Journal of Generalized Lie Theory and Applications

Open Access

Invariant Tensor Product

He H*

Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803, USA

Abstract

In this paper, we define invariant tensor product and study invariant tensor products associated with discrete series representations. Let $G(V_1) \times G(V_2)$ be a pair of classical groups diagonally embedded in $G(V_1 \oplus V_2)$. Suppose that $\dim V_1 < \dim V_2$. Let π be a discrete series representation of $G(V_1 \oplus V_2)$. We prove that the functor $\pi \otimes_{G(V_1)}^*$ maps unitary representations of $G(V_1)$ to unitary representations of $G(V_2)$. Here we enlarge the definition of unitary representations by including the zero dimensional representation.

Invariant Tensor Products

Various forms of invariant tensor products appeared in the literature implicitly, for example, in Schur's orthogonality for finite groups [1]. In many cases, they are employed to study the space $Hom_G(\pi_1, \pi_2)$ where one of the representations π_1 and π_2 is irreducible. In this paper, we formulate the concept of invariant tensor product uniformly. We also study the invariant tensor functor associated with discrete series representations for classical groups. For motivations and applications [2-4].

Definition 1

Let G be a locally compact tomography group and dg be a left invariant Haar measure. Let (H_{π}) and (π_1, H_{π_1}) be two unitary representations of G. Let V and V_1 be two dense subspaces of H_{π} and H_{π_1} . Formally, define the averaging operator

$$\mathcal{L}: V \otimes V_1 \to (V \otimes V_1)^*_{\mathbb{R}}$$

as follows, $\forall u, v \in V, u_1, v_1 \in V_1$,

$$\mathcal{L}(v \otimes v_1)(uu_1) = \int_G ((\pi \otimes \pi_1)(g)(v \otimes v_1), (uu_1)) dg \tag{1}$$

$$= \int_{G} (\pi(g)v, u)(\pi_{1}(g)v_{1}, u_{1}) dg.$$
⁽²⁾

Suppose that \mathcal{L} is well-defined. The image of \mathcal{L} will be called the invariant tensor product. It will be denoted by $V \otimes_G V_1$. Whenever we use the notation $V \otimes_G V_1$, we assume $V_G V_1$ is well-defined, that is, the integral (1) converges for all $u, vV, u_1, v_1 \in V_1$. Denote $\mathcal{L}(v \otimes v_1)$ by $v_G v_1$. Define

$$(v \otimes_{G} v_{1}, u \otimes_{G} u_{1})_{G} = \int_{G} (\pi(g)v, u) (\pi_{1}(g)v_{1}, u_{1}) dg.$$

For any unitary representation (π,\mathcal{H}) of G, let $(\pi^{c},\mathcal{H}^{c})$ be the same unitary representation of G equipped with the conjugate linear multiplication. If V is a subspace of \mathcal{H} , let V^{ε} be the corresponding subspace of \mathcal{H}^{c} .

Lemma 1.1

Let *G* be a unimodular group. Suppose that $V \otimes_G V_1$ is well-defined. Then the form (,)_{*G*} is a well-defined Hermitian form on $V \otimes_G V_1$.

The main result proved in this paper is as follows.

Theorem 1.1: Let G(m+n) be a classical group of type I with m > n. Let (G(n), G(m)) be diagonally embedded in G (see Def. 2). Suppose that (π, H_{π}) is a discrete series representation of G(m+n) and $(_1, H_1)$ is a unitary representation of G(n). Let $\mathcal{H}_{\pi}^{\infty}$ be the space of smooth vectors in H_{π} . Then $\mathcal{H}_{\pi}^{\infty} \otimes_{G(n)} \mathcal{H}_1$ is well-defined. Suppose that $H_{\pi}^{\infty} \otimes_{G(n)} \mathcal{H}_1 \in 0$. Then $(,)_{G(n)}$ is positive definite. Furthermore, $(H_{\pi}^{\infty} \otimes_{G(n)} \mathcal{H}_1, (,)_{G(n)})$ completes to a unitary representation of G(m).

Example: π_1 Irreducible

Example I

Let *G* be a compact group. Let (π, H_{π}) and (π_1, H_{π_1}) be two unitary representations of *G*. Then $H_{\pi} \otimes_G H_{\pi_1}$ is always well-defined. Suppose that π_1 is irreducible. Then the dimension of $H_{\pi} \otimes_G H_{\pi_1}$ is the the multiplicity of π_1^* occuring in H_{π} .

