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Introduction
The abnormal and complicate vasculature induced by solid tumor 

is introduced as a main reason of unsuccessful drug delivery to tumors. 
The high interstitial pressure because of high permeability of vessel in 
tumor region is another barrier to drug transport. The mathematical 
model used for solid tumor simulation predicts mechanism of drug 
delivery to tumor cells and helps to find better methods for drug 
delivery [1,2].

Solid tumor growth modeling involves many complicated processes 
on a wide range of spatial and temporal scales. The multi-temporal 
nature of tumor involves formation of vessels induced by angiogenesis 
which changes in a scale of days and fluid flow and capillary adaptation 
which occurs in a scale of seconds. The mathematical model of tumor 
consists of blood flow convection in micro vessel at the micro scale 
to interstitial fluid flow which includes the convection and diffusion 
mechanism at the largest scale [3].

The fluid flow modeling in solid tumor as a porous medium by 
neglecting small scales is common. Soltani et al. [4] introduced the 
critical tumor radius and critical necrotic radius based on results of fluid 
flow in tumor done by developed mathematical model of interstitial 
fluid flow. The effect of shape and size of tumor in interstitial fluid flow 
is investigated by Soltani et al. [5]. In these works, the capillary network 
is substituted by uniform distribution of mass source.

The fluid flow simulation in tumor induced vascular network 
is investigated in many studies. In some research the blood flow is 
considered only in a single capillary while in other studies, blood flow 
through a capillary network is coupled with fluid flow in tumor tissue 
[6-10]. In the latter case, capillary network is generated by mathematical 
model or image processing from experimental data [6,7,9,10]. None of 
the above works however considered the non-continuous behavior of 
blood through capillaries or adaptability of capillary’s diameter.

Not only chemical responses from tumor growth but also functional 

needs affect the capillary network structure induced by angiogenesis. 
The functional needs applied in this study are hemodynamic stimuli 
implemented by blood flow and metabolic stimuli exerted by tissue, 
respectively. To simulate the structural adaptation of vascular network, 
a mathematical model based on experimental observation is used. 
This mathematical model is developed by Pries et al. [11,12]. They 
investigated structural adaptation of capillary network by a theoretical 
method. They set metabolic condition and the wall shear stress induced 
by blood flow and or intravascular pressure as minimal requirements 
to have realistic blood flow in capillary network. In some studies, the 
blood flow through capillary network in tumor modeled by considering 
adaptability of capillary and blood behavior in capillaries [13-17].

In spite of the valuable body of work, the comprehensive model 
which includes remodeling tumor induced capillary network with 
interaction by interstitial flow is not considered. In the previous 
work in our group a mathematical model was developed that couples 
interstitial fluid flow and intravascular fluid flow at the same time 
by considering adaptability of capillary’s radius to signals from 
hemodynamic and metabolic stimuli [3]. In the present work, the 
simulation method presented in our previous work is developed by 
adding lymphatic system in the mathematical model of interstitial fluid 
flow, and statistical analysis [3]. Results of mathematical and statistical 
analysis of two approaches, capillary network with rigid vessels and 
capillary network with remodeled structure, are compared. The detail 
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of both approaches is introduced in Soltani and Chen [3]. Results show 
that fluid flow modeling through network with adaptable capillaries has 
realistic distribution of vessel radii, uniform blood flow, and elevated 
intravascular pressure in the whole network. This prediction is lead to 
higher interstitial pressure levels in remodeled network compared to 
interstitial pressure in the network with rigid capillaries.

Materials and Methods

Angiogenesis, mathematical model

The present Angiogenesis model is motivated by the tumor-induced 
angiogenesis model initially proposed by Anderson and Chaplain [18]. 
This mathematical model predicts the capillary formation by tracking 
the endothelial cells motion in capillary sprout tips. The detail of rules 
for sprouting angiogenesis and algorithm of this method is determined 
in our previous work Anderson and Chaplain and Soltani and Chen 
[18,19].

