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Abstract

To leverage functionality and clinical relevance into understanding systems biology, one needs to understand the
pathway of the genetic effects on risk factors/disease through intermediate molecular level. Systems approaches
integrate multi-omics information to find pathways to disease endpoints and make optimal inference decisions. Here,
we introduce a multi-stage approach to integrate causal networks and GWAS to facilitate mechanistic understanding
through identification of pathways from the genome to risk factors/disease via metabolomics, as an intermediate
molecular level. The pathways in causal networks reveal the underlying relationships behind observations to
facilitate mechanistic understanding, which do not play a significant role in more traditional correlative analyses,
where one variable at a time is considered.

We identified a causal network over the metabolomic level to systematically assess whether variations in the
genome lead to variations in triglyceride levels as a risk factor of cardiovascular disease. We found LRRC46 and
LRRC69 harbouring loss-of-function mutations have significant effect on two metabolites with direct effects on
triglyceride levels. We also found pathways of FAM198B and C6orf25 to triglycerides through indirect paths.

Integrating causal networks with GWAS facilitates mechanistic understanding in comparison to one-phenotype-at-
a-time approaches due to accounting for relationships among phenotypes at intermediate molecular levels.

Keywords: Integrated systems approach; Metabolomic causal
network; Bayesian network; Mendelian randomization; Triglycerides;
Loss of function mutation

Introduction
Genome-wide association studies (GWAS) and recently whole

genome sequence (WGS) studies have been widely conducted in
humans with the goal of identifying genetic factors predictive of
disease. Despite the extensive discovery of those studies, much of the
genetic contributions to complex phenotypes remain unexplained.
Furthermore, conclusions of noticeable numbers of genetic studies
have not been in agreement with clinical presentation in an individual
patient [1]. A key attribute for increasing confidence in potential
clinical validity of gene variation with risk factors and disease end-
points will be the development of assays with more direct mechanistic
link. It is biologically meaningful that with a chronic systemic disease,
molecular signals more proximal to the disease process may serve as
strong biomarkers [2] and as a result, identify more stable pathways
from the genome to disease risk factors and end-points. Therefore,
integration of information in orthogonal data from different omics
provides mechanistic understanding and has attracted attentions [3].

The metabolome is the end product of gene-environment
interactions, Figure 1, and may be risk factors for future disease or
biomarkers of current disease processes [4-6]. Metabolites can serve as

intermediate phenotypes for genomic studies to illuminate
mechanisms underlying of a specific SNP/gene, identify biological
pathways linking the genome to disease, and discover valuable clinical
biomarkers [2,3,7,8]. Therefore, integration of genetics and
metabolomics holds potential for elucidating mechanisms for
deciphering chronic disease.

Integration of data at different omics, such as genomics,
metabolomics, and risk factors/disease endpoints, is challenging in
modern biomedical research due to having largescale datasets and
association between components. Most of the attempts at large scales
are based on one component at a time that do not take into account the
underlying relationships among components and lead to association
studies. Identification of causal networks based on Mendelian
randomization and Bayesian graphical modeling is an established
approach to discover relations among components of interest and
reduce the risk of false positive discovery. Furthermore, this approach
controls for unmeasured confounders at the intermediate level, and
presents a one-to-one cause and effect relationship between each two
components for the purpose of facilitating mechanistic understanding
[9-12]. Moreover, it makes hypotheses for efficacious targets for further
experimental studies, which is necessary in the age of big data sets
[8,13].
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Figure 1: Metabolomics an integrated readout of many biological
processes, such as genetic, transcriptomic, and proteomic variation,
can characterize and recognize metabolic signatures of common
chronic diseases.

In this study, we introduce an integrative approach to identify
pathways from the genome to risk factors via metabolomics. To
provide insights into underlying relationships among metabolites and
represent how their effects spread across metabolomic system, a
metabolomic causal network is identified by leveraging near-complete
information from the genome based on Mendelian principles. After
that, we analyze relation between metabolomics and the risk factor of
interest using identified metabolomic network. This narrows
metabolomic search space and allows focusing on a subset of
metabolites with high impact on the risk factor. To complete the
pathway from the genome to the risk factor, we focus on GWAS-
metabolite studies. Using this approach, we determine how genome
variation leads to variability in risk factor levels through
metabolomics. This approach reduces the spurious identification in
comparison to one-metabolite-at-a-time approaches due to revealing
relation among metabolites and identifying confounders at
metabolomic level. To the best of our knowledge so far, no one has
systematically analyzed metabolomic data and introduced a systems
approach to identify pathways from the genome to risk factor/disease
via metabolomic networks.