Example II

(

Let *G* be a real reductive group. Let π and π_1 be two discrete series representations. Then $H_{\pi} \otimes_G H_{\pi_1}$ is always well-defined. It is one dimensional if and only if $\pi_1 \cong \pi^*$. Otherwise, it is zero dimensional.

Theorem 2.1: Let 1 be an irreducible unitary representation of *G*. Suppose that V_1 and *V* are both closed under the action of *G*. Suppose that $V_1 \otimes_G V$ is well-defined. Then \mathcal{L} induces an injection from $V_1 \otimes_G V$ to $\operatorname{Hom}_G(V^c, V_1^h)$, the space of *G*-equivariant homomorphisms from $V^{\mathfrak{e}}$ to the Hermitian dual V_1^h .

Proof: For each $v_1 \in V_1$, $v, u \in V$, define $\mathcal{L}(v_1 \otimes v)(u) \in V_1^h$ as follows:

$$\forall u_1 \in V_1, \mathcal{L}(v_1 \otimes v)(u)(u_1) = (v_1 \otimes v, u_1 \otimes u)_G.$$

We have for every $\lambda \in \mathbb{C}$,

$$\mathcal{L}(v_1v)(u)(u_1) = \lambda \mathcal{L}(v_1 \otimes v)(u)(u_1);$$

$$v_1 \otimes \lambda v)(u)(u_1) = \mathcal{L}(v_1 \otimes v)(u)(u_1);$$

 $\mathcal{L}(v_1 \otimes v)(\lambda u)(u_1) = \overline{\lambda} \mathcal{L}(v_1 \otimes v)(u)(u_1);$

$$\mathcal{L}(v_1 \otimes v)(u)(\lambda u_1) = \lambda \mathcal{L}(v_1 \otimes v)(u)(u_1).$$

We see that $\mathcal{L}(v_1 \otimes v)(u)$ is in the Hermitian dual of V_1 . In addition, $\mathcal{L}(v_1 \otimes v)$ is *G*-equivariant:

$$\mathcal{L}(v_1 \otimes v)(\pi(g)u)(u_1) = \int_{hG} ((h)v_1, u_1)(\pi(h)v, \pi(g)u)dh$$
(3)

*Corresponding author: He H, Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803, USA, Tel: 1 225-578-1665; E-mail: hongyu@math.lsu.edu

Received January 19, 2017; Accepted January 25, 2017; Published February 03, 2017

Citation: He H (2017) Invariant Tensor Product. J Generalized Lie Theory Appl 11: 252. doi:10.4172/1736-4337.1000252

Copyright: © 2017 He H. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

$= \int_{hG} ({}_{1}(h)v_{1}.u_{1})(\pi(g^{-1}h)v,u)dh$	(4)
$=\int_{hG}(gh)v_1,u_1(\pi(h)v,u)dh$	(5)

 $= \int_{hG} ((h)v_1, \pi(g^{-1})u_1)(\pi(h)v, u) dh$ (6)

$$=\mathcal{L}(v_1 \otimes v)(u)(_1(g^{-1})u_1) \tag{7}$$

$$= [\pi_1^h(g)\mathcal{L}(v_1 \otimes v)(u)](u_1).$$
(8)

Here *dh* is a left invariant measure if *G* is not unimodular. Now it is easy to see that $\mathcal{L}(v_1 \otimes v)(u)=0$ for every *u* if and only if $v_1 \otimes_G v=0$. So

$$\mathcal{L}: V_1 \otimes_G V \to \operatorname{Hom}_G(V^c, V_1^h)$$

is an injection.

Corollary 2.1: Under the same assumption as in Theorem 2.1, let *G* be a real reductive group and *K* a maximal compact Lie group of *G*. Suppose that *V* and *V*₁ are both smooth and *K*-finite. Then \mathcal{L} induces an injection from $V_1 \otimes_G V$ into Hom_{*a*, $\kappa(V^*, V_1)$.}

Proof: When V is K-finite, $\mathcal{L}(v_1 \otimes)(u)$ will land in the K-finite subspaces of V_1^h which is isomorphic to V_1 .

