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Abstract
Transplantation of solid organs is invariably linked to a disruption of oxygen and nutrient supply. Damage initiated 

in the ischemic period is greatly enhanced during reperfusion. In particular the excessive production of reactive 
oxygen species (ROS) plays a key role in the development of ischemia/reperfusion injury (IRI), which in the clinical 
setting is difficult to control through the use of antioxidants. Ischemia/reperfusion (IR) is also marked by the activation 
of intracellular signaling pathways, which may have protective but also damaging effects. Modulating intracellular 
signaling thus may hold the promise to prevent or minimize IRI. Most intriguingly, some of these pathways have been 
shown recently to control mitochondrial events, including the production of ROS. Understanding this cytoplasmic/
mitochondrial crosstalk will be the basis for the development of novel approaches for the prevention of IRI. 
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Introduction
Organ transplantation is essential to assure prolonged survival 

beyond the step of individual organ failure. Besides the challenges 
inherent in the surgical procedures, the prevention of rejection was 
the main obstacle in the past on the way to clinical implementation. 
A major problem, which still persists, is directly associated with the 
need to procure an organ from a donor and to implant it in a recipient. 
This causes disruption of blood and oxygen supply (ischemia) and 
their subsequent restoration (reperfusion). Prolonged ischemia by 
itself is a condition of cellular stress eventually resulting in cell death. 
Reperfusion is vital for organ recovery and continued function. 
However, it has been observed that resumption of the metabolic activity 
is linked to the collapse of mitochondrial and cellular homeostasis. 
Lack of ATP production, inability to maintain ion gradients across 
membranes, excessive production of reactive oxygen species (ROS) 
and perturbation of Ca2+ trafficking, leading to mitochondrial Ca2+ 
overload and cell death occur during this time period. Cells, which are 
key to organ function are usually metabolically highly active and thus 
will be affected most prominently. As a consequence malfunction or 
death of a relatively low number of cells will have major consequences. 
Collectively these changes leading to temporal or permanent functional 
impairment of an organ are referred to as ischemia-reperfusion injury 
(IRI).

Intracellular signaling as a mode of communication and regulation 
in physiological and non-physiological processes is well documented. 
Most obvious is this in settings where the function of signaling 
proteins is affected by mutations resulting in the gain or loss of 
function. Understanding aberrant signaling in disease and pathological 
conditions holds the promise for novel therapeutic approaches. 
Reactive oxygen species (ROS) which are abundantly produced early 
during reperfusion may have direct toxic effects on biomolecules 
(nucleic acids, proteins, lipids) but also function as signaling 
molecules. However, canonical signaling pathways are also activated, 
both during ischemia and upon reperfusion. This review will attempt 
to emphasize the concept that the crosstalk between these two modes 
of signaling is important for shaping the outcome of IR. Understanding 
its mechanisms thus may provide novel therapeutic approaches. We do 
not intend to cover the whole field of signaling in ischemia/reperfusion 
with its often conflicting data, but restrict ourselves to the discussion 
of general processes and regulatory mechanisms, which are at work 
during IR in a largely organ-independent fashion.

