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of biofluids or tissue [1]. In combination with other molecular 
measurements it has shown great potential for accurate diagnosis, 
prognosis, and evaluation of therapeutic response and drug efficacy [2].

The cancer metabolome may be the most studied to date, 
particularly in the area of breast cancer diagnostics [1]. Several breast 
cancer studies using multivariate analysis of metabolite profiles from 
tissue have shown very high sensitivity and specificity in discriminating 
a malignant phenotype from benign tissue, and even cancer grade 
and hormone status [3-5]. Numerous studies have also indicated 
that changes in lipid metabolism can be an indicator of cancer (often 
characterized by an elevation of total choline-containing compounds 
(tCho) and phosphocholine). Choline levels have been extensively 
studied as a biomarker to stratify various cancers, including brain 
tumor types and grade [6,7], and distinguish between benign and 
malignant breast tumors [8,9], and prostate tumors [10,11].
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Introduction
With the recent advances in technology related to ultra-high 

performance mass spectrometry, especially those concerned with 
liquid chromatography/mass spectrometry (LC/MS), it is now 
possible to perform a comprehensive assessment of thousands of 
physiochemically distinct small molecules such as lipids, central carbon 
metabolites, sugars and amino acids, both exogenous or endogenous in 
nature, to gain insights into cellular and physiological responses. The 
field of metabolomics is showing tremendous promise for providing 
fast, accurate, and nonbiased profiling methods to elucidate underlying 
disease mechanisms and diagnosis, develop new effective strategies for 
the treatment, and for other potential applications in diverse clinical 
areas such as personalized medicine, nutritional metabolomics, 
population profiling, and molecular epidemiology.

Metabolomics analyses are commonly practiced in two 
fundamental ways. A targeted metabolomics study with the help of 
internal standards and specific mass spectrometer (MS) conditions 
aims at measuring previously identified metabolites for achieving 
better quantitation and validation. Untargeted metabolomics research 
largely focuses on discovery to detect and quantify any small molecule 
(<1500 Da) that can be ionized by mass spectrometry to understand 
biochemical function and change within a biological system.

The ability to easily quantify changes in the biological system makes 
metabolomics an attractive  translational research tool that can help 
identify biomarkers of disease through non-invasive measurements 
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The use of a multi-omics, systems biology approach to study 
cellular metabolism is key to understanding disease etiology and 
outcome. Integration of omics data types can help identify biological 
pathways affected and provides a more complete picture disease 
biology and prognosis, and can even provide new drug targets. One 
recent study integrated the metabolomics profile of tissue from breast 
cancer patients with protein expression data for glycerol-3-phosphate 
acyltransferase (GPAM), an enzyme involved in lipid biosynthesis. 
This data was overlaid with gene expression data to show that GPAM 
expression in breast cancer is associated with changes in the cellular 
metabolism, especially an increased synthesis of phospholipids [12]. 
Another study integrated transcriptomics and metabolomics data from 
NCI60 cell lines to show biological pathways associated with drug 
sensitivity, which demonstrates potential as a methodology to predict 
response to drug therapy [13].

Several approaches have been recently introduced to integrate 
metabolomics data with gene expression data [14,15]. Some of the 
current methods utilize a data-driven approach based on a statistical 
framework of correlation or multivariate analysis [16] producing 
computationally derived associations between the abundance of 
metabolites and level of gene expression. Such methods have proven 
to be effective in elucidating possible connections between changes 
observed in metabolomics data and gene expression data. The existence 
of correlated changes, however, does not necessarily represent real 
biological interactions; for instance, correlated metabolomics and 
gene expression data may indicate independent co-regulation by 
upstream regulators or environmental factors (e.g. hypoxia etc.). These 
computationally derived associations do not provide a clear path to 
biologically meaningful conclusions about molecular interactions 
and require further downstream analysis for biological interpretation. 
Recent studies have been also reported on applications of pathway 
enrichment analysis for gene expression and metabolomics data 
[17,18] utilizing biological pathway information for integration of 
metabolomics and transcriptomics for biomarker discovery.

Metabolite identification and systematic curation of public 
resources to obtain high confidence annotations is one of the biggest 
challenges faced by researchers working in the field of metabolomics. 
One of the current methods to address this challenge is to use 
consensus based reporting Metabosearch [19], and the Manchester 
Metabolomics Database (MMD) [20] by merging annotations from 
multiple resources to obtain annotations of higher confidence and also 
achieve widespread coverage since none of the existing bioinformatics/
cheminformatics resources claims to cover the entire metabolome 
[21]. Another useful approach to identify metabolites is to carry out a 
restrictive search using organism-specific metabolomics databases since 
each species is characterized by a biochemically distinguishable and 
unique metabolome. Disregarding the source of origin of metabolites 
can lead to false and inconsequential identifications leading to wasted 
downstream validation efforts [22,23]. 

We describe a streamlined biological context-driven workflow 
for turning crude MS information into reliable and actionable 
knowledge applicable to profiling studies focusing on untargeted 
metabolomics.As part of this workflow we introduce a metabolite 
annotation database, MetPlus DB to address gaps in the current 
tools and provide the scientific community with a freely available 
resource for reliable annotation of metabolites. MetPlus DB isa fully 
cross-referenced database that integrates data from the three most 
comprehensive metabolite databases: HMDB [24], LIPID MAPS [25] 

and HUMANCYC [26]. Another aspect of this workflow is the ability 
to combine the information from complimentary ‘omics’ technologies, 
particularly metabolomics and transcriptomics, to build integrative, 
knowledge-driven networks. This method provides a novel systems 
biology based way to explore metabolite-to-gene interactions that can 
facilitate biological interpretation of the findings and generation of 
new hypotheses and be incorporated into an overall systems biology 
approach to metabolite profiling.

Materials and Methods 
Integrative analysis workflow

The entire workflow for carrying out integrative analysis of 
metabolomics datasets can be broadly categorized into 4 steps – 1) 
data acquisition and processing, 2) metabolite identification, 3) data 
integration and 4) data interpretation. The workflow diagram with all 
the major steps is shown in Figure 1. 