A Geometric Realization

Let *G* be a Lie algebra group and *dg* a left invariant Haar measure. Let *X* be a manifold with a continuous free (right) *G* action. Suppose that *X*/*G* is a smooth manifold. Let (π, \mathcal{H}) be a unitary representation of *G*. For any $f \in C_c(X)$, $v \in \mathcal{H}$, define

 $\mathcal{L}^{0}(f \otimes v)(x) = \int_{C} f(xg) \pi(g) v dg.$

Then $\mathcal{L}^0(f \otimes \nu)$ is a -valued function on *X*. We shall see that it realizes $f \otimes_G \nu$ in the following sense.

Theorem 3.1: Let *G* be a Lie group and dg a left invariant Haar measure. Let *X* be a manifold with a continuous free (right) *G* action such that the topological quotient *X*/*G* is a smooth manifold. Suppose there exist measures (*X*, μ) and (*X*/*G*,d[x]) such that

 $\int_{X} f(x) d\mu(x) = \int_{[x] \in X/G} \int_{G} f(xg) dg d[x].$

Let $C_c(X)$ be the set of continuous functions with compact support. Let (π,\mathcal{H}) be a representation of G. Then $\mathcal{L}^0(f\otimes \nu) \in C_c(X_C\mathcal{H},X/G)$ where $C_c(X_G\mathcal{H},X/G)$ is the set of continuous compactly supported sections of the vector bundle

 $X \times_G \to X/G.$

Furthermore,

 $C_{c}(X) \otimes_{C} \mathcal{H} \cong \mathcal{L}^{0}(C_{c}(X) \otimes \mathcal{H}),$

and for every $fC_c(X)$ and $v\mathcal{H}$,

 $(f \otimes_G v, f_G v)_G = (\mathcal{L}^0(f \otimes v), \mathcal{L}^0(f \otimes v))_{X/G}.$

Proof: Let $f \in C_c(X)$ and $v \in \mathcal{H}$. It is easy to see that $\mathcal{L}^0(f \otimes v)$ is compactly supported in X/G. In addition

$$\mathcal{L}^{0}(f \otimes v)(xg_{1}) = \int_{G} f(xg_{1}g)\pi(g)vdg = \int_{G} f(xg)\pi(g_{1}^{-1}g)vdg = \pi(g_{1})^{-1}\mathcal{L}^{0}(f \otimes v)(x).$$

So
$$\mathcal{L}^0(f \otimes v) \in C_c(X \times_c, X/G)$$
. Observe that

 $(f \otimes_G \nu, f_G \nu)_G \tag{9}$

 $= \int_{G} (R(g)f_{f})(\pi(g)v, v) dg$ ⁽¹⁰⁾

$$= \int_{G} \int_{V} f(xg) \overline{f(x)} dx(\pi(g)v, v) dg$$
(11)

$$= \int_{G} \int_{X/G} \int_{G} f(xg_1g) \overline{f(xg_1)}(\pi(g)v, v) dg_1 d[x] dg$$
(12)

$$= \int_{X/G} \int_G \int_G f(xg) \overline{f(xg_1)}(\pi(g_1^{-1}g)v, v) dg_1 dg d[x]$$
(13)

$$= \int_{X/G} \int_G \int_G f(xg) \overline{f(xg_1)}(\pi(g)v, \pi(g_1)v) dg_1 dg d[x]$$
(14)

$$= \int_{X/G} (\int Gf(xg)(g) v dg, \int_G f(xg_1) \pi(g_1) v dg_1) d[x]$$
(15)

Absolute convergence are guaranteed since f(g) is compactly supported. Notice that

 $\mathcal{L}^{0}(f \otimes v)(x) = \int_{C} f(xg) \pi(g) v dg.$

We have

$$(f \otimes_{G} \nu, f_{G} \nu)_{G} (\mathcal{L}^{0}(f \otimes \nu), \mathcal{L}^{0}(f \otimes \nu))_{X/G}.$$

Clearly, $C_{c}(X) \otimes_{G} \cong \mathcal{L}^{0}(C_{c}(X) \otimes \mathcal{H}).$

Invariant Tensor Product and Representation Theory

Definition 2

Let *G* be a classical group that preserves a nondegenerate sesquilinear form Ω . Write $G=G(V,\Omega)$ or simply G(V), where *V* is a vector field over $\mathbb{F}=\mathbb{R},\mathbb{C},\mathbb{H}$ equipped with the nondegenerate sesquilinear form Ω . Let $V=V_1V_2$ such that $\Omega(V_1,V_2)=0$. Let $G_1 = G(V_1,\Omega|_{V_1})$ and $G_2 = G(V_2,\Omega|_{V_2})$. For each g_1G_1,g_2G_2 , let (g_1,g_2) acts on $V_1 \oplus V_2 = V$ diagonally. We say that $G_1 \times G_2$ is diagonally embedded in *G*.

