G, f(hg)≤ΞG(hg)≤ChCfΞG(g) for a 
constant Ch. Observe that π

∞  is G(m)-invariant.

Fix a positive root system in ∑(g,a). Let A+ be the corresponding 
closed Weyl Chamber. Let  be the half sum of positive roots. Let 

2, ( )u v L Gπ
∞∈ ⊆ . Then L(g)u,v≤Cu,vG(g) for a positive constant Cu,v 

[5,6]. Notice that for aA+, k1,k2∈K,

ΞG(k1ak2)≤C(1+logaqexp(ρ(loga))

for some q0 and C>0. Let ρ(n) be the half sum of positive roots of 
the restricted root system ∑(g(n),a∩g(n)). Let (a∩g(n))+ be the 
positive Weyl chamber of a∩g(n) with respect to the root system 
∑(g(n),a∩g(n)). Since

ρ
a∩g(n)(H)>2ρ(n)(H) (H∈(a∩g(n))+),

ΞG(g)G(n)∈L1(G(n)). It follows that (L(g)u,v)G(n)L
1(G(n)) for every 

,u v π
∞∈ . Notice that g1∈G(n)(π1(g1)u1,v1) is always bounded for 

u1,v1∈1. We see that

∫G(n)(π(g1)u,v)(π1(g1)u1,v1)dg1

always converges. So ( ) 1G nπ
∞ ⊗   is well-defined. Now suppose that 

( ) 1 0G nπ
∞ ⊗ ≠  .

Notice that 2 ( )Ku L Gπ
∞∈ ⊆  is bounded by a multiple of ΞG(g). So 

1
( )| ( ( ))G nu L G n∈ . For each u π

∞∈  and u1∈1, define 0(u⊗u1) to be 

the 1-valued function on G:
1

1 1 1 1 1 1 1 1 1 1( ) ( )1 1
[ ( ) ]( ) ( ) = ( ) ( )

g G n g G n
g G L g u g g u dg u g g g u dgπ π−

∈ ∈
∈ → ∫ ∫

in the strong sense. Notice that for gG,h1∈G(n),

0
1 1 1 1 1 1 1 1( )1

( )( ) = [ ( ) ]( ) ( )
g G n

u u h g L g u h g g u dg
∈

⊗ π∫ 	                (22)

1
1 1 1 1 1 1( )1

= ( ) ( )
g G n

u g h g g u dgπ−

∈∫ 			                (23)

1
1 1 1 1 1 1( )1

= ( ) ( )
g G n

u g g h g u dgπ−

∈∫ 		                                   (24)

1 1 1 1 1 1( )1
= ( )[ ( ) ( ) ( ) ]

g G n
h L g u g g u dgπ π

∈∫ 		                (25)

=π(h1)L0(u⊗u1)(g)				                   (26)

So L0(u⊗u1) can be regarded as a section of the Hilbert bundle

1G(n) ×GG(n)\G.

In addition, we have 

(u⊗G(n)u1,v⊗G(n)v1)G(n)				                 (27)

=∫ G(n)(L(g1)u,v)(π1(g1)u1,v1)dg1			                (28)

1
1 1 1 1 1 1( )

= ( ) ( ) ( ( ) , )  
G n G

u g g v g dg g u v dgπ−∫ ∫ 		                (29)

1
1 1 1 1 1 1 1 1 1( ) ( ) \ ( )

= ( ) ( ) [ ]( ( ) , )  
G n G n G G n

u g h g v h g dh d g g u v dgπ−∫ ∫ ∫ 	                (30)

1
1 1 1 1 1 1 1 1 1 1 1 1( ) \ ( ) ( )

= ( ) ( )( ( ) , ) [ ] ( = ) 
G n G G n G n

u g h g v h g g u v dg dh d g g h gπ−

×∫ ∫   (31)

1
1 1 1 1 1 1 1 1 1( ) \ ( ) ( )

= ( ) ( )( ( ) , ) [ ]
G n G G n G n

u g g v h g h g u v dg dh d gπ−

×∫ ∫ 	             (32)

1 1
1 1 1 1 1 1 1 1 1( ) \ ( ) ( )

= ( ) ( )( ( ) , ( ) ) [ ]
G n G G n G n

u g g v h g g u h v dg dh d gπ π− −

×∫ ∫     (33)

1 1
1 1 1 1 1 1 1 1 1 1( ) \ ( ) ( )

= ( ) ( )( ( ) , ( ) ) [ ]
G n G G n G n

u g g v h g g u h v dg dh d gπ π− −

×∫ ∫       (34)

=(0(u⊗u1),0(v⊗v1)) G(n)\G			                (35)

where G(n)\G is equipped with a right G invariant measure. Eqn. (31) 
is valid because the integrative Eqn. (29) converges absolutely. In fact, 
we have

∫ G(n)×Gu(h1g)v(g)dgdh1<∞.