Remodeling capillary network

The adaptability of capillary’s radius is simulated by mathematical 
model introduced by Pries et al. [11,20]. The changes of radius are 
calculated by Pries et al. [11]:

∆ = ⋅ ⋅∆totR S R t                    (1)

Stot includes the influences of the hemodynamic (Sh), and a 
metabolic mechanism (Sm):

= + −tot h m sS S S k                     (2)

Where

Sh: introduced as hemodynamic stimuli and defined by

( )10 10log logτ τ τ= + −h w ref p eS k                    (3)

Sm: Metabolic stimuli and defined by
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Where

τw : the wall shear stress in capillary induced by flow rate, ( 3
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π

bQ
R

)

τ ref : A constant value for preventing singular behavior logarithm 
function

τ e : The wall shear stress induced by the intravascular pressure,  

( ) 5.4
10 8.6exp 5000 log log − −    bP

Qref : The largest value of Qb in the network

ks : Shrinking stimuli

kp, km: Positive real numbers

The detail of these stimulus and their effects are mentioned in our 
previous work [3].

Intravascular pressure calculation

The blood flow through micro vessel network is modeled similar 
to electrical network. Since blood flow rate in micro vessel network 
is equal to electric current in electrical network, the balance of blood 
flow in each interconnecting point like c can be implemented same as 

balance of electric current in electrical networks (Figure 1):
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Where

N: The number of adjacent nodes

βk : ‘1’ shows connection with adjacent node and ‘0’ shows no 
connection with adjacent node. 

k
cQ : The blood flow rate through each capillary (Figure 2), and 

calculated as

, ,= −k k k
c b c t cQ Q Q                   (6)

Where

,
k
b cQ : Blood flow through each capillary,

,
k
t cQ : The flow rate across the microvessel wall or transvascular 

flow. For blood flow in capillary tubes, Poiseuille’s law can be applied:

,
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Where

R: the vessel radius,

L: the vessel length,

 

Figure 1: Schematic of capillary network in a sample node.

 
Figure 2: Schematic convection and extravasation flow through a 
capillary [3].
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μ: blood viscosity,

ΔPb: calculated by −c k
b bP P , and c

bP  and k
bP  are corresponding 

blood pressure at each node.

The transvascular flow rate is calculated by Starling’s law [21,22]:

( )( ), 2  π σ π π= − − −k
t c p b i s b iQ RL L P P                (8)

where iP , bP , πb , π i , pL  and σ s  are the interstitial fluid pressure, 
blood pressure in capillary, capillary oncotic pressure, interstitial 
oncotic pressure, hydraulic conductivity, and osmotic reflection 
coefficient, respectively.

The fluid flow governing equation for a porous medium is used 
to calculate the interstitial pressure for peripheral tissue of a vascular 
network. The continuity equation for incompressible fluid flow in the 
porous media with source and sink of mass is [4]:

.v φ φ∇ = −i b L                       (9)

Where

vi: the interstitial fluid velocity,

φb : theflow rate from vessel to interstitium or vice versa,

φL : theflow rate from interstitium to lymphatic system.

The starling’s law represents the fluid flow rate across the 
microvessel wall [4].        

( ) ( )( )φ σ π π= − − −P
b b i T b i

L Sr P P
V

                (10)

The lymphatic drainage term is:

                                 (11)

Where

LP : The lymphatic pressure.

φL  is considered only in normal tissue and in tumor tissue its value 
is zero [23].

The general form of momentum equation for porous media is as 
follows [24]:       

( ) ( )( ) ( )v 2v. v v v v v
3
µ µρ µ∂     + ∇ =∇ ⋅ − + ∇ + ∇ − ∇ ⋅ − +    ∂     

T
i ip F

t K                (12)

Where

K: the permeability of the porous medium,

ρ: the density of interstitium media, 

µi: the viscosity of interstitium media,

F: influence of gravity and other volume forces.