Signaling at the Mitochondria: ROS, Ca2+, - Big Tasks 
for Small Molecules 

Mitochondria are essential for cell survival, both because of 
their roles as energy producers and as regulators of programmed 
cell death [1]. Our current understanding of IRI sees perturbation of 
mitochondrial homeostasis as a main initiating step. Such deviations 
from the physiological state of mitochondria result among others in 
abnormally high mitochondrial Ca2+ levels and increased oxidative 
stress [2]. Mitochondrial dysfunction thus is a major feature of IRI, 
in its extremist leading up to necrotic or apoptotic cell death. During 
ischemia the lack of oxygen inhibits electron flow through the electron 
transport chain resulting in a shortage of ATP. The arising lack in 
ATP is partially resolved by a switch to anaerobic glycolysis leading to 
intracellular acidification. In the attempt to restore the intracellular pH 
the Na+/H+ exchanger (NHE) is activated increasing cellular Na+ levels. 
This leads to the activation of the Na+/Ca2+ exchanger (NCE) raising 
cellular Ca2+ levels and causing mitochondrial Ca2+ overload and 
depolarization. During reperfusion repolarization of the mitochondrial 
transmembrane potential coupled with an increased cytosolic Ca2+ 
leads to a further increase in mitochondrial Ca2+ via the calcium 
uniporter (CaU). With the recovery of the pH, high Pi, excessive ROS 
and Ca2+ overload upon reperfusion, opening of the mitochondrial 
permeability transition pore (mPTP) is favored [3]. The mPTP is 
a multiprotein complex forming non-selective pores in the inner 
mitochondrial membrane (IMM). Long-lasting mPTP opening can 
lead to excessive water entry into the matrix, matrix swelling and outer 
mitochondrial membrane (OMM) rupture. This causes the release of 
pro-apoptotic molecules from the intermembrane space (IMS) leading 
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to cell death via caspase-dependent or -independent mechanisms [1]. 
Recent evidence suggests that mitochondrial permeability transition in 
ischemia reperfusion injury is not triggered by the same proapoptotic 
members of the Bcl-2 family [4] normally involved in this process 
but that mitochondrial ROS causes mPTP opening, mitochondrial 
depolarization and cell death [5]. Mitochondria also respond to 
cellular stress with changes in their morphology by undergoing fission 
resulting in fragmented mitochondria. Inhibiting the collapse of the 
mitochondrial network was shown to be protective in a model of 
simulated IR [6].

Reactive oxygen species (ROS), such as superoxide, hydrogen 
peroxide or hydroxyl radical are products of normal oxygen 
metabolism in living cells. They are highly reactive small molecules 
potentially harmful for cellular components like proteins, lipids or 
nucleic acids [7]. However, ROS, especially hydrogen peroxide, can 
be beneficial for cells and tissues mainly through their function in 
normal cellular signaling [8]. Therefore, levels of ROS in a cell must 
be tightly regulated. Cells possess several sources for ROS production 
including mitochondria, peroxisomes, NAD(P)H oxidases, nitric 
oxide synthase and xanthine oxidase, and complex anti-oxidant 
defense machineries for their elimination that includes enzymatic (e.g. 
catalase, superoxide dismutase, glutathione peroxidase) as well as non-
enzymatic systems (e.g. glutathione and vitamins A, C and E) [9]. At 
the physiological level ROS control the function of signaling proteins 
through redox modification [10,11]. Different stimuli like growth 
factors and cytokines induce ROS formation [8] and transcription 
factors such as AP-1 and NFκB have been shown to be activated by 
ROS resulting in the expression of genes associated with inflammatory 
and immune responses [12,13]. Excessive production of ROS, has been 
implicated in many pathologies, including cancer, hypertension, type 
II diabetes, atherosclerosis, chronic inflammatory processes, various 
neurodegenerative diseases and IRI [14]. Their essential role in IRI is 
supported by the studies showing that pretreatment with antioxidants 
or overexpression of antioxidant enzymes protect cells during IR [15].

Calcium ions are universal second messengers involved in many 
different intracellular processes including enzyme activation, gene 
expression, secretion, cell proliferation, cell differentiation and cell 
death [16]. The concentration of cytoplasmic calcium in resting cells 
is maintained at a low level, strictly controlled by Ca2+ uptake from 
extracellular space, release from intracellular calcium stores, in the 
endoplasmic reticulum (ER), the buffering capacity of mitochondria 
and by proteins capable of binding Ca2+ (e.g. calmodulin) [17]. During 
ischemia/reperfusion the loss of calcium homeostasis is observed, 
marked by increased cellular and subsequently mitochondrial Ca2+ 

levels resulting in massive ROS production and oxidative stress [18]. 
Oxidative stress again drives release of Ca2+ from ER and contributes 
to mitochondrial Ca2+ overload, which triggers the events leading up to 
cell death [19]. 