The first step in the workflow involves extraction of high-
resolution LC/MS signals. Several frameworks are being developed 
for feature detection (and alignment) including MarkerLynx 
(Waters, commercial), MathDAMP [27], MetAlign [28], XCMS [29] 
and MZmine [30] (open source, freely-available). Using various 
univariate and multivariate statistical techniques the screening 
involves identification of hundreds to thousands of features that are 
differentially regulated between two or more sample groups or those 
strongly associated with the phenotype of interest. While the first 
step has now become straightforward and routine practice there is a 
pressing need for improvements in the latter steps of the workflow (i.e. 
metabolite identification and data interpretation especially in the case 
of multi-omics studies). Our method allows for omics data integration 
to provide a more comprehensive biological context for interpretation 
of metabolomics findings.

Database design and implementation

MetPlus DB is implemented as a SQLite database to deliver high 
confidence annotations with significantly reduced redundancy and 
eliminates the complexity of extracting metabolite annotations from 
individual databases. The data is primarily integrated from three 
comprehensive metabolite databases including HMDB (Version: 3.0), 
HUMANCYC (Version: 16.0) and LIPID MAPS (Updated: April 12, 
2012) by merging records based on IUPAC International Chemical 
Identifier (InChIKey). The InChIKey is a fixed-length hashed version 
(27-character, including two hyphens) of the full InChI with five distinct 
components: 1) the first block (14-characters) encodes molecular 
skeleton (connectivity); 2) the second block (8-characters) contributes 
to proton positions (tautomers), isotopomers and stereochemistry; 
3) a single flag character; 4) a single version character; and 5) a 
deprotonation indicator [http://www.iupac.org/home/publications/e-
resources/inchi.html]. 

The InChIKey works very effectively in linking the chemical 
information together across multiple databases. It also provides a viable 
strategy for eliminating redundancy, inconsistency and inadequate 
representation of metabolite entry pulled from different sources.
Since untargeted metabolomics experiments aims at identifying 
putative annotations for m/z signals through mass based search 
within a specified mass tolerance (ppm), we designed MetPlus DB 
exclusively to include records searchable through molecular weights 
preferably monoisotopic weights. However, mass-based queries can 
result in multiple numbers of putative identifications for any single 
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Figure 1: The bioinformatics ���� . Outlining major steps for constructing the integrative knowledge-driven network and its biological interpretation using 
complimentary ‘omics’ datasets.

m/z signal. It is always advised to further investigate and validate all 
putative annotations by UPLC-ESI MS/MS protocol to determine the 
metabolite identity. For the HUMANCYC database where only InChI 
string is available, a conversion to InChIKey was carried out using 
InChI resolver service [http://www.chemspider.com/inchi-resolver] 
provided by Chemspider. In the case of LIPID MAPS, records are 
included for integration having either valid corresponding Pubchem 
identifiers and/or HMDB identifiers. Metabolites with more than one 
primary identifier having the same InChIKey are merged as a single 
record to minimize redundancy. Cross-referencing information 
for linking to other mainstream cheminformatics/bioinformatics 
databases (e.g. ChEBI, Pubchem and Chemspider) is based on matching 
information on InChIKey. Additionally, HMDB and LIPID MAPS are 
used to provide pre-existing cross-referencing information in the case 
of METLIN, Foodb, and KEGG.

Knowledge-driven network construction

In this workflow, we have created an integrated knowledge-driven 

network by combining two profiles (metabolomics and transcriptomics) 
using STITCH (‘Search Tool for Interactions of Chemicals’) 
(Version: 3.1) [31] a repository of data that captures the publicly 
available knowledge on protein–chemical associations. STITCH is an 
aggregated database of interactions connecting over 300,000 chemicals 
and 2.6 million proteins from 1,133 organisms. As an exploratory tool 
STITCH includes 254,000 high-confidence human protein–chemical 
edges/interactions (confidence score ≥ 0.7). A confidence score is 
assigned taking into account both level of significance and certainty 
of an interaction [31]. Following metabolite annotation using MetPlus 
DB, a combined list of identified metabolites and genes/proteins that 
are strongly associated with the phenotype of interest was uploaded 
to the STITCH database to produce an interaction network. Edges 
in the network depict knowledge-driven interactions (e.g. based 
on text mining or experimental evidence) between genes and/or 
proteins. Hypotheses generated from this approach enables data-
driven knowledge discovery. Next, the Comparative Toxicogenomics 
Database (CTD) [32] is used as an additional source of information 
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to annotate both metabolites and proteins as molecular markers or 
therapeutic targets in the context of given phenotype or disease. A 
complete workflow for the data integration and interpretation steps 

of the pipeline resulting in a gene-metabolite knowledge-driven 
interaction network is shown in Figure 2.

Figure 2: A detailed stepwise ���� for assessing the biological signi����of knowledge-driven integrative network of gene and metabolite 
interactions. Step-1 Upload a combined list of differentially identified metabolites and genes/proteins into STITCH; STEP-2 Retrieval of high-confidence human 
protein–chemical interactions (confidence score ≥ 0.9); STEP-3 Use the Comparative Toxicogenomics Database (CTD) as an additional source of information 
to annotate both metabolites and proteins that are molecular markers or therapeutic targets in the context of given phenotype or disease; STEP-4 Sub-set the 
interaction network by filtering out the gene-to-gene and metabolite-to-metabolite interactions; STEP-5 Re-construct the knowledge driven network based on direct 
interacting metabolites and genes/proteins; Step-6 Prepare the list of interacting genes/proteins and metabolites from sub-network constructed in the previous step; 
Step-7 Perform pathway enrichment analysis using CPDB (ConsensusPathDB) database; Step-8 Perform Fisher exact test (ORA Analysis) for both list of interacting 
metabolites and genes/proteins; Step-9 Scan for pathways populated with both metabolites and genes; Step-10 Investigate the list of overlapping biochemical 
pathways to assess the biological significance.
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This network view of interacting functional partners can 
provide new insights about their association with the phenotype of 
interest and a more granular understanding of interdependence and 
interconnectivity between underlying biochemical processes and 
pathways at a systems level.

Case study
We tested our computational workflow on two breast cancer 

cell lines: BT-549 (basal breast cancer) and MCF-7 (luminal breast 
cancer) using a combination of two complimentary ‘omics’ datasets: 
1) transcriptomics dataset –expression profiles were measured on the 
Affymetrix U133 Plus 2.0 microarray platform downloaded from the 
Gene Expression Omnibus (GEO; accession number GSE32474 [33]); 
and 2) metabolomics dataset –the NCI60 metabolomics data was 
downloaded from DTP web portal (http://dtp.nci.nih.gov/mtargets/
download​.html; August 2010 Data Release).

Case study data processing
The metabolomics data was generated by Metabolon Inc. 