By considering interstitial flow as Newtonian fluid and low velocity 
for fluid flow and neglecting the friction, equation (12) is simplified to 
Darcy’s law:

vµ ∇ = − 
 

i
ip

K
                  (13)

The K/µi is defined as interstitium hydraulic conductivity κ.

By coupling Equations (9) and (13), considering source term 
wherever there is a capillary and uniform distribution of sink term, the 

governing equation for interstitial flow is obtained as follows (For more 
detail see [3]): 
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Blood behavior in microvessel

The dependency of blood viscosity in microvessel to radius and 
hematocrit introduced as Fahraeus–Lindqvist effect and independency 
of hematocrit fraction into daughter vessels to blood flow fraction are 
known as non-continuous behavior of blood [25]. The dependency of 
viscosity to radius is shown in Figure 3. The detail of non-continuous 
behavior modeling is mentioned in our previous work [3].

Calculation algorithm

Intravascular (Pb) and Interstitial (Pi) pressures are coupled to 
each other based on Equation (8). Therefore, Equations (5) and (14) 
should be solved at the same time to find the blood pressure in capillary 

Figure 3: The variation of blood viscosity to vessel radius, Fåhraeus–
Lindqvist effect.

 
Figure 4: Calculation algorithm for numerical method used in this study.

( ) ( )φ = −PL L
L i L
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network and interstitial fluid pressure. The numerical method is used 
for solution these equations. The advanced mathematical method is 
applied to discretize the interstitial fluid flow equation (equation 14) 
[4]. 

The general algorithm used in this work is shown in Figure 4. In 
the first approach, rigid network, the hematocrit, viscosity, and vessel 
radius are assumed to be constant during simulation. For the second 
approach, the mentioned parameters are assumed to update during 
simulation. The detail of numerical procedure is described in Soltani 
and Chen [3].

Boundary and initial condition and model parameterization

The 2D computational domain (Figure 5), in which parent vessel is 
located in the left and tumor in the right, is considered for simulation. 
The radius of circular tumor is assumed 0.4 of domain length. 

Boundary and initial conditions

Intravascular flow: To carry out the intravascular flow simulation, 
pressure values for the inlet and outlet of parent vessel are required. 
Taking into account the physiological condition at the microvessel 
scale, the 3325Pa (25 mmHg) for inlet ( )inletP  and 1330Pa (10 mmHg) 
for outlet pressures ( )outletP  is considered. The initial value of bP  is 
considered to be 1330 Pa.

The initial radius of each capillary segment for simulation with 
remodeling method is assumed to be 6 µm. For the parent vessel the 
radius is 14 µm which stays constant during the remodeling procedure 
[26]. For simulation with rigid capillary, the vessel radius is prescribed 
with a method presented by Wu et al. [9] as follows:

0=n nR g R   (n=1, 2, 3…)                   (15)

Where n is the value of branching generation, R0 is the radius of 
the parent vessels, Rn is the radius of the nth generation of vessels, gn is 
the ratio coefficient smaller than 1. gn in equation (15), given by Wu et 
al. [9]

1
1

1 λ +
+ = n

n ng g                     (16)

In which   is 0.65 and g0 is 0.8. The radius of vessels is remained 
constant during simulation.

Interstitial flow: The boundary condition used in solving of 
Equation (14) is shown in Figure 5. Anon-flux (symmetry) boundary is 
applied in right, down and upper edges, i.e.,

0∇ =iP                    (17)

For the left boundary, the interstitial pressure is constant; the 
Dirichlet type of boundary condition is applied [4]:

0iP for outer region=                   (18)

The continuity of pressure and velocity for Equation (14) are 
considered as appropriate boundary conditions for boundary between 
normal and tumor tissue:

κ κ− +

− +

Ω Ω

Ω Ω

− ∇ = − ∇

=
t i n i

i i

P P

P P
                (19)

Where −Ω  and +Ω   indicate the tumor and normal tissue at the 
outer edge of the solid tumor; the t and n are the normal and tumor 
tissue, respectively.

