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Expression Data
Microarray technology has provided a tool for monitoring gene 

expression for tens of thousands of genes. A microarray is a glass slide 
with tens of thousands of spots on an array. Single-stranded DNA 
molecules are attached at fixed spots and each spot is related to a 
single gene. One of the most popular experimental platforms is used 
for comparing mRNA abundance in two different samples (or a sample 
and a control). The raw microarray data are images, which have to be 
transformed into gene expression matrices-tables where rows represent 
genes and columns represent various samples. For most microarray 
technology platforms, one measure of gene expression is the ratio of 
background-subtracted signals of the given sample and the control. For 
example, it is assumed that abundance ratios of 1.5-2 are indicative of a 
change in gene expression [1].

A simple microarray experiment may be conducted to compare the 
expression differences between two conditions. The simplest method is 
to evaluate the log ratio between two conditions and consider all genes 
that differ by more than an arbitrary cut-off value to be differentially 
expressed. For example, a two-fold difference has been used as a cut-off. 
Genes are considered as being different in expression if the expression 
under one condition is over two-fold greater or less than that under 
the other condition. t-test is commonly used to detect differential 
expression in comparison of two conditions. With more than two 
conditions, analysis of variance (ANOVA) has been used. The mixed 
ANOVA model is a general and powerful approach for microarray 
experiments with multiple factors and/or several sources of variation 
[2].

RNA sequencing (RNA-Seq) makes it possible to survey an entire 
transcriptome at single-base resolution and construct genome-wide 
gene expression profiles [3]. Global ChIP-chip and ChIP-seq analyses 
have accelerated the pace of discovery, allowing insights unattainable 
with other methods, and have played an important role in identifying 
the elongation phase of transcription as a critical point of biological 
regulation [4]. RNA-Seq has provided a powerful tool for detecting 
differential gene expression with both high-throughput and high 
resolution capabilities. Next-generation sequencing (NGS) provides a 
better approach to gene expression profiling [5].

DNA methylation Data
DNA methylation is one of the most important mechanisms of 

epigenetic regulation in eukaryotes. It occurs most frequently at cytosines 
that are followed by guanines (CpG). It has been shown that high levels 
of DNA methylation in promoter regions are typically associated with 
robust gene silencing while DNA methylation has normal function in 
embryonic development, X-chromosome inactivation, and genomic 
imprinting [6]. It is firmly established that hypermethylation of CpG 
islands located in the promoter regions of tumor suppressor genes is 
one of the most common mechanisms for gene regulation in cancer [7]. 
Interestingly, aberrant DNA methylation has been seen in a variety of 
human diseases ranging from neurological and autoimmune disorders 
to cancer [8]. It has been predicted that DNA methylation may provide 
a lifetime record of environmental exposures and a useful source of 
biomarkers for risk stratification and disease diagnostics [9,10].

The data structure for DNA methylation is generally dichotomous 
(methylated or unmethylated) or reported as a ratio between a 
methylation reaction and a neutral control reaction [11]. To date, 
two methods have been proposed to measure the methylation level. 
The first one is called Beta-value, ranging from 0 to 1, which has been 
widely used to measure the percentage of methylation. The Beta-value 
is the ratio of the methylated probe intensity and the overall intensity 
(sum of methylated and unmethylated probe intensities). Under ideal 
conditions, a value of zero indicates that all copies of the CpG site in the 
sample are completely unmethylated (no methylated molecules were 
measured) while a value of one indicates that every copy of the site is 
methylated. If we assume the probe intensities are Gamma distributed, 
then the Beta-value follows a Beta distribution. For this reason, it 
has been named the Beta-value. The second method is the log2 ratio 
(M-value) of the intensities of methylated probe versus unmethylated 
probe. The M-value has been widely used in expression microarray 
analysis, especially two-color microarray analysis. Therefore, many 
existing microarray statistical frameworks using an M-value method 
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Abstract
Microarray technology has provided a tool for investigating expression levels and methylation signatures, of 

thousands of genes simultaneously, in a biological sample. Recent advances in next-generation sequencing and 
microarray technology make it possible to study genome-wide mRNA expression and DNA methylation profiles at a 
high resolution and in a large number of samples. However, integration of expression and methylation data turns to 
be a challenge. First, we briefly introduce the gene expression and methylation technology, data structure, and basic 
statistical methods. Furthermore, we review recent advances in integrative analysis of expression and methylation data. 
In addition, we stress some future directions.
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can also be applied to methylation data analysis. The two methods are 
related by a Logit transformation [12].

For discrete data, chi-square test can be used for independent 
samples while McNemar’s test or Cochran’s test can be used for data 
correlated samples analysis. For continuous traits, t-test or ANOVA can 
be used for normal distributed samples, whereas for non normal traits, 
rank-based tests can be used [11].