Definition 3

Let (G_1,G_2) be diagonally embedded in G. Let $(\pi,\mathcal{H}\pi)$ be a unitary representation of G and $(\pi_1,\mathcal{H}_{\pi_1})$ be a unitary representation of G_1 . Let V be a subspace of $\mathcal{H}_{\pi}^{\infty}$ that is invariant under G_2 . Let V_1 be a subspace of $\mathcal{H}_{\pi_1}^{\infty}$ such that $V \otimes_{G_1} V_1$ is well-defined. Define a linear G_2 -representation $(\pi \otimes_G \pi_1, V \otimes_{G_1} V_1)$ as follows:

$$(\pi \otimes_{G_1} \pi_1)(g_2)(u \otimes_{G_1} u_1) = \pi(g_2)u \otimes_{G_1} u_1 \qquad (g_2 \in G_2, u \in V, u_1 \in V_1)$$

Since the Lie group action of G_2 commutes with the integration over G_1 , the action of G_2 on $V \otimes_{G_1} V_1$ is well-defined.

The linear representation $(\pi \otimes_{G_1} \pi_1, V \otimes_{G_1} V_1)$ is not neccessarily continuous because no topology has been defined on $V \otimes_{G_1} V_1$.

Lemma 4.1

The form $(,)_{G_1}$ on $V \otimes_{G_1} V_1$ is G_2 -invariant.

Proof: Let $u, v \in V; u_1, v_1 \in V_1$ and $g_2 \in G_2$. Write $\sigma = \pi \otimes_{G_1} \pi_1$. Then

$$(\sigma(g_2)(u\otimes_{G_1}u_1), v\otimes_{G_1}v_1)_{G_1}$$

$$(16)$$

$$= \int_{G_1} (\pi(g_1)\pi(g_2)u, v)(\pi_1(g_1)u_1, v_1)dg_1$$
(17)

$$= \int_{G_1} (\pi(g_2)\pi(g_1)u, v)(\pi_1(g_1)u_1, v_1)dg_1$$
(18)
= $\int_{G_1} (\pi(g_1)u, \pi(g_1)u_1, v_1)dg_1$ (18)

$$= \int_{G_1} (\pi(g_1)u, \pi(g_2^{-1})v)(\pi_1(g_1)u_1, v_1)dg_1$$
(19)

$$= (u \otimes_{G_1} u_1, \pi(g_2^{-1}) v \otimes_{G_1} v_1)_{G_1}$$
(20)

$$= (u \otimes_{G_1} u_1, \sigma(g_2^{-1})(v \otimes_{G_1} v_1))_{G_1}$$
(21)

Hence $(,)_{G_1}$ is G_2 -invariant.

ITP Associated with Discrete Series Representations

Let G(m+n) be a classical group preserving a nondegenerate sesquilinear form. Let (G(n), G(m)) be diagonally embedded in G. For any irreducible unitary representation of G(m+n), let \mathcal{H}_{π} be the

Frechet space of smooth vectors.

Theorem 5.1: Suppose that $(\pi, \mathcal{H}\pi)$ is a discrete series representation of G(m+n). Suppose that m>n and (π_1, \mathcal{H}_1) is a unitary representation of G(n). Then $\mathcal{H}^{\infty}_{\pi} \otimes_{G(n)} \mathcal{H}_1$ is well-defined. Suppose that $\mathcal{H}^{\infty}_{\pi} \otimes_{G(n)} \mathcal{H}_1 \neq 0$. Then $(,)_{G(n)}$ is positive definite. Furthermore, $(\mathcal{H}^{\infty}_{\pi} \otimes_{G(n)} \mathcal{H}_1, (,)_{G(n)})$ completes to a unitary representation of G(m).