Overview
To understand how components and their interactions give rise to

emergent properties of a system, causal networks are employed
[14-16]. Causal networks illustrate underlying relationship among
components in observational studies and can be identified through
application of Mendelian randomization and Bayesian graphical
models [10,17]. In this section, we briefly review Mendelian
randomization approach and introduce a systems approach for the
case study.

Mendelian randomization/instrumental variable approaches:
Genetic markers have been employed in multiple studies to prevent the
analysis being confounded [18]. This is called Mendelian
randomization or instrumental variable (IV) to estimate causal
relationships. IV approach as established approach for causal inference
utilizes variation in the system that is free of unmeasured confounders.
Therefore, relative to regression, matching, and propensity score
methods, the IV approach seeks to find a randomized experiment
embedded in an observational study and estimates causal effects rather
than associations [9,15]. A variable must satisfy three key assumptions
discussed in multiple studies to qualify as an IV [9,10]. To review those
assumptions briefly, assume we aim to measure causal effect of a
component (T) on a component (Y) using IV approach. Therefore, we

need to find/generate a genetic variant (G) such that it fulfils the
following three assumptions graphically represented in Figure 2: G has
a significant association with changes in T represented by an arrow
from G to T, Any direct path from G to Y is only through T
represented by a missing arrow from G to Y, There is no unmeasured
factors that confound G and Y relationship. It is represented as missing
arrow from G to U.

Figure 2: A graphical explanation of Mendelian randomization/
instrumental variable assumptions. Note that lack of a link
corresponds to lack of relationship.

The IV assumptions are strong and cannot be fully empirically
verified. However, attentions need to be paid to hold them. The
assumptions are violated through application of weak and invalid IVs.
If an IV does not explain sufficient variation of a component of interest
(T in Figure 2), it is called a weak IV. Application of weak IVs results in
bias and unstable directionality even with large samples. Invalid IVs
are those that the effect of IV reaches to outcome (Y) through other
paths and not only through the component of interest (T in Figure 2).
Application of invalid IVs may happen in different ways, such as
pleiotropic effect of a genetic variant, linkage disequilibrium between
genetic variants, and genetic interactions. Since the genome includes
millions of variants, identifying genetic variants to satisfy IV
assumptions is a fundamental question in Mendelian randomization
approaches. To hold IV assumptions, the common approach is to find
a genetic variant strongly associated with the variable of interest
[18,19]. However, not being pragmatic at largescale metabolomic
studies, see for example [20], is a major limitation of this approach.

To overcome this challenge and be able to identify a metabolomic
causal network in large scales and try to hold the IV assumptions, we
extract near-complete information across the genome to create IVs.
This IV approach is combined with Bayesian graphical modeling [21]
and implemented in a constraint-based algorithm called genome
directed acyclic graph (G-DAG) [11]. The G-DAG algorithm has been
discussed in multiple publications [8,22,23], for the readers’
convenience, the algorithm is provided in details in Supplementary,
Section 2.

The G-DAG algorithm extracts information across genome and
creates several hundred instrumental variables. Since the information
in multiple SNPs/genes are combined in each IV, it is stronger than a
single SNP/gene. Below are features of the G-DAG algorithm to hold
the IV assumptions: Creating and employing strong instrumental
variables through extracting information from multiple variants;
Independent instrumental variables toward holding the assumption of
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validity; Multiple independent instrumental variables for each
metabolite, to make overall IVs even stronger.

Note that the third feature is possible due to generating and
applying independent IVs in the G-DAG algorithm. Otherwise, the
underlying assumptions would be violated.

A systems approach to multi-omic integration for pathway
identification: In a multi-omic approach different molecular levels
provide measures from different biological inputs to disease and as a
result increase predictive and discriminative ability [24,25]. Here, we
introduce a systems approach to integrate data at three biological
levels, genomics, metabolomics, and risk factor/disease with the aim of
pathway identification, Figure 3. This approach is explained below in
four steps.

Figure 3: Overall picture of the strategy for identifying pathways
from the genome to risk factors or clinical end points via
metabolomics. The network is a causal network across
metabolomics where nodes stand for metabolites and edges
represent the direction of effect identified based on Mendelian
principles.