[http://www.metabolon.com] and consists of measurements on 352 
metabolites with 154 putatively identified. After removing metabolites 
having no variation across samples and excluding retired annotations 
137 metabolites were selected. The raw gene expression data from 
Affymetrix U133 Plus 2.0 chip was pre-processed using RMA 
normalization [34] equating to 54,675 probes. The processed data was 
log transformed and non-specific filtering was performed using nsfilter 
function from the Bioconductor package genefilter [35] to remove 
probe sets that have no Entrez Gene identifier and have low intergroup 
variability, as these are likely to be uninformative. To ensure that each 
probe set maps to exactly one Entrez Gene ID, if multiple probes were 
found that mapped to the same Entrez Gene ID a probe with the largest 
IQR was selected for downstream analysis. 

Case study statistical analysis
Statistical group comparison was performed using a t-test 

(Bioconductor). A total of 54 differential metabolites with adjusted 
p-value cut-off 0.05 were identified between basal (BT-549) vs. luminal 
(MCF-7) breast cancer cell lines (based on three biological replicates 
for each cell line).Similarly, 428 DEGs were identified with an adjusted 
p-value cut-off at 0.01 and absolute log-ratio of 2. The multiple testing 
corrections were computed using the Bioconductor package qvalue 
[36] (Supplemental File 1).

Case study network inference
The differentially identified metabolites (using KEGG identifiers) 

and differentially expressed genes (using HGNC Symbols) were used 
as input to query chemical-gene interactions using the STITCH 
database (illustrated in Supplemental File 2). Using a confidence score 
of ≥ 0.9, a set of highest-confidence interactions was outputted and the 
resultant interaction network was downloaded locally in text format 
(Supplemental File 3). Furthermore, the Comparative Toxicogenomics 
Database (CTD) was used as an additional source to provide manually 
curated information on interacting metabolites and genes that are 
annotated as molecular markers or therapeutic targets in the context 
of breast cancer. The network-based representation of metabolite – 
protein interactions derived from STITCH and CTD was created using 
cytoscape [37].

Case study pathway enrichment analysis
To assess the biological significance of an integrative network in 

the context of significantly affected biological pathways, a pathway 
enrichment analysis was performed on the list of 26 differentially 
identified metabolites annotated by MetPlus DB to acquire external 
database identifiers including KEGG, HMDB etc. and 54 differentially 
expressed genes that are interconnected through gene-to-metabolite 
interactions using ConsensusPathDB [38]. A generalized workflow 
outlining steps for assessing the significance of integrative network in 
the context of biological pathways is illustrated in Figure 2.

Pathway analysis was performed on the ConsensusPathDB website 
using overrepresentation analysis based on Fisher’s exact test. The lists 
of significantly enriched pathways with an adjusted p-value cut-off 
of 0.05 were retained. The enrichment analysis was performed using 
KEGG, Reactome, SMPDB, EHMN, and Humancyc.By intersecting 
the two separate lists of enriched pathways we obtained overlapping 
biochemical pathways containing both metabolite and gene functional 
partners found to be altered in the study sets.

Results 
We have developed a novel pipeline for integrative analysis of 

untargeted metabolomics data in conjunction with gene expression 
data derived from the same samples. A complete workflow for this 
pipeline is presented in Figure 1. 

This methodology includes several consecutive steps for 
streamlining a process of metabolite annotation (MetPlus DB) as well 
as downstream systems biology analysis of networks and pathways by 
incorporating known information about gene-metabolite interactions. 
This pipeline has been already utilized in our current translational 
research projects on multi-omics profiling of breast and colorectal 
cancer (data unpublished).

To illustrate the utility of this methodology we have applied it to the 
analysis of open access breast cancer data from the NCI-60 collection. 

Implementation of MetPlus DB

We have built a fully cross-referenced database (MetPlus DB) by 
integrating the data from the three most comprehensive metabolite 
databases tailored largely towards mammalian metabolomics: HMDB, 
HUAMNCYC and LIPID MAPS. MetPlus DB has cross-referencing 
information for linking to several other mainstream cheminformatics/
bioinformatics repositories including KEGG [39], METLIN [40], ChEBI 
[41], FooDB [http://www.foodb.ca], Pubchem [42] and Chemspider 
[http://www.chemspider.com] to provide unambiguous knowledge on 
clinically and physiologically relevant metabolites. Technical details of 
database construction are presented in Methods section. MetPlus DB is 
available for download at (https://github.com/ICBI/MetPlus-DB).

There are several features that have made MetPlus DB a 
customizable and unique alternative to current annotation resources 
[19, 20]: 1) Non-dependency on remote database availability and 
schema. Remote databases often change their database schema when 
releasing newer versions thereby making older versions obsolete. Under 
such situations, web-based applications with a dependency on remote 
databases often require changes in their software architecture and/or 
computational module to tune-in with these resources from time to 
time. Consequently, reproducibility of the same results from one time 
or another cannot be guaranteed; 2) Fully customizable, extensible, 
accessible, and tailored towards supporting a variety of systems biology 
workflows for annotating massive amounts of metabolomics data; 
3) Assembly of a large amount of information useful for searching 
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annotations specific to mammalians thereby reducing the chances of 
hitting spurious and inconsequential identification of metabolites of 
different origins; and 4) Flexible architecture that not only allows for 
mass-based or external identifier specific searches but also enables 
searching for metabolites based on a common chemical name, IUPAC 
name, systematic or trade name. In short, MetPlus DB saves a large 
amount of time for other research activities that would otherwise be 
devoted to manually annotate metabolites across multiple sources to 
filter down to meaningful results for downstream validation purposes. 

To demonstrate the utility of our pipeline we used MetPlus DB 
to re-annotate a list of 26 differentially present metabolites in the 
case study presented below. MetPlus DB acquires multiple external 
database identifiers including (e.g. KEGG, HMDB) as shown in Table 
1 and enables downstream analysis of metabolite pathway enrichment.

Case Study: Integrative analysis of metabolomics and 
transcriptomics data for NCI-60 breast cancer cell lines

We tested our computational workflow on two breast cancer 
cell lines - BT-549 (basal breast cancer) and MCF-7 (luminal breast 
cancer) using a combination of two complimentary ‘omics’ datasets – 
transcriptomics (microarray - gene expression) and metabolomics. The 
technical details of data processing and network and pathway analysis 
for this study are presented in the Methods section.