The key of the proof is to realize $\mathcal{H}^{\infty}_{\pi} \otimes_{G(n)} \mathcal{H}_{l}$ as a subspace of the L^{2} -sections of the Hilbert bundle

 $\mathcal{H}_{1} G(n) G(m+n) \rightarrow G(n) \setminus G(m+n).$

Proof: Write G = G(m+n). Fix a maximal compact subgroup K of G such that

$$K(m) = K \cap G(m), \qquad K(n) = K \cap G(n)$$

are maximal compact subgroups of G(m) and G(n) respectively. Let a be a maximal Abelian subalgebra in the orthogonal complement of \mathfrak{k} with respect to the Killing form (,)_{κ}, such that

 $\mathfrak{a}=(\mathfrak{a}\cap\mathfrak{g}(m))\oplus(\mathfrak{a}\cap\mathfrak{g}(n)).$

Let *A* be the analytic group generated by \mathfrak{a} . The function log:*A* \mathfrak{a} is well-defined. Let $||H||^2 = (H,H)_{\kappa}$ for each $H\mathfrak{a}$.

Since (π, \mathcal{H}) is a discrete series representation, without loss of generality, realize \mathcal{H} on a right *K*-finite subspace of $L^2(G)$. So $\mathcal{H} \subseteq L^2(G)_{\kappa}$.

Let $\Xi_G(g)$ be Harish-Chandra's basic spherical function. Let $\mathcal{HCS}(G)$ be the space of Harish-Chandra's Schwartz space. It is well-known that every $f \in \mathcal{H}^{\infty}_{\pi} \subseteq \mathcal{HCS}(G)$ satisfies $f(g) \leq C_{\mathcal{F}_G}(g)$ for some C_f (see for example Ch. 12.4 [?]). For every $h \in G$, $|f(hg)| \leq \Xi_G(hg) \leq C_h C_f \Xi_G(g)$ for a constant C_h . Observe that $\mathcal{H}^{\infty}_{\pi}$ is G(m)-invariant.

Fix a positive root system in $\Sigma(\mathfrak{g},\mathfrak{a})$. Let A^+ be the corresponding closed Weyl Chamber. Let be the half sum of positive roots. Let $u, v \in \mathcal{H}^{\infty}_{\pi} \subseteq L^2(G)$. Then $|L(g)u,v| \leq C_{u,vG}(g)$ for a positive constant $C_{u,v}$ [5,6]. Notice that for aA^+ , $k_1, k_2 \in K$,

 $\Xi_{G}(k_{1}ak_{2}) \leq C(1 + \|\log a\|^{q} \exp(\rho(\log a)))$

for some q0 and C>0. Let $\rho(n)$ be the half sum of positive roots of the restricted root system $\sum(\mathfrak{g}(n),\mathfrak{a}\cap\mathfrak{g}(n))$. Let $(\mathfrak{a}\cap\mathfrak{g}(n))^+$ be the positive Weyl chamber of $\mathfrak{a}\cap\mathfrak{g}(n)$ with respect to the root system $\sum(\mathfrak{g}(n),\mathfrak{a}\cap\mathfrak{g}(n))$. Since

 $\rho \Big|_{\mathfrak{a} \subset \mathfrak{a}(n)}(H) > 2\rho(n)(H) \ (H \in (\mathfrak{a} \subset \mathfrak{g}(n))^+),$

 $\Xi_{G}(g) |_{G(n)} \in L^{1}(G(n)). \text{ It follows that } (L(g)u,v) |_{G(n)}L^{1}(G(n)) \text{ for every} u, v \in \mathcal{H}^{\infty}_{\pi}. \text{ Notice that } g_{1} \in G(n)(\pi_{1}(g_{1})u_{1},v_{1}) \text{ is always bounded for } u_{1},v_{1} \in \mathcal{H}_{1}. \text{ We see that}$

 $\int_{G(n)} (\pi(g_1)u, v)(\pi_1(g_1)u_1, v_1) dg_1$

always converges. So $\mathcal{H}^{\infty}_{\pi} \otimes_{G(n)} \mathcal{H}_{I}$ is well-defined. Now suppose that $\mathcal{H}^{\infty}_{\pi} \otimes_{G(n)} \mathcal{H}_{I} \neq 0$.