Signaling Changes in Oxygen and Nutrient Availability
Since inadequate oxygen supply profoundly affects cellular 

physiology, cells are equipped with the ability to sense and respond 
to changes in cellular oxygen levels. This involves the HIF-oxygen-
sensing transcriptional pathway, which may compensate for hypoxia by 
regulating the transcription of an increasing number of genes through 
binding to hypoxia regulatory elements (HRE) [20]. HIF facilitates 
oxygen supply by advancing iron delivery, improving blood flow by e.g. 
promoting angiogenesis and reduces oxygen consumption by favoring 
the switch to the less efficient but lifesaving glycolytic pathway. HIF 
is a heterodimeric transcription factor consisting of a stable β and a 

labile α subunit, which is regulated by hydroxylation of specific proline 
residues targeting the molecule for rapid degradation via the ubiquitin-
proteasome pathway [21]. The stability of the α-subunit and thus 
signaling via HIF is tightly regulated in an oxygen-dependent manner. 
Under normoxic conditions HIFα is modified by prolyl-(PHD) and 
asparagyl hydroxylases (FIH) [22]. Both enzymes are capable of 
incorporating oxygen into specific amino acid residues of HIFα. The 
modification of prolyl side chains generates a binding site for proteins 
of the ubiquitination machinery (von Hippel-Lindau (VHL) complex) 
targeting the HIFα subunit for protein degradation. Besides protein 
stability HIF’s ability to activate gene transcription is also regulated by 
intracellular oxygen levels. Hydroxylation of an asparagyl residue in 
the transactivation domain inhibits interaction with the cofactor p300, 
circumventing transcription of HRE regulated genes [23]. Oxygen is 
rate limiting in this type of regulation thus HIF heterodimerization can 
be accomplished under hypoxic conditions leading to the transcription 
of target genes. 

Equally important is the ability to sense the energy status of the cells. 
While mammalian target of rapamycin (mTOR) is a central cell growth 
regulator stimulating energy consuming processes under nutrient rich 
conditions, AMP activated protein kinase (AMPK) dampens these 
processes under nutrient poor conditions and gets activated when 
energy levels are low which is reflected by a high AMP/ATP ratio 
[24,25]. Two distinct complexes of mTOR can be distinguished with 
only mTORC1 being sensitive to rapamycin and regulated by nutrients 
and AMPK. Besides energy stress, growth factors play a major role in 
mTORC1 regulation. Activation of PI3K pathway and its downstream 
effector AKT/PKB leads to the phosphorylation and inactivation of 
the upstream inhibitor of mTORC1 [26,27]. Similar effects have been 
ascribed to the mitogen-activated protein kinase (MAPK) ERK [28]. 
Upon ischemia, when growth factors are withdrawn, energy levels are 
low and oxygen is limited, signaling via the PI3K- and MAPK pathways 
is dampened while AMPK is activated, thereby alleviating mTORC1 
signaling. 

Signaling Under Ischemia/Reperfusion
The presence of cellular signaling events during IR is well 