A knowledge-driven network of interactions was generated between 
differentially expressed genes (DEGs) and differentially identified 
metabolites (Supplemental File 1) using literature-derived information 
on chemical-gene interactions from the STITCH knowledge base as 
illustrated in (Supplemental File 2) and redrawn using cytoscape in the 
circular layout in Figure 3A. To focus specifically on knowledge-driven 
networks connected through metabolite and gene interactions, we 
filtered out the gene-to-gene and metabolite-to-metabolite interactions 
and re-constructed the network as shown in Figure 3B retaining only 
metabolite-to-gene interactions. This interaction network indicated 
significant differences in metabolism and gene expression between two 
breast cancer cell lines of basal and luminal subtypes.

The network allowed us to clearly identify several interacting 
functional modules (Figure 3B). The maximum number of connections 
in this network involved phosphate (24 edges connected to genes) 
followed by glycerol (12 edges). Identification of metabolites with 
multiple gene connections could provide additional criteria for 
selection of potential candidates for targeted metabolomics validation 
experiments.

Genes in the network were found to have smaller number of 
connections to metabolites in a range from 1 to 5 metabolites per gene 
with the majority of genes (34 out of 54 genes) connected to only one 
metabolite. The maximum number of connections was for NT5E (5 
edges) followed by UPP1 and FNP1 (4 edges each).Genes connected 
to several metabolites could also help identify potential candidate 
metabolites for validation experiments.

Joint pathway enrichment analysis 
To assess the biological significance of an integrative network in 

the context of significantly affected biological pathways, a pathway 
enrichment analysis was performed on the list of 26 differentially 
identified metabolites and 54 differentially expressed genes that 
are interconnected through gene-to-metabolite interactions using 
ConsensusPathDB [38]. The metabolites were annotated by MetPlus 
DB to acquire external database identifiers as shown in Table 1.

The lists of significantly enriched pathways were generated using 
KEGG, Reactome, SMPDB, EHMN, and Humancyc databases. By 
intersecting the two lists, overlapping biochemical pathways were 
obtained and populated with both functional partners (i.e. metabolites 
and genes as shown in Figure 4). The results of joint pathway analysis 
presented as a heat-map showing presence of metabolites (highlighted 
in green color) and genes (highlighted in blue color) in the enriched 
pathways. Each column represents individual pathways and each row 
– metabolites or genes.

Noticeably, only few genes were mapped to a large number of 
enriched metabolic pathways: ABAT (16 pathways), ALDHSA1 (12 
Pathways), NT5E (9 pathways). Similarly, only few metabolites were 
mapped to a large number of pathways: Glutamate (20 pathways), 
Succinate (15 pathways), beta-Alanine (15 pathways).

Enriched pathways were primarily represented by metabolites 
belonging to known metabolic pathways. However, several more 
specific pathways were also represented by multiple molecules, 
including transmembrane transport of small molecules from Reactome 
(23 molecules), metabolism of nucleotides (17 molecules), metabolism 
of amino acids and derivatives (17 molecules), and Urea cycle and 
metabolism of arginine, proline, glutamate, aspartate and asparagine 
from the Edinburgh Human Metabolic Network (16 molecules).

Discussion 
We discuss a pipeline using open source tools for metabolomics 

analysis that allows for metabolite integration with transcriptomics 
data. The integration of both molecular data types provides a more 
accurate understanding of the biological processes implicated in 
disease. The novelty of our methodology is the sequential execution of 
analytical steps allowing for both annotation of metabolomics peaks, 
and knowledge driven integration of annotated metabolites with gene 
expression data in a flexible, reusable, and configurable workflow.

The computational workflow is based on loosely coupled analytical 
modules to support custom data analysis in a rapidly changing 
environment. The pipeline is easy to implement and reusable for 
users with some programming skills including database handling and 
writing basic SQL (Structured Query Language) queries. It utilizes 
our new resource for annotation of metabolites (MetPlus DB) and 
knowledge-driven workflow for integrating metabolite abundance 
data with gene expression data into interaction networks based on 
prior biological knowledge. A final step of this pipeline allows to us 
to identify biological pathways that are significantly enriched within 
these subsets of interacting genes and metabolites. This methodology 
streamlines the identification of biologically meaningful subsets of data 
and assists in focusing on potential biological mechanisms that are 
relevant to observed phenotypic changes.

To demonstrate utility of this approach a case study was conducted 
on publicly available NCI-60 metabolomics profiling and gene 
expression data from breast cancer cell lines. The data were compared 
between two breast cancer cell lines with known distinct phenotypes of 
basal and luminal types of breast tumors. 

A network integrating genes and metabolites was constructed 
based on the STITCH knowledge base (Figure 3). After subtraction of 
gene-gene and metabolite-metabolite interactions a gene-metabolite 
network emerged that allowed us to clearly identify a subset of 
metabolites connected to multiple DEGs (ranging from 1 to 24 edges). 
In contrast, the genes were connected to markedly less metabolites 
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Figure 3: The integrative knowledge-driven network combining two ‘omics’ technologies including microarray gene expression and metabolomics.A) the circular view 
of entire network showing gene-to-metabolite, gene-to-gene and metabolite-to-metabolite interactions. The network is color-coded with nodes in red color corresponds 
to metabolites and cyan color genes. Node label highlighted in red color corresponds to CTD curated genes and metabolites associated with breast cancer. Grey color 
solid edges corresponds to undirected gene-to-gene and metabolite-to-metabolite interactions, and dotted red color undirected gene-to-metabolites interactions. B) 
Sub-network view showing exclusive gene-to-metabolite interactions to gain novel insights into the molecular mechanisms of breast cancer dynamics.

(ranging from 1 to 5 per gene) with majority of genes (34 out of 54 
genes) connected to only one metabolite. Identification of metabolites 
with high connectivity to genes provides selection criteria for potential 
small molecule biomarkers associated with phenotype differences 
between basal and luminal breast cancer cell lines. In this case study 
we found that phosphate has the largest number of connections in the 
network with 26 genes. Differences in phosphate metabolite levels has 
been reported in the early 31P NMR study [43] showing that human 
breast cancer cells with the phenotype of pleiotropic drug resistance 
(derivative from wt MCF7 cell line) exhibited significantly elevated 
levels of phosphate metabolites as compared to the wild-type, drug-
sensitive parent cell line of wt MCF7 cells. Interestingly, in our case 
study we have compared the MCF7 cell line with the BT-549, a basal 
subtype B triple negative cell line [44] that has been reported to have a 
multi-drug resistant phenotype [45].