Notice that $u \in \mathcal{H}^{\infty}_{\pi} \subseteq L^{2}(G)_{K}$ is bounded by a multiple of $\Xi_{G}(g)$. So $u|_{G(n)} \in L^{1}(G(n))$. For each $u \in \mathcal{H}^{\infty}_{\pi}$ and $u_{1} \in \mathcal{H}_{1}$, define $\mathcal{L}^{0}(u \otimes u_{1})$ to be the \mathcal{H}_{1} -valued function on G:

$$g \in G \to \int_{g_1 \in G(n)} [L(g_1)u](g)\pi_1(g_1)u_1 dg_1 = \int_{g_1 \in G(n)} u(g_1^{-1}g)\pi_1(g_1)u_1 dg_1$$

in the strong sense. Notice that for $gG,h_1 \in G(n)$,

$$\mathcal{L}^{0}(u \otimes u_{1})(h_{1}g) = \int_{g_{1} \in G(n)} [L(g_{1})u](h_{1}g)\pi_{1}(g_{1})u_{1}dg_{1}$$
(22)

$$= \int_{g_1 \in G(n)} u(g_1^{-1}h_1g)\pi_1(g_1)u_1dg_1$$
(23)

$$= \int_{g_1 \in G(\eta)} u(g_1^{-1}g)\pi_1(h_1g_1)u_1dg_1$$
(24)

$$= \pi(h_1) \left[\int_{g_1 \in G(n)} L(g_1) u(g) \pi_1(g_1) u_1 dg_1 \right]$$
(25)

$$=\pi(h_1)L^0(u\otimes u_1)(g) \tag{26}$$

So $L^0(u \otimes u_1)$ can be regarded as a section of the Hilbert bundle

 $\mathcal{H}_{_{1G(n)}} \times GG(n) \backslash G.$

In addition, we have

$$(u \otimes_{G(n)} u_1, v \otimes_{G(n)} v_1)_{G(n)}$$

$$\tag{27}$$

$$= \int_{G(n)} (L(g_1)u, v)(\pi_1(g_1)u_1, v_1) dg_1$$
(28)

$$= \int_{G(n)} \int_{G} u(g_1^{-1}g) v(g) dg(\pi_1(g_1)u_1, v_1) dg_1$$
⁽²⁹⁾

$$= \int_{G(n)} \int_{G(n)\setminus G} \int_{G(n)} u(g_1^{-1}h_1g) \overline{v(h_1g)} dh_1 d[g](\pi_1(g_1)u_1, v_1) dg_1$$
(30)

$$= \int_{G(n) \setminus G} \int_{G(n) \times G(n)} u(g_1^{-1}h_1g) \overline{v(h_1g)}(\pi_1(g_1)u_1, v_1) dg_1 dh_1 d[g] \qquad (g_1 = h_1g_1) \quad (31)$$

$$= \int_{G(n)\setminus G} \int_{G(n)\times G(n)} u(g_1^{-1}g) \overline{v(h_1g)}(\pi_1(h_1g_1)u_1, v_1) dg_1 dh_1 d[g]$$
(32)

$$= \int_{G(n)\setminus G} \int_{G(n)\times G(n)} u(g_1^{-1}g)v(h_1g)(\pi_1(g_1)u_1,\pi(h_1^{-1})v_1)dg_1dh_1d[g] \quad (33)$$

$$= \int_{G(n)\setminus G} \int_{G(n)\times G(n)} u(g_1^{-1}g) v(h_1^{-1}g)(\pi_1(g_1)u_1, \pi_1(h_1)v_1) dg_1 dh_1 d[g] \quad (34)$$

$$= (\mathcal{L}^{0}(u \otimes u_{1}), \mathcal{L}^{0}(v \otimes v_{1}))_{G(n) \setminus G}$$

$$(35)$$

where $G(n)\setminus G$ is equipped with a right *G* invariant measure. Eqn. (31) is valid because the integrative Eqn. (29) converges absolutely. In fact, we have

 $\int_{G(n)\times G} |u(h_1g)v(g)dgdh_1 < \infty.$

To see this, recall that $u(g), v(g) \in \mathcal{HCS}(G)$. In particular, for any N > 0 and $a \in A^+$, $k_1, k_2 \in K$, there exists $C_{u'N} > 0$ such that:

 $|u(k_1ak_2)| \leq C_{u,N} \log a ||^{-N} \Xi_G(k_1ak_2).$

Write $W_{_N}(g) = \|\log a\|^{-N}G(k_1ak_2)$ for $g = k_1ak_2$. Then there also exists $C_{_{v,N}} > 0$ such that

$$|v(g)| \leq C_{v,N} W_N(g).$$

Fix an N such that $W_N(G) \in L^2(G)$. In particular, $W_N(G) \in {}_{\kappa}L^2(G)_{\kappa}$. Observe that the function

$$h \in G(L(h) | u | (g), | v | (g))$$

is bounded by a multiple of $(L(h)W_N(g), W_N(g))$, which, by a Theorem of Cowling-Haagerup-Howe [5], is bounded by a multiple of $\Xi_c(g)$. Hence

 $\int_{G(n)G} |u(h_1g)v(g)| dg dh_1 < \int_{G(n)} (\int_G u(h_1g) ||v(g)| dg) dh_1 < \int_{G(n)} C \Xi G(h_1) dh_1 < \infty.$

Eqn. (29) converges absolutely. Therefore Eqn. (31) holds.