documented but their regulatory roles are far from completely 
understood. Evidence comes from the direct study of signaling activities 
in tissue lysates and the large scale analyses of transcriptional events 
and post-translational modifications. Also genetically modified mice 
have been extensively studied to decipher the contribution of individual 
signaling proteins to the development of IRI. Overall, a complex picture 
emerges and frequently we lack insight, how signaling activities relate 
to the development or progression of IRI [29,30]. Mitogen-activated 
protein kinases (MAPKs) comprise a family of related kinases, which 
function downstream of similarly evolutionary conserved upstream 
kinases [31]. They participate in cellular responses to mitogens (ERKs), 
inflammatory cytokines or unphysiological stimuli (JNKs, p38) [32]. 
MAPKs are activated during ischemia and/or reperfusion and under 
these conditions ERK can be cytoprotective or neutral, p38 possesses 
pro- or anti- apoptotic effects, and also JNK has been discussed 
controversially [33-35]. Although ROS can lead to the activation of 
MAPK [36], these kinases may also be involved in modulating ROS 
levels [37,38]. Our own data showed a role for p38 in the regulation 
of mitochondrial ROS levels [38], while signaling through RAF-MEK- 
ERK protected against mitochondrial accumulation of ROS/Ca2+ and 
cell death [37]. Activation of NFκB occurs in response to multiple stimuli 
and results in the transcription of an equally large number of target 
genes [39]. During IR NFκB signaling may have both beneficial (e.g. 
anti-apoptotic) or adverse effects (e.g. induction of pro-inflammatory 
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cytokines) [32,40-42]. Involvement in the control of IRI has also been 
suggested for JAK/STAT signaling [43,44]. Also activation of the PI-3 
kinase (PI3K)/protein kinase B (PKB/AKT) may be involved in the 
protection of cardiac cells against hypoxia/reoxygenation-induced cell 
death [45,46]. The role of innate immune and inflammatory responses 
is well established in the progression of IRI, manifested by increased 
expression of proinflammatory and immunoregulatory cytokines 
during IR [47-50]. TLRs have been recently emerged as putative 
inducers of these innate immune and inflammatory responses and, 
more recently, of injury induced inflammation [51,52], making them 
central players in the development of IRI [53]. High-mobility box 1 
(HMGB1) protein released during cellular damage can serve as ligand 
for TLRs [54]. In cultured hepatocytes HMGB1 release is an active 
process regulated by ROS [54]. TLRs predominantly activate NFκB and 
stimulate the expression of immune and inflammatory responses [53]. 
Among TLRs, TLR4 and TLR2 have been extensively discussed for 
their role in IRI. Various studies using the TLR4-deficient mice, TLR4 
antagonists, MyD88-deficent mice (MyD88 functions downstream of 
TLRs in signal propagation), dominant negative mutant of MyD88 
have shown the deleterious role of TLR4 during myocardial IRI 
via NFκB signaling mediated regulation of inflammatory cytokine 
production [55-58]. Parallel studies on the other organs such as brain, 
lung, liver, kidney and intestines that were subjected to IR also showed 
similar effects [53]. Reduced NFκB binding activity and increased 
level of phosphorylated AKT were observed in the myocardium of 
TLR4-deficient mice subjected to IR. In addition, PI3K inhibition by 
pharmacological inhibitors completely abolished the cardioprotection 
in TLR4-deficient mice after myocardial IR injury, suggesting the 
presence of a crosstalk between the TLR4 and PI3K/AKT signaling 
pathways during myocardial IR [53,59,60]. The excessive production 
of ROS is a hallmark of IRI and has been recently shown to activate 
immune and inflammatory responses by activation of NFκB through 
TLR4 dependent mechanism, suggesting that TLR4 mediated NFκB 
activation is required for ROS activated intracellular signaling pathways 
(e.g. ASK1/p38, IKK-α/β and IRAK). Targeting of the TLR4-mediated 
NFκB signaling could minimize ROS induced cellular damage [61,62]. 
There are controversial reports on the role of TLR2 in IRI, which 
may be due to the varying experimental conditions used and models 
employed in the studies. 

Besides the pathways discussed above an increasing number of 
signaling molecules is being tested for a possible role in the development 
of IRI. Most recently two important developmental pathways were 
studied in this context: Wnt/ß-catenin signaling was activated by ROS 
and shown to protect against liver IRI through the activation of HIF1α 
signaling [63]. NOTCH signaling affords protection of hepatocytes 
against IRI through suppression of ROS production [64].

Crosstalk between Cytoplasmic Signaling Cascades and 
the Mitochondria

Evidence for a link between intracellular signaling and the 
regulation of mitochondrial ROS production has been provided for 
p53 [65-67], PKA [68,69] and the survival proteins RAF, AKT and Bcl-
2 [37]. STAT3 has been implicated in the regulation of mitochondrial 
energy production although effects on ROS production have not been 
studied [70-72]. A direct role in mitochondrial ROS production has 
been provided for p66SHC [73]. This protein represents the longest 
isoform of a family of proteins normally functioning as adaptor 
proteins in the activation of the small G protein RAS, downstream 
of protein tyrosine kinase receptors [74]. p66SHC is a redox enzyme 
that generates mitochondrial ROS through oxidation of cytochrome 

c [73]. p66SHC-/- mice show on average a 30% prolongation in life 
span, which correlates with increased resistance to oxidative stress, due 
to a decreased production of ROS, while scavenging systems are not 
affected [73]. Further work demonstrates that protein kinase C beta 
(PKCß) phosphorylated p66SHC on Ser36, which was required for 
mitochondrial accumulation of the protein [75]. Protection against IRI 
has been reported in p66SHC deficient mice [76]. 