Recent advances in NGS and microarray technology make it 
possible to map DNA methylation genome-wide, at a high resolution 
and in a large number of samples [13]. Genome-wide DNA methylation 
has been mapped with one of the three most commonly used assays, 
resulting in methylation-specific DNA sequencing or microarray 
data [10]: 1) Bisulphite sequencing: DNA treatment with bisulphite 
specifically introduces mutations at unmethylated Cs and these 
mutations are mapped by NGS, 2) Bisulphite microarrays: DNA-
methylation-specific mutations are introduced by bisulphite treatment 
and these mutations are mapped using a genotyping microarray that 
covers a selection of Cs, 3) Enrichment-based methods: Methylated 
(alternatively, unmethylated) DNA fragments are enriched in a DNA 
library and the library composition is quantified by NGS.

Integrative Analysis of Genome-wide Methylation and 
Expression Data

The advent of global DNA methylation arrays and next-generation 
RNA sequencing transcriptome studies have made it possible to explore 
the global relationship between gene methylation and expression 
during cell development and tissue differentiation [3].

Generally, methylation of regulatory CpG islands is thought to down 
regulate transcription by promoting the formation of heterochromatin 
and preventing the binding of transcription factors [14]. For example, 
spearman rank correlations were used to assess the relationship between 
methylation data using the Illumina Human Methylation 27 DNA 
Analysis Bead Chip assay (Beta-value and the log of the ratio) and gene 
expression data using the RNA-sequencing data, which is presented as 
the number of GC-corrected reads mapping to a gene in an individual, 
divided by the length of the gene. Significant negative correlations were 
found between promoter methylation and gene expression levels [15].

However, one large-scale study has failed to demonstrate a 
significant relationship between genome-wide methylation and gene 
expression [16]. Furthermore, there exists a weak negative correlation 
between DNA methylation at promoter regions and gene expression, 
which implies that the relation between alterations in DNA methylation 
at promoter region and gene expression is gene-specific [17].

Interestingly, it has been observed that the relationship between 
DNA methylation and transcription is bidirectional based on single 
loci cancer studies, where transcription apparently causes intragenic 
CGI methylation in addition to CGI promoter methylation inhibiting 
transcription [18]. A recently integrative analysis of methylation from 
normal human heart, lung, and kidney using the Illumina Infinium 27 
K methylation arrays and gene expression by RNA sequencing shows 
that gene methylation and its transcriptional levels are comprehensively 
correlated; however, DNA methylation has been found either positively 
or negatively to be correlated with gene expression [19].

Another study investigates the relationship between genetic 
variation, DNA methylation using Illumina Human Methylation 27 
bead chips and gene expression generated on Illumina H12 bead chip 
in a sample of 148 healthy subjects. To determine whether a significant 

association exists between expression and methylation levels they use a 
multivariate linear regression model for regressing the gene expression 
level (dependent variable) on the methylation level (independent 
variable) with age and gender as covariates. The authors have found 
both negative (DNA methylation levels and gene expression levels in 
opposite direction) and positive (DNA methylation levels and gene 
expression levels in same direction) associations between cis-acting 
DNA methylation probes and corresponding gene expression levels, 
confirming previous reports that DNA methylation and gene expression 
located within a cis-region can be both positively and negatively 
associated. In addition, a structural equation model based analysis has 
strong support in particular for a traditional causal model in which 
gene expression is regulated by genetic variation via DNA methylation 
instead of gene expression affecting DNA methylation levels [20].

A more recently study conducted genome-wide expression analyses 
using the Affymetrix Human Genome U133 2.0 plus array (which 
contains 29,098 gene specific oligonucleotide probes) and compared 
two genome-wide methylation assays: Nimble Gen 385K Ref Seq 
Whole Genome Promoter Array and the Illumina Human Methylation 
450 Bead Chip. Pearson’s correlation coefficient and Spearman’s rank-
order correlation coefficients were used to compare the values from 
each methylation platform to genome-wide mRNA expression. To 
further elucidate the sources of variance, the authors performed an 
ordinary least squares (OLS) regression, using both the Illumina and 
the NimbleGen array to simultaneously predict gene expression. They 
found weak negative correlations between gene expression and DNA 
methylation within individuals across all queried loci. However, the 
current findings have certain limitations including the small number of 
samples examined [21].

Future Direction
To understand and identify the molecular mechanisms that 

underpin complex disorders, it has been suggested that NGS-based 
approaches that integrate genomewide, high-resolution, quantitative, 
and allelic epigenetic, genetic and transcriptomic information will 
be essential [22,23]. Furthermore, to better understand human 
development and health, novel methods to integrate data of different 
types (genetic, epigenetic, RNA and protein expression will be required 
[24]. Future research will focus on lookup tables for associations between 
methylation, gene expression, and genotype, as well as methylome and 
transcriptome modules [20]. In short, integration of gene expression, 
genetic and epigenetic studies may identify novel therapeutic targets 
and strategies for the treatment of complex diseases. Future studies 
will focus on integrative analysis of genome-wide expression and 
epigeneitcs data from high-solution NGS and microarray technology, 
and genome-wide genetic data (SNP data and copy number variations) 
using large samples and advanced statistical methods.
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