Underlying relationships among metabolites: Instead of analyzing
an individual metabolite at a time, we identify a metabolomic causal
network (Figure 3), to infer underlying relationships among
metabolites. In the network, nodes represent metabolites linked by
directed edges. A missing link between two metabolites means no
relationship. A link between two metabolites represents the
relationship after excluding the effect of other metabolites in the
analysis. Directions represent cause and effect relationships and are
identified based on Mendelian principles, using variation in the system
that is free of confounding.

Further analysis of the metabolomic causal network leads to
understanding the principles governing at metabolomics, such as
identification of modules, identification of the role of each metabolite,
measuring effects of actual or hypothetical manipulations,
distinguishing intervention targets from disease predictors,
identification of more efficacious intervention targets, and inference of
pathways [12,26].

Metabolites with direct effect on risk factors/disease: Association
analyses of metabolites with disease endpoints may lead to spurious
detections or findings with low impact on the endpoints. Considering
underlying relationships among metabolites, we take into account
confounders at metabolomics and identify metabolites with direct
effect on the endpoints using structural equation modeling [8] and
distinguish them from those with indirect effects or spurious effects.

Given the metabolites with direct effect on the endpoints, the rest of
metabolites in the study do not have a significant effect on the
endpoints. Therefore, for the further analyses and interpretations, a
focus on the set of metabolites with the direct effect is sufficient.

Gene-metabolite relationship through GWAS: Metabolites can serve
as intermediate phenotypes for detecting novel genes with variants of
functional effect and bridge gene effects to clinical end points [2,26].
Focusing on genetic variations that exert their function through
metabolomic mechanisms prevents reducing the signal to noise
through long pathway from genetics to risk factors/disease.

Pathways from the genome to disease via metabolomics: We
integrate results of the three aforementioned steps to identify
pathways. The path is identified, if significant genes from the genome
analysis (step 3) has a significant relationship with one of the
metabolites with a direct/indirect path to a risk factor/disease (step 2).
These pathways are identified after overcoming confounders at
metabolomic level (step 1) and visualizing underlying relationships of
this intermediate level. Therefore, they facilitate mechanistic
understanding and generate more efficacious hypotheses for clinical
experiment.

Case Study
To identify pathways from the genome to risk factor through

metabolomics, we focused on plasma triglycerides as a risk factor of
cardiovascular disease. For genotype-phenotype relationships, we
focused on loss-of-function (LoF) mutations. LoF mutations are
defined as sequence changes caused by single nucleotide variants or
small insertions and deletions, which are predicted to result in a non-
viable transcript or greatly truncated protein product [27]. A typical
human exome harbors dozens of LoF variants predicted to severely
disrupt or abolish gene function. Regarding metabolites, we focused on
African-American individuals to overcome environmental
confounders, such as population-to-population and regional dietary
variations in the metabolome.

Study sample and data preparation: Genomic data and serum
metabolites were available on a subset of the Atherosclerosis Risk in
Communities (ARIC) study [28], 2,479 African-American (range in
age from 45-64 years) who were randomly sampled from Jackson,
Mississippi field center. In addition to metabolites and dense genetic
marker data, multiple risk factor phenotypes related to health and
chronic diseases including plasma triglycerides were measured.

Metabolic profiling was completed in June 2010 carried out on
fasting serum samples stored at -80 degrees centigrade since collection
at baseline in 1986–1987. A total of 602 metabolites were detected and
semiquantified by Metabolon Inc. (Durham, North Carolina) using an
untargeted gas chromatography-mass spectrometry and liquid
chromatography-mass spectrometry-based quantification protocol
[29]. Metabolites were excluded on the basis of 3 criteria. First, more
than 50% of the samples had missing values. Second, they had
unknown chemical structures. Third, the metabolites or any
transformation of them did not follow normal distribution. After this
assessment, a total of 122 named metabolites were included in the
study. We carried out some preliminary assessments and found KNN
algorithm the best approach for the missing value imputation in our
data set. Therefore, the metabolites were imputed by KNN algorithm,
which also is identified as the best approach for imputation in some
other metabolomics studies, such as [30].
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Common single nucleotide polymorphisms (SNPs) were genotyped
using the Affymetrix platform (version 6.0) consisting of 1,034,945
common variants spread across the genome. Variation across this data
set was extracted and used to identify a metabolomic causal network.