The differential expression of genes connected to multiple 
metabolites (such as NT5E with 5 connections) could indicate a key 
role in the alteration of several metabolic pathways associated with 
specific breast cancer cell line phenotypes. Connectivity of genes might 
serve as additional criteria for designing follow up experiments.

The last step of our pipeline, a joint analysis of pathway enrichment, 
enables the identification of specific metabolic and regulatory 
pathways that are significantly altered between the two cell lines. 
Such an approach provides an opportunity to expand analysis beyond 
interactions between single entities and identify those genes and 
metabolites that are involved in the same pathways where there might 
be no direct association or interaction between them (Figure 4). Using 

this approach for analysis of breast cancer cell lines we have identified 
several genes that were mapped to many enriched pathways: ABAT (16 
pathways), ALDHSA1 (12 Pathways), NT5E (9 pathways). While some 
of these genes have multiple connections in metabolite-gene networks 
as well (such as NT5E), other genes mapped to multiple pathways did 
not have large number of connections to metabolites in the network 
(ABAT – only 3 connections). 

During a recent validation study on 42 breast cancer cell lines the 
role of ABAT expression in breast cancer has been reported as part of 
multi-gene predictors for use in capturing response to chemotherapy 
[46]. ABAT was also shown to contribute to the mechanisms of 
mammary tumor progression [47].

These observations have clearly demonstrated the complementarity 
of the two integrative analysis steps incorporated into our pipeline. In 
addition, the joint pathway enrichment analysis step helps to reveal 
relatively important (and not obvious) roles for genes and metabolites 
participating in multiple pathways relevant to a specific phenotype. 
Such differences can only be obtained by integrative analysis of two 
data types together.

While specific findings from this case study require follow up 
validation, the results clearly demonstrate that such a systems biology 
approach for the analysis of metabolomics data offers a unique way 
to connect data within a biological context. The methodology also 
provides novel criteria for selection of candidate biomarkers based on 
joint analysis of differentially expressed genes and metabolites.
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Figure 4: Diagram of �������Enriched Overlapping Pathways. Adj. P-value < 0.05 identified by Pathway Enrichment Analysis for metabolites and genes. 
Colored cells indicate pathways containing corresponding metabolite (green) or genes (blue). 
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Future Directions
Our novel integrative analysis pipeline provides a streamlined 

approach for integrating untargeted metabolomics data with 
transcriptomics data. The key strength of the pipeline is in the potential 
for broader applicability for integrating metabolomics data with other 
complementary ‘omics’ data types to allow for rapid generation of new 
testable hypotheses based on the interactions of functional partners 
(genes, proteins, miRNA and metabolites etc.) in the knowledge-driven 
network. The workflow with some modifications can be extended to 
integration of metabolomics data with other omics data such as 
proteomics and genomics (e.g. DNA-seq variant data and microRNA 
profiling data). 

Several steps of pipeline presented here have been recently 
incorporated into the metabolomics analysis module of the Georgetown 
Database of Cancer (G-DOC).Downstream analysis steps will 
eventually be incorporated into G-DOC and made available for public 
use on cancer datasets currently in G-DOC. We are also exploring the 
analysis of human metabolomics data from bio-fluids (blood, urine) 
and plan to integrate this with other types of omics data types. 

MetPlus DB as a standalone SQLite database is developed to 
facilitate external identifier or mass-based searches from the collection 
of comprehensive metabolite databases. The data is primarily integrated 
by merging records based on IUPAC International Chemical Identifier 
(InChIKey) to deliver high confidence annotations with a significantly 
reduced redundancy and eliminates the complexity of extracting 
metabolite annotations from individual databases. To further 
extend the coverage on mammalian specific metabolites of clinical 
and physiological importance, more databases can be integrated to 
provide annotation-rich and curated knowledgebase of mammalian 
metabolomes for putative identification of metabolites.

Although several current methods are available for accurate 
metabolite identification and annotation, the process is cumbersome 
and involves curation using multiple databases. We describe novel 
computational solutions for streamlining the process of metabolite 
annotation using MetPlus DB, and the subsequent integration of 
metabolomics and transcriptomics data to explore potentially relevant 
biological interactions and candidate biomarkers associated with 
disease phenotype.

Availability of Supporting Data
The data sets supporting the results of this article are available in 

the DTP Web portal: http://dtp.nci.nih.gov/mtargets/download​.html; 
(August 2010 Data Release) and expression profiles downloaded from 
Gene Expression Omnibus (GEO; accession number GSE32474. 

MetPlus DB is located in GitHub: https://github.com/ICBI/
MetPlus-DB. Instructions for using MetPlusdb are available on Github 
to load and run the SQLite database, and examples are provided for 
querying annotations.

Acknowledgements

This research was supported by the National Cancer Institute (NCI) of the 
National Institutes of Health under Cooperative Agreement: U54-CA149147; 
and the NCI in silico Research Center of Excellence (ISRCE) contract: 
HHSN26120080000IE.

We would also like to thank Dr. Laura Sheahan for editing the manuscript and 
providing invaluable advice and support.

References

1.	 Spratlin JL, Serkova NJ, Eckhardt SG (2009) Clinical applications of 
metabolomics in oncology: a review. Clin Cancer Res 15: 431-440.

2.	 Corona G, Rizzolio F, Giordano A, Toffoli G (2012) Pharmaco-metabolomics: 
an emerging “omics” tool for the personalization of anticancer treatments and 
identification of new valuable therapeutic targets. J Cell Physiol 227: 2827-
2831.

3.	 Li M, Song Y, Cho N, Chang JM, Koo HR, et al. (2011) An HR-MAS MR 
metabolomics study on breast tissues obtained with core needle biopsy. PLoS 
One 6: e25563.

4.	 Bathen TF, Jensen LR, Sitter B, Fjösne HE, Halgunset J, et al. (2007) MR-
determined metabolic phenotype of breast cancer in prediction of lymphatic 
spread, grade, and hormone status. Breast Cancer Res Treat 104: 181-189.

5.	 Giskeødegård GF, Grinde MT, Sitter B, Axelson DE, Lundgren S, et al. (2010) 
Multivariate modeling and prediction of breast cancer prognostic factors using 
MR metabolomics. J Proteome Res 9: 972-979.

6.	 Porto L (2012) Cutoff value of choline concentration reliably reveals high-grade 
brain tumors among other contrast-enhancing brain lesions. J NeurolSurg A 
Cent EurNeurosurg. 73(3): p. 147-52.