Model parameters: The material properties for normal and tumor 
tissue listed in Table 1 and used in interstitial fluid flow calculation are 
taken from our previous work [4]. The parameters used for blood flow 
simulation through microvessel network are listed in Table 2.

Results and Discussion
Two methods are used for simulation of blood flow in capillary 

network and peripheral tissues. Results of the first method are 
obtained by simulating fluid flow in a network induced by tumor 
angiogenesis with constant values for blood rheology and vessel radius. 
In the second method, results are obtained using the proposed realistic 
model assuming the Fahraeus–Lindqvist effect of blood viscosity and 
remodeling of the capillary network.

The capillary network used in this paper is generated by discrete 
angiogenesis method with considering 6 endothelial cells in parent 
vessel. The capillary network shown in Figure 6 (blue line) is used in 
numerical simulation of intravascular and interstitial pressure. The 
pruned networks are illustrated in Figure 6 with green lines. Resulted 
networks agree well qualitatively with the experiments [27,28]. 

For a better comparison of the results of two approaches, the 
interstitial pressure is non-dimensionalized. The non-dimensional 
interstitial pressure is defined by 

max−

′= i

i
i

PP
P

                     (19)

 

Figure 5: A schematic of calculated domain for fluid flow simulation.

Parameter Normal Tissue Tumor Tissue
Lp [cm/mmHg s] 0.36×10-7 2.80×10-7

K [cm2/mmHg s] 8.53×10-9 4.13×10-8

S/V [m-1] 700 2000
πB [mmHg] 20 20
πi [mmHg] 10 15

σ 0.91 0.82
PL [mmHg] 0 -

LPL SL/V [1/mmHg s] 1.33×10-5 -

Table 1: Normal and tumor tissue transport properties [4].

Parameter Value
τref [Pa] 0.103

Qref [mm3/s] 4.87×10-3

kp [1/s] 0.1
km [1/s] 0.07
ks [1/s] 0.35

Table 2: Adaptation parameter used in remodeling simulation [35].
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In which max−iP  is the maximum interstitial pressure calculated 

for two approaches. The calculation shows that the maximum pressure 
belongs to the remodeled network which is around 1100 Pa. Also, the 
x and y positions are non-dimensionalized by length of the domain. 
The 3D graphs of interstitial pressure for two approaches are shown 
in Figures 7 and 8. At the tumor center, the highest value of interstitial 
pressure is occurred. The interstitial pressure decreased rapidly towards 
the periphery. The higher vessel permeability and lack of lymphatic 
system in the tumor region caused the high elevation of interstitial 
pressure near the tumor. This effect is observed in our previous works 
Soltani and Chen and Jain et al. [4,5,29], and in the experimental results 
of Arifin et al. [30], Huber et al. [31] and Heine et al. [32]. 

 
Figure 6: The results of discrete sprouting angiogenesis and the vascular 
network after pruning.Pruned capillary network shown by green line.

 Figure 7: The 3D graph of non-dimensional interstitial pressure with 
considering rigid capillary.

 

Figure 8: The 3D graph of non-dimensional interstitial pressure with 
considering adaptive capillary.

 

Figure 9: The contour of interstitial velocity with considering rigid capillary.

Figure 10: The contour of interstitial velocity with considering adaptive 
capillary.

The interstitial velocity contour is shown in Figures 9 and 10 for 
two calculation methods. The maximum value of IFV is close to the 
boundary between normal and tumor tissue. Since the IFV based 
on Equation (13) is only depended to IFP gradient and the IFP has 
uniform value in tumor region, the IFV is zero. The maximum value 
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Figures 13 and 14 show the radius distribution in the domain. The 
statistical analysis of radius distribution is shown in Figures 15 and 16. 