Sequencing data of the protein-coding regions of the genome were
also available; the annotations were captured by NimbleGen’s
VCRome2.1 (Roche NimbleGen), and the captured exons were
sequenced using Illumina HiSeq 2000. The Burrows-Wheeler Aligner
was used to align sequences to the hg19 reference genome [31]. Allele
calling and variant call file construction were performed using the
Atlas2 suite [32] (Atlas-SNP and Atlas-Indel). Variants were annotated
using ANNOVAR [33] according to the reference genome GRCh37
and National Center for Biotechnology Information Reference
Sequence. More details of the study sample and measurements are
provided in Supplementary, Section 5.

Identification of the metabolomic network: The identification and
analysis of a metabolomic network was carried out using the G-DAG

algorithm [11]. The G-DAG algorithm first utilizes hierarchical
clustering to measure linkage disequilibrium using square of
correlation [34] and determine proxies from SNPs that are nearly
perfectly correlated (>0.80) with others. Assuming that the genome
inherited variation is a causal factor of metabolomic changes and not
the other way around, the G-DAG algorithm extracted information
from 1,034,945 SNPs scattered across the genome to generate multiple
IVs. Around 80% of variation in the genome was driven by 788 IVs.
Then, the G-DAG algorithm, which is a constraint-based algorithm,
found 353 IVs significantly correlated with 122 metabolites. These IVs
provided possibility to identify directions (cause and effect
relationships) over metabolomic topology (undirected network) based
on Mendelian principles, Figure 4. More details of the G-DAG
algorithm are provided in Supplementary, Section 2. The analysis was
carried out at statistical significance level 0.001 determined by
structural Hamming distance [35], a well-established assessment for
the quality of fit in networks, e.g. see [36,37].

Figure 4: a. Identified metabolomic causal network using the G-DAG algorithm established in Mendelian randomization and Bayesian
network modeling. Pale nodes represent genome IVs which explained even up to 96% variation in metabolites. Orange nodes represent
metabolites. b. The metabolite relationships from Figure 4a without depicting the IVs. Each link represents relationship between two
corresponding metabolites when effects from other metabolites are excluded. Directions are identified based on Mendelian principles using
genome IVs.

Note that the genome IVs were employed as a tool to identify the
metabolomic causal network. Therefore, after building the network, we
removed the IVs from the network to focus on the metabolomic
relationships, Figure 4b. In the metabolomic network, directions
identified robustly using Mendelian principles and represent cause and
effect relationships.

Metabolite-triglyceride pathways: An extension of the G-DAG
algorithm [8] was conducted to identify metabolites with direct effects
on triglyceride levels and distinguish them from those with indirect
effect, Figure 5. Using the underlying relationship between metabolites
and triglycerides, we employed structural equation modeling and

measured the causal effects, for details on the model see
Supplementary, section 4. Nine metabolites out of 122 metabolites
under study were identified with direct effect on triglycerides at
significance level 0.001; the estimated causal effects are presented in
Table 1. The effect of the other metabolites to triglyceride levels is
through the set of metabolites with direct effect on triglycerides. For
the analysis, log transformation of triglyceride levels was adjusted for
covariates including age and principle components for population
stratification applying a linear regression. The analysis after including
body mass index (BMI) in the set of covariates did not show significant
effect of glutamate, glycine, and deoxycarnitine on triglyceride levels,
which are noted with superscript “b” in Table 1.
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Figure 5: Relationship among nine metabolites with direct effect on
triglyceride levels. Arachidonic acid has the largest effect on
triglycerides. No feed-back loop (i.e. cycles) was identified between
these nine metabolites and triglyceride levels. The relationships
among metabolites are from the genomic-metabolomic network
depicted in the background to emphasize that the directions are
identifies based on Mendelian principles.

The systems approach applied here not only reduces the false
discovery of identification but also visualizes the underlying

relationships among metabolites and leads to understand mechanistic
of metabolite-triglyceride relationship [12]. For instance, it facilitates
distinguishing between direct and indirect metabolite-triglyceride
pathways. While association study found 21 metabolites out of the 122
metabolites with significant effect on triglyceride levels, applying the
systems approach identified that only 6 of them (after adjustment for
BMI) have direct effect on triglyceride levels. Therefore, the systems
approach applied here provides efficacious targets for intervention
compared to association studies. (For the results of the association
study, see Supplementary Tables S1-S3). Figure 5 shows that four
metabolites eicosapentaenoic acid (EPA), docosapentaenoyl-
glycerophosphocholine (DPA-G), docosahexaenoic acid (DHA), and
dihomolinolenate influence levels of arachidonic acid which has a
direct effect on triglycerides. Arachidonic acid has a positive and the
largest effect on triglyceride levels, see Table 1. The association study
showed significant relationship between these metabolites with
triglycerides due to their relationship with arachidonic acid. The
largest and positive effect of arachidonic acid on triglyceride levels
among the other associated metabolites is already validated clinically
[38].