7.	 Howe FA, Barton SJ, Cudlip SA, Stubbs M, Saunders DE, et al. (2003) 
Metabolic profiles of human brain tumors using quantitative in vivo 1H magnetic 
resonance spectroscopy. MagnReson Med 49: 223-232.

8.	 Bartella L, Morris EA, Dershaw DD, Liberman L, Thakur SB, et al. (2006) Proton 
MR spectroscopy with choline peak as malignancy marker improves positive 
predictive value for breast cancer diagnosis: preliminary study. Radiology 239: 
686-692.

9.	 Thakur SB, Brennan SB, Ishill NM, Morris EA, Liberman L, et al. (2011) 
Diagnostic usefulness of water-to-fat ratio and choline concentration in 
malignant and benign breast lesions and normal breast parenchyma: an in vivo 
(1) H MRS study. J Magn Reson Imaging 33: 855-863.

10.	Swanson MG, Keshari KR, Tabatabai ZL, Simko JP, Shinohara K, et al. (2008) 
Quantification of choline- and ethanolamine-containing metabolites in human 
prostate tissues using 1H HR-MAS total correlation spectroscopy. MagnReson 
Med 60: 33-40.

11.	Roberts MJ, Schirra HJ, Lavin MF, Gardiner RA (2011) Metabolomics: a novel 
approach to early and noninvasive prostate cancer detection. Korean J Urol 
52: 79-89.

12.	Brockmöller SF, Bucher E, Müller BM, Budczies J, Hilvo M, et al. (2012) 
Integration of metabolomics and expression of glycerol-3-phosphate 
acyltransferase (GPAM) in breast cancer-link to patient survival, hormone 
receptor status, and metabolic profiling. J Proteome Res 11: 850-860.

13.	Cavill R, Kamburov A, Ellis JK, Athersuch TJ, Blagrove MS, et al. (2011) 
Consensus-phenotype integration of transcriptomic and metabolomic data 
implies a role for metabolism in the chemosensitivity of tumour cells. PLoS 
Comput Biol 7: e1001113.

14.	García-Alcalde F, García-López F, Dopazo J, Conesa A (2011) Paintomics: a 
web based tool for the joint visualization of transcriptomics and metabolomics 
data. Bioinformatics 27: 137-139.

15.	Wägele B, Witting M, Schmitt-Kopplin P, Suhre K (2012) MassTRIX reloaded: 
combined analysis and visualization of transcriptome and metabolome data. 
PLoS One 7: e39860.

16.	Adourian A, Jennings E, Balasubramanian R, Hines WM, Damian D, et 
al. (2008) Correlation network analysis for data integration and biomarker 
selection. Mol Biosyst 4: 249-259.

17.	Connor SC, Hansen MK, Corner A, Smith RF, Ryan TE (2010) Integration of 
metabolomics and transcriptomics data to aid biomarker discovery in type 2 
diabetes. Mol Biosyst 6: 909-921.

18.	Kamburov A, Cavill R, Ebbels TM, Herwig R, Keun HC (2011) Integrated 
pathway-level analysis of transcriptomics and metabolomics data with IMPaLA. 
Bioinformatics 27: 2917-2918.

19.	Zhou B, Wang J, Ressom HW (2012) MetaboSearch: tool for mass-based 
metabolite identification using multiple databases. PLoS One 7: e40096.

20.	Brown M, Dunn WB, Dobson P, Patel Y, Winder CL, et al. (2009) Mass 
spectrometry tools and metabolite-specific databases for molecular 
identification in metabolomics. Analyst 134: 1322-1332.

http://www.ncbi.nlm.nih.gov/pubmed/19147747
http://www.ncbi.nlm.nih.gov/pubmed/19147747
http://www.ncbi.nlm.nih.gov/pubmed/22105661
http://www.ncbi.nlm.nih.gov/pubmed/22105661
http://www.ncbi.nlm.nih.gov/pubmed/22105661
http://www.ncbi.nlm.nih.gov/pubmed/22105661
http://www.ncbi.nlm.nih.gov/pubmed/22028780
http://www.ncbi.nlm.nih.gov/pubmed/22028780
http://www.ncbi.nlm.nih.gov/pubmed/22028780
http://www.ncbi.nlm.nih.gov/pubmed/17061040
http://www.ncbi.nlm.nih.gov/pubmed/17061040
http://www.ncbi.nlm.nih.gov/pubmed/17061040
http://www.ncbi.nlm.nih.gov/pubmed/19994911
http://www.ncbi.nlm.nih.gov/pubmed/19994911
http://www.ncbi.nlm.nih.gov/pubmed/19994911
http://www.ncbi.nlm.nih.gov/pubmed/22190143
http://www.ncbi.nlm.nih.gov/pubmed/22190143
http://www.ncbi.nlm.nih.gov/pubmed/22190143
http://www.ncbi.nlm.nih.gov/pubmed/12541241
http://www.ncbi.nlm.nih.gov/pubmed/12541241
http://www.ncbi.nlm.nih.gov/pubmed/12541241
http://www.ncbi.nlm.nih.gov/pubmed/16603660
http://www.ncbi.nlm.nih.gov/pubmed/16603660
http://www.ncbi.nlm.nih.gov/pubmed/16603660
http://www.ncbi.nlm.nih.gov/pubmed/16603660
http://www.ncbi.nlm.nih.gov/pubmed/21448950
http://www.ncbi.nlm.nih.gov/pubmed/21448950
http://www.ncbi.nlm.nih.gov/pubmed/21448950
http://www.ncbi.nlm.nih.gov/pubmed/21448950
http://www.ncbi.nlm.nih.gov/pubmed/18581409
http://www.ncbi.nlm.nih.gov/pubmed/18581409
http://www.ncbi.nlm.nih.gov/pubmed/18581409
http://www.ncbi.nlm.nih.gov/pubmed/18581409
http://www.ncbi.nlm.nih.gov/pubmed/21379423
http://www.ncbi.nlm.nih.gov/pubmed/21379423
http://www.ncbi.nlm.nih.gov/pubmed/21379423
http://www.ncbi.nlm.nih.gov/pubmed/22070544
http://www.ncbi.nlm.nih.gov/pubmed/22070544
http://www.ncbi.nlm.nih.gov/pubmed/22070544
http://www.ncbi.nlm.nih.gov/pubmed/22070544
http://www.ncbi.nlm.nih.gov/pubmed/21483477
http://www.ncbi.nlm.nih.gov/pubmed/21483477
http://www.ncbi.nlm.nih.gov/pubmed/21483477
http://www.ncbi.nlm.nih.gov/pubmed/21483477
http://www.ncbi.nlm.nih.gov/pubmed/21098431
http://www.ncbi.nlm.nih.gov/pubmed/21098431
http://www.ncbi.nlm.nih.gov/pubmed/21098431
http://www.ncbi.nlm.nih.gov/pubmed/22815716
http://www.ncbi.nlm.nih.gov/pubmed/22815716
http://www.ncbi.nlm.nih.gov/pubmed/22815716
http://www.ncbi.nlm.nih.gov/pubmed/18437268
http://www.ncbi.nlm.nih.gov/pubmed/18437268
http://www.ncbi.nlm.nih.gov/pubmed/18437268
http://www.ncbi.nlm.nih.gov/pubmed/20567778
http://www.ncbi.nlm.nih.gov/pubmed/20567778
http://www.ncbi.nlm.nih.gov/pubmed/20567778
http://www.ncbi.nlm.nih.gov/pubmed/21893519
http://www.ncbi.nlm.nih.gov/pubmed/21893519
http://www.ncbi.nlm.nih.gov/pubmed/21893519
http://www.ncbi.nlm.nih.gov/pubmed/22768229
http://www.ncbi.nlm.nih.gov/pubmed/22768229
http://www.ncbi.nlm.nih.gov/pubmed/19562197
http://www.ncbi.nlm.nih.gov/pubmed/19562197
http://www.ncbi.nlm.nih.gov/pubmed/19562197