 

Figure 11: Fluid flow in simulated rigid capillary network.

 
Figure 12: Fluid flow in simulated remodeled capillary network.

 Figure 13: Radius distribution in rigid network.

 

Figure 14: Radius distribution in remodeled network.

 
Figure 15: Density of radius in rigid network.

of IFV is in the same order as the prediction of Jain et al. [29] and 
experimental observation of Hompland et al. [33].

The second approach-remodeled network-predicts the highest 
interstitial pressure approximately 150% of the highest value of 
interstitial pressure in rigid network. Results presented in the following 
figures show how considering realistic condition such as remodeling 
and blood behavior in capillary can affect on interstitial pressure.

The blood flow distribution for both rigid and remodeled networks 
is shown in Figures 11 and 12. The comparison of blood flow for two 
networks shows that blood flow in remodeled network has a uniform 
distribution than the blood flow in rigid capillaries. The pruning method 
based on low flow rate is used in blood flow simulation. This method is 
based on the experimental observation in which the vessels collapse in 
low flow and shear stress [34]. Because the capillaries far from parent 
vessel in rigid network receive low blood flow rate, most of them are 
eliminated in pruning process. However, in remodeled network, most 

of these pruned capillaries are retained. The considering structural 
adaptation in modeling process decreases flow resistance through the 
capillaries, and also prevents shunt fluid path [11]; therefore, vessels far 
from parent vessel get more blood flow rate.
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The density of each radius is calculated and shown for two approaches. 
As shown in these figures, the number of great radius sizes in remodeled 
network is much more than that of rigid network. The bigger radius in 
remodeled network decreases resistance flow in the network and makes 
uniform distribution blood flow as illustrated in Figure 12.

The uniform distribution of blood flow pattern and radius size affect 
on intravascular pressure. Figures 17 and 18 show the intravascular 
distribution for two cases. The average intravascular pressure at each 

Figure 16: Density of radius in remodeled network.

 

Figure 17: Intravascular pressure in case of remodeled network.

 
Figure 18: Intravascular pressure in case of remodeled network.

 
Figure 19: Comparison average of intravascular pressure at 
each x in domain. The higher value of intravascular pressure 
increases the leakage rate of flow for remodeled network.

 
Figure 20: Comparison density of intravascular pressure in whole 
domain.

constant x in domain for two approaches is shown in Figure 19. Figure 
19 shows that the intravascular pressure from the parent vessel to tumor 
has a more uniform value for remodeled network in comparison to that 
of rigid network. Also, an intravascular pressure distribution obtained 
statistically (Figure 20) shows that the remodeled network has a larger 
density in higher pressure values in comparison to rigid network.

These results show why the remodeled network predicts higher 
interstitial pressure than rigid network. The elevated intravascular 
pressure and high leaky microvessels in tumor region increase the 
transvascular flow rate and subsequently the interstitial pressure as 
shown in Figures 7 and 21.

Conclusion
This study provides a numerical simulation of interstitial fluid flow 

in normal and tumor tissues with distribution of intravascular pressure 
based on tumor-induced vascular network in two situations: a rigid 
vascular network and remodeled capillary network.

The proposed method couples different simple models to describe 
processes ranging from flow through porous media, angiogenesis, blood 
viscosity in capillaries, phase separation, and structural adaptation of 
microvessel network. Then it is discussed how these simple methods 
incorporate important simplifications to complex processes and lead 
to more realistic results. 
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The adaptability of capillaries in response to hemodynamic and 
metabolic stimuli which remodels network structure leads to greater 
capillary radius compared to the rigid capillary network model. The 
more-uniform blood flow distribution caused by greater capillary 
radius results in low resistance fluid flow and higher intravascular 
pressure. This elevated intravascular pressure in immature blood 
vessels for remodeled network leads to higher interstitial pressure 
prediction than interstitial pressure prediction for rigid network.
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