Now we have

$$(u \otimes_{G(n)} u_1, v \otimes_{G(n)} v_1)_{G(n)} = (\mathcal{L}^0(u \otimes u_1), \mathcal{L}^0(v \otimes v_1))_{G(n)I}$$

It follows that $\mathcal{L}^{0}(\mathcal{H}_{\pi}^{\infty}\otimes\mathcal{H}_{1})\cong\mathcal{L}(\mathcal{H}_{\pi}^{\infty}\otimes\mathcal{H}_{1})$. Realize $\mathcal{H}_{\pi}^{\infty}\otimes_{G(n)}\mathcal{H}_{1}$ as $\mathcal{L}^{0}(\mathcal{H}_{\pi}^{\infty}\otimes\mathcal{H}_{1})$, which is a subspace of L²-sections of the Hilbert bundle:

 $\mathcal{H}_{_{1G(n)}} \times GG(n) \backslash G.$

Clearly $(,)_{G(n)}$ is positive definite. Let $\overline{\mathcal{H}^{\infty}_{\pi} \otimes_{G(n)} \mathcal{H}_{1}}$ be the completion of $(\mathcal{H}^{\infty}_{\pi} \otimes_{G(n)} \mathcal{H}_{1}, (,)_{G(n)})$.

Since G(m) acts on $\mathcal{H}_{\pi}^{\infty}$ and it commutes with G(n), G(m) acts on $\mathcal{H}_{\pi}^{\infty} \otimes_{G(n)} \mathcal{H}_{1}$ and it preserves $(,)_{G(n)}$. So the action of each $g_{2} \in G(m)$ can be extended into a unitary operator on $\overline{\mathcal{H}_{\pi}^{\infty}} \otimes_{G(n)} \mathcal{H}_{1}$. The group structure is kept in this completion essentially due to the fact that each extension is unique. Therefore $(\mathcal{H}_{\pi}^{\infty} \otimes_{G(n)} \mathcal{H}_{1}, (,)_{G(n)})$ completes to a unitary representation of G(m).

Definition 4

Let $\prod_{u}(G)$ be the unitary dual of G. Suppose that m > n. Let π be a discrete series representation of G(m+n). We denote the functor from π_1 to the completion of $(\mathcal{H}^{\infty}_{\pi} \otimes_{G(n)} \mathcal{H}_1, (.)_{G(n)})$ by $IT\pi$. If $IT\pi(_1)0$, $IT\pi(\pi_1)$ is a unitary representation of G(m). Regarding the zero dimensional representation as a unitary representation, $IT\pi$ defines a functor from unitary representations of G(n) to unitary representations of G(m).

Conclusion

One natural question arises. That is, if π_1 is irreducible, is $IT\pi(1)$ irreducible? This is beyond the scope of this paper. In fact, this problem is quite difficult. In general, $IT\pi(\pi_1)$ is not irreducible. However, for a certain holomorphic discrete series representation π , $IT\pi(\pi_1)$ will indeed be irreducible. For the time being, it is not clear which discrete series representation π has such a property. This question may be intrinsically related to the cohomology induction [7].

References

- 1. Serre JP (1977) Linear Representations of Finite Groups. Springer-Verlag 42.
- Li JS (1990) Theta Lifting for Unitary Representations with Nonzero Cohomology. Duke Mathematical Journal 61: 913-937.
- He H (2000) Theta Correspondence I-Semistable Range: Construction and Irreducibility. Communications in Contemporary Mathematics 2: 255-283.
- 4. He H, On the Gan-Gross-Prasad Conjecture for U(p,q), to appear.
- Cowling M, Haagerup U, Howe R (1988) Almost L² matrix coefficients. J Reine Angew Math 387: 97-110.
- He H (2009) Bounds on Smooth Matrix Coefficients of L² spaces. Selecta Mathematica 15: 419-433.
- Knapp A, Vogan D (1995) Cohomological induction and unitary representations. Princeton University Press, Princeton, NJ.