Citation: Madhavan S, Gauba R, Clarke R, Gusev Y (2014) Integrative Analysis Workflow for Untargeted Metabolomics in Translational Research. 
Metabolomics 4: 130. doi:10.4172/2153-0769.1000130

Page 11 of 11

Volume 4 • Issue 1 • 1000130
Metabolomics
ISSN: 2153-0769 JOM an open access journal 

21.	Moco S, Vervoort J (2007) Metabolomics technologies and metabolite
identification. TrAC Trends in Analytical Chemistry. 26: 855-866.

22.	Jewison T, Knox C, Neveu V, Djoumbou Y, Guo AC, et al. (2012) YMDB: the
Yeast Metabolome Database. Nucleic Acids Res 40: D815-D820.

23.	Scalbert A, Brennan L, Fiehn O, Hankemeier T, Kristal BS, et al. (2009) Mass-
spectrometry-based metabolomics: limitations and recommendations for future 
progress with particular focus on nutrition research. Metabolomics 5: 435-458.

24.	Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, et al. (2013) HMDB 3.0--
The Human Metabolome Database in 2013. Nucleic Acids Res 41: D801-D807.

25.	Fahy E, Sud M, Cotter D, Subramaniam S (2007) LIPID MAPS online tools for
lipid research. Nucleic Acids Res 35: W606-W612.

26.	Romero P, Wagg J, Green ML, Kaiser D, Krummenacker M, et al. (2005)
Computational prediction of human metabolic pathways from the complete
human genome. Genome Biol 6: R2.

27.	Baran R, Kochi H, Saito N, Suematsu M, Soga T, et al. (2006) MathDAMP: a
package for differential analysis of metabolite profiles. BMC Bioinformatics 7: 
530.

28.	Tikunov Y, Lommen A, de Vos CH, Verhoeven HA, Bino RJ, et al. (2005) A
novel approach for nontargeted data analysis for metabolomics. Large-scale
profiling of tomato fruit volatiles. Plant Physiol 139: 1125-1137.

29.	Smith CA, Want EJ, O’Maille G, Abagyan R, Siuzdak G (2006) XCMS:
processing mass spectrometry data for metabolite profiling using nonlinear 
peak alignment, matching, and identification. Anal Chem 78: 779-787.

30.	Katajamaa M, Oresic M (2005) Processing methods for differential analysis of
LC/MS profile data. BMC Bioinformatics 6: 179.

31.	Kuhn M, Szklarczyk D, Franceschini A, von Mering C, Jensen LJ, et al. (2012)
STITCH 3: zooming in on protein-chemical interactions. Nucleic Acids Res 40:
D876-880.

32.	Davis AP, Murphy CG, Johnson R, Lay JM, Lennon-Hopkins K, et al. (2013)
The Comparative Toxicogenomics Database: update 2013. Nucleic Acids Res
41: D1104-1114.

33.	Pfister TD, Reinhold WC, Agama K, Gupta S, Khin SA, et al. (2009) 
Topoisomerase I levels in the NCI-60 cancer cell line panel determined by
validated ELISA and microarray analysis and correlation with indenoisoquinoline 
sensitivity. Mol Cancer Ther 8: 1878-1884.

34.	Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, et al. (2003) Summaries 
of AffymetrixGeneChip probe level data. Nucleic Acids Res 31: e15.

35.	Gentleman R, Carey V, Huber W, Hahne F (2003) genefilter: methods for 
filtering genes from microarray experiments.

36.	Dabney A, Storey JD, Gregory R (2004)Warnesqvalue: Q-value estimation for
false discovery rate control.

37.	Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T (2011) Cytoscape 2.8:
new features for data integration and network visualization. Bioinformatics 27:
431-432.

38.	Kamburov A, Wierling C, Lehrach H, Herwig R (2009) ConsensusPathDB--a
database for integrating human functional interaction networks. Nucleic Acids
Res 37: D623-D628.

39.	Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, et al. (2006) From
genomics to chemical genomics: new developments in KEGG. Nucleic Acids
Res 34: D354-357.

40.	Smith CA, O’Maille G, Want EJ, Qin C, Trauger SA, et al. (2005) METLIN: a
metabolite mass spectral database. Ther Drug Monit 27: 747-751.

41.	Degtyarenko K, de Matos P, Ennis M, Hastings J, Zbinden M, et al. (2008)
ChEBI: a database and ontology for chemical entities of biological interest.
Nucleic Acids Res 36: D344-D350.

42.	Wang Y, Xiao J, Suzek TO, Zhang J, Wang J, et al. (2009) PubChem: a public 
information system for analyzing bioactivities of small molecules. Nucleic Acids 
Res 37: W623-W633.

43.	Cohen JS (1986) Differences in phosphate metabolite levels in drug-sensitive
and -resistant human breast cancer cell lines determined by 31P magnetic
resonance spectroscopy. Cancer Res 46: 4087-4090. 

44.	Kao J, Salari K, Bocanegra M, Choi YL, Girard L, et al. (2009) Molecular
profiling of breast cancer cell lines defines relevant tumor models and provides 
a resource for cancer gene discovery. PLoS One 4: e6146.