To see this, recall that u(g),v(g)∈CS(G). In particular, for any N>0 
and a∈A+, k1,k2∈K, there exists Cu,N>0 such that:

u(k1ak2)≤Cu,Nloga−NΞG(k1ak2).

Write WN(g)=loga−NG(k1ak2) for g= k1ak2. Then there also exists 
Cv,N>0 such that

v(g)≤Cv,NWN(g).

Fix an N such that WN(G)∈L2(G). In particular, WN(G)∈KL2(G)K. 
Observe that the function

h∈G(L(h)u(g),v(g))

is bounded by a multiple of (L(h)WN(g),WN(g)), which, by a Theorem of 
Cowling-Haagerup-Howe [5], is bounded by a multiple of ΞG(g). Hence

∫G(n)Gu(h1g)v(g)dgdh1<∫G(n)(∫Gu(h1g)v(g)dg)dh1<∫G(n)CΞG(h1)
dh1<∞.

Eqn. (29) converges absolutely. Therefore Eqn. (31) holds.

Now we have

(u⊗G(n)u1,v⊗G(n)v1)G(n)=(0(u⊗u1),0(v⊗v1))G(n)Γ.
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It follows that 0
1 1( ) ( )π π

∞ ∞⊗ ≅ ⊗      . Realize ( ) 1G nπ
∞ ⊗   as 

0
1( )π

∞ ⊗   , which is a subspace of L2-sections of the Hilbert bundle:

1G(n)×GG(n)\G.

Clearly (,)G(n) is positive definite. Let ( ) 1G nπ
∞ ⊗   be the completion 

of ( ) 1 ( )( , (,) )G n G nπ
∞ ⊗  .

Since G(m) acts on ∞π  and it commutes with G(n), G(m) acts 
on ( ) 1G nπ

∞ ⊗   and it preserves (,)G(n). So the action of each g2∈G(m) 
can be extended into a unitary operator on ( ) 1G nπ

∞ ⊗  . The group 
structure is kept in this completion essentially due to the fact that each 
extension is unique. Therefore ( ) 1 ( )( ,(,) )G n G nπ

∞ ⊗   completes to a 
unitary representation of G(m).

Definition 4

Let ∏u(G) be the unitary dual of G. Suppose that m>n. Let π be a 
discrete series representation of G(m+n). We denote the functor from 
π1 to the completion of ( ) 1 ( )( ,(,) )G n G nπ

∞ ⊗   by ITπ. If ITπ(1)0, ITπ(π1) 
is a unitary representation of G(m). Regarding the zero dimensional 
representation as a unitary representation, ITπ defines a functor from 
unitary representations of G(n) to unitary representations of G(m).

Conclusion
One natural question arises. That is, if π1 is irreducible, is ITπ(1) 

irreducible? This is beyond the scope of this paper. In fact, this problem 
is quite difficult. In general, ITπ(π1) is not irreducible. However, for 
a certain holomorphic discrete series representation π, ITπ(π1) will 
indeed be irreducible. For the time being, it is not clear which discrete 
series representation π has such a property. This question may be 
intrinsically related to the cohomology induction [7].

References

1. Serre JP (1977) Linear Representations of Finite Groups. Springer-Verlag 42.

2. Li JS (1990) Theta Lifting for Unitary Representations with Nonzero
Cohomology. Duke Mathematical Journal 61: 913-937.

3. He H (2000) Theta Correspondence I-Semistable Range: Construction and
Irreducibility. Communications in Contemporary Mathematics 2: 255-283.

4. He H, On the Gan-Gross-Prasad Conjecture for U(p,q), to appear.

5. Cowling M, Haagerup U, Howe R (1988) Almost L2 matrix coefficients. J Reine 
Angew Math 387: 97-110.

6.	 He H (2009) Bounds on Smooth Matrix Coefficients of L2 spaces. Selecta
Mathematica 15: 419-433.

7.	 Knapp A, Vogan D (1995) Cohomological induction and unitary representations. 
Princeton University Press, Princeton, NJ.

http://link.springer.com/book/10.1007%2F978-1-4684-9458-7
http://dx.doi.org/10.1215/S0012-7094-90-06135-6
http://dx.doi.org/10.1215/S0012-7094-90-06135-6
https://eudml.org/doc/153027
https://eudml.org/doc/153027
http://dx.doi.org/10.1007/s00029-009-0003-5
http://dx.doi.org/10.1007/s00029-009-0003-5
http://press.princeton.edu/titles/5738.html
http://press.princeton.edu/titles/5738.html

	Title
	Corresponding author
	Abstract
	Invariant Tensor Products 
	Definition 1 
	Lemma 1.1 

	Example: π1 Irreducible 
	Example I 
	Example II 

	A Geometric Realization 
	Invariant Tensor Product and Representation Theory 
	Definition 2 
	Definition 3 
	Lemma 4.1 

	ITP Associated with Discrete Series Representations 
	Conclusion 
	References 