Diagnostic Options: Gaining Insights through Real 
Time Live Confocal Microscopy of Tissue Biopsies

Modern “omics” techniques for large scale protein and RNA 
expression screens have been applied to the study of IRI. Normal 
and genetically modified cells and animals have been used to address 
cellular processes and important regulators. The complexity of the 
events occurring during and after IR makes it a challenging task to 
link signaling to functional outcomes. Their study in transplanted 
organs requires novel approaches. Every organ consists of various 
cell types, which differ in function, metabolic activity or the nature of 
neighboring cells. These factors have pronounced effects on survival 
under cellular stress and may cause heterogeneity in cellular responses 
to IR. These complex responses are hard to document with classical 
biochemical assays, which only give us a momentary picture obtained 
from the entirety of cells present in an organ. A method, which is 
suitable to document stress or death in cells, tissues and even organs 
in vivo, ex vivo as well as in vitro in non fixed cells is Real Time Live 
Confocal Microscopy [77,78]. To gain functional insights into cellular 
changes occurring under IR and their regulation by signaling cascades, 
we have adapted this method to the study of fine needle biopsies 
obtained from the organ of interest, e.g. kidney, followed by live cell 
imaging with a confocal microscope allowing live cell imaging [79]. 
This method allows us to monitor various physiological parameters in 
defined compartments of complex organs like kidney with the perfect 
maintenance of the structural integrity. A wealth of fluorescent dyes is 
available, which allows monitoring of many parameters, e.g. ROS or 
Ca2+. This also provides insights into compartmentalized responses, as 
we expect that different structures in an organ will respond differently. 
Living tissues used in these studies may be maintained for hours in 
culture allowing manipulations like testing of signaling inhibitors, 
antioxidants or the performance of hypoxia/reoxygenation assays. 
In the example provided here, we obtained biopsies from rat kidneys 
spanning the whole length from the outer capsule to the innermost 
hilus through the kidney cortex and medulla. The biopsies were 
immediately transferred to tissue culture medium and incubated 
under normal culture conditions and life cell staining was performed. 
Exemplary stains are shown for Syto 16, propidium iodide (PI), 
tetramethylrhodamine methyl ester perchlorate (TMRM) or FITC-
coupled wheat germ agglutinin (WGA) to visualize all nuclei, nuclei of 
dead cells, active mitochondria and cell/tissue morphology (Figure 1).

Conclusions and Outlook
Analyses of intracellular signaling during IR have provided insights 

into the complexity of these events. Further progress will mainly depend 
on understanding precisely the contribution of individual pathways 
to the progression or prevention of damage as a basis for future 
therapeutic interference. Of particular importance will be a detailed 
resolution of the sequence of events leading up to the manifestation 
of IRI. Given the proposed importance of ROS, produced early during 
reperfusion, for setting the stage for all the events to follow, we have 
to understand a possible crosstalk between early cytoplasmic signaling 
and mitochondrial events. ROS may be central players during IR, 
which connect early events to later ones like the activation of the 
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inflammasome or the regulation of autophagy. An increasing wealth 
of data supports the notion that mitochondrial function is regulated 
by intracellular signaling pathways, raising the hope for a therapeutic 
intervention before ROS are released, which are difficult to scavenge 
with existing antioxidants. Also; ROS are important modulators of 
classical signaling pathways and thereby affect cellular responses. 
Dissecting their contribution to the development of IRI may identify 
additional targets for therapeutic interference. 
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Figure 1: Application of live cell confocal imaging to the analysis of rat kidney 
biopsies.

(A) A combination of PI and Syto 16 was used to visualize the nuclei  of dead (PI, 
red) and the nuclei of all cells (Syto 16, green) in the tubular area of the kidney. 
The insets at the top right side shows the single channels, the big image shows 
the merged image. The biopsy was incubated for one hour in standard culture 
medium at RT. Note the heterogeneity in cell death between neighboring tubules. 
(B) This image shows the result after staining such a kidney biopsy with 
TMRM (red) and WGA (green). Like in (A) the heterogeneity in cell survival 
is documented by TMRM fluorescence. Images were acquired using a 40x 
water immersion objective.
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