45.	Bartholomeusz C, Yamasaki F, Saso H, Kurisu K, Hortobagyi GN, et al.
(2011) Gemcitabine Overcomes Erlotinib Resistance in EGFR-Overexpressing 
Cancer Cells through Downregulation of Akt. J Cancer 2: 435-442.

46.	Shen K, Song N, Kim Y, Tian C, Rice SD, et al. (2012) A systematic evaluation 
of multi-gene predictors for the pathological response of breast cancer patients 
to chemotherapy. PLoS One 7: e49529.

47.	Kretschmer C, Sterner-Kock A, Siedentopf F, Schoenegg W, Schlag PM, et al. 
(2011) Identification of early molecular markers for breast cancer. Mol Cancer 
10: 15.

http://www.sciencedirect.com/science/article/pii/S0165993607001689
http://www.sciencedirect.com/science/article/pii/S0165993607001689
http://www.ncbi.nlm.nih.gov/pubmed/22064855
http://www.ncbi.nlm.nih.gov/pubmed/22064855
http://www.ncbi.nlm.nih.gov/pubmed/20046865
http://www.ncbi.nlm.nih.gov/pubmed/20046865
http://www.ncbi.nlm.nih.gov/pubmed/20046865
http://www.ncbi.nlm.nih.gov/pubmed/23161693
http://www.ncbi.nlm.nih.gov/pubmed/23161693
http://www.ncbi.nlm.nih.gov/pubmed/17584797
http://www.ncbi.nlm.nih.gov/pubmed/17584797
http://www.ncbi.nlm.nih.gov/pubmed/15642094
http://www.ncbi.nlm.nih.gov/pubmed/15642094
http://www.ncbi.nlm.nih.gov/pubmed/15642094
http://www.ncbi.nlm.nih.gov/pubmed/17166258
http://www.ncbi.nlm.nih.gov/pubmed/17166258
http://www.ncbi.nlm.nih.gov/pubmed/17166258
http://www.ncbi.nlm.nih.gov/pubmed/16286451
http://www.ncbi.nlm.nih.gov/pubmed/16286451
http://www.ncbi.nlm.nih.gov/pubmed/16286451
http://www.ncbi.nlm.nih.gov/pubmed/16448051
http://www.ncbi.nlm.nih.gov/pubmed/16448051
http://www.ncbi.nlm.nih.gov/pubmed/16448051
http://www.ncbi.nlm.nih.gov/pubmed/16026613
http://www.ncbi.nlm.nih.gov/pubmed/16026613
http://www.ncbi.nlm.nih.gov/pubmed/22075997
http://www.ncbi.nlm.nih.gov/pubmed/22075997
http://www.ncbi.nlm.nih.gov/pubmed/22075997
http://www.ncbi.nlm.nih.gov/pubmed/23093600
http://www.ncbi.nlm.nih.gov/pubmed/23093600
http://www.ncbi.nlm.nih.gov/pubmed/23093600
http://www.ncbi.nlm.nih.gov/pubmed/19584232
http://www.ncbi.nlm.nih.gov/pubmed/19584232
http://www.ncbi.nlm.nih.gov/pubmed/19584232
http://www.ncbi.nlm.nih.gov/pubmed/19584232
http://www.ncbi.nlm.nih.gov/pubmed/12582260
http://www.ncbi.nlm.nih.gov/pubmed/12582260
http://www.bioconductor.org/packages/release/bioc/html/genefilter.html
http://www.bioconductor.org/packages/release/bioc/html/genefilter.html
http://phase.hpcc.jp/mirrors/stat/R/CRAN/doc/packages/qvalue.pdf
http://phase.hpcc.jp/mirrors/stat/R/CRAN/doc/packages/qvalue.pdf
http://www.ncbi.nlm.nih.gov/pubmed/21149340
http://www.ncbi.nlm.nih.gov/pubmed/21149340
http://www.ncbi.nlm.nih.gov/pubmed/21149340
http://www.ncbi.nlm.nih.gov/pubmed/18940869
http://www.ncbi.nlm.nih.gov/pubmed/18940869
http://www.ncbi.nlm.nih.gov/pubmed/18940869
http://www.ncbi.nlm.nih.gov/pubmed/16381885
http://www.ncbi.nlm.nih.gov/pubmed/16381885
http://www.ncbi.nlm.nih.gov/pubmed/16381885
http://www.ncbi.nlm.nih.gov/pubmed/16404815
http://www.ncbi.nlm.nih.gov/pubmed/16404815
http://www.ncbi.nlm.nih.gov/pubmed/17932057
http://www.ncbi.nlm.nih.gov/pubmed/17932057
http://www.ncbi.nlm.nih.gov/pubmed/17932057
http://www.ncbi.nlm.nih.gov/pubmed/19498078
http://www.ncbi.nlm.nih.gov/pubmed/19498078
http://www.ncbi.nlm.nih.gov/pubmed/19498078
http://www.ncbi.nlm.nih.gov/pubmed/19582160
http://www.ncbi.nlm.nih.gov/pubmed/19582160
http://www.ncbi.nlm.nih.gov/pubmed/19582160
http://www.ncbi.nlm.nih.gov/pubmed/21850211
http://www.ncbi.nlm.nih.gov/pubmed/21850211
http://www.ncbi.nlm.nih.gov/pubmed/21850211
http://www.ncbi.nlm.nih.gov/pubmed/23185353
http://www.ncbi.nlm.nih.gov/pubmed/23185353
http://www.ncbi.nlm.nih.gov/pubmed/23185353
http://www.ncbi.nlm.nih.gov/pubmed/21314937
http://www.ncbi.nlm.nih.gov/pubmed/21314937
http://www.ncbi.nlm.nih.gov/pubmed/21314937

	Title
	Corresponding author
	Abstract
	Keywords
	Introduction
	Materials and Methods  
	Integrative analysis workflow 
	Database design and implementation 
	Knowledge-driven network construction 
	Case study 
	Case study data processing 
	Case study statistical analysis 
	Case study network inference 
	Case study pathway enrichment analysis 

	Results
	Implementation of MetPlus DB 
	Case Study: Integrative analysis of metabolomics and transcriptomics data for NCI-60 breast cancer c
	Joint pathway enrichment analysis  

	Discussion
	Future Directions 
	Availability of Supporting Data 
	Acknowledgements 
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Table 1
	References