More information that can be extracted from pathway visualization
is causal parameters [12]. In Table 1, in addition to p-value and effect
size of metabolites with direct effect on triglyceride levels, three causal
network parameters Out-degree, In-degree, and Strength are presented
to investigate potential roles of the metabolites at metabolomics. In-
degree represents the number of metabolites that influence a particular
metabolite. At the metabolomic causal network the In-degree
parameter has a range from 0 to 9. Metabolites with higher In-degree
capture features of higher number of metabolites in the metabolomic
network.

Metabolite Out-degree In-degree strength Pathway P-value Effect Sizes (SE)

Arachidonic 1 4 50 Lipid 2.3e-17 0.17 (0.03)

Carnitine 1 1 7 Lipid 1.4e -11 0.15 (0.04)

9-HODE 1 1 50 Lipid 1.4e -7 0.12 (0.03)

Palmitoylglycero-phosphoinositol 1 5 8 Lipid 1.6e -6 0.1 (0.01)

Urate 0 5 11 Nucleotide 2.2e -5 0.09 (0.01)

Isovalerylcarnitine 2 0 20 Amino acid 2.0e -4 0.09 (0.02)

Glycineb 4 2 20 Amino acid 4.0e -3 -0.09 (0.02)

Deoxycarnitine b 0 6 11 Lipid 1.0e -3 -0.08 (0.03)

Glutamate b 0 0 0 Amino acid 1.0e -3 -0.07 (0.02)

Table 1: The causal network parameters and the effect sizes of nine metabolites with direct effect on plasma triglycerides. a. Effect sizes measured
in standard deviation units to facilitate comparison, b. Metabolite with no significant effect at level 0.0001 after adjustment for BMI

Out-degree represents the number of metabolites influenced by a
particular metabolite. At the metabolomic causal network the Out-
degree parameter has a range from 0 to 8 at the metabolomic causal
network. Metabolites with higher Out-degree influence higher number
of metabolite in the network.

Strength represents how strong a metabolite is connected to the
network, ranges from 0 to 50 at the metabolomic causal network. The

Strength zero (the lowest strength) means the metabolite is not
connected to the network.

In comparison to the range of Out-degree in the metabolomic
network (0 to 8), the study reveals that the metabolites with direct
effect on triglycerides have very low Out-degree, which is
corresponding to their low influence in metabolomic network.
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Pathways from LoF mutations to metabolites through GWAS: LoF
variants included in this study were defined as premature stop codons
occurring in the exon, essential splice site disrupting, and indels
predicted to disrupt the downstream reading frame. A total of 7038
genes harboring 12,522 LoF variants were identified. Single-variant
tests for the single variants and gene-based burden tests for the genes
were utilized to investigate the relationship with individual metabolites
[39]. Seven genes with significant effect (P_val < 1.3 × 10−7) on
metabolites in our analysis are presented in Table 2. Potential roles of
these metabolites in the metabolomic system are investigated through
causal network parameters.

The metabolites influenced by LoF mutations tabulated in Table 2
do not have important roles at the metabolomic network due to low

number of Out-degrees and relatively higher number of In-degree.
Later, we see both metabolites urate and deoxycarnitine are in direct
paths to triglycerides, Figures 6 and 7. Interestingly, both of them have
a high In-degree and zero Out-degree. We conclude the metabolites
influenced by LoF mutations are mostly influenced by metabolomic
system rather than influence the system. This may be interpreted as
below: metabolites influences by LoF mutations cannot be so critical at
metabolomics. Otherwise they will lead to debilitating disease or be
inconsistent with life. This point can be considered and discussed for
functional understanding although it may require further assessments.

Gene and Variant Metabolite Out-
degree

In-degree Strength Pathway P-value

LRRC69
8:92213022:T:A & 8:92212839:A:G

Deoxycarnitine 0 6 11 Lipid 9.00E-16

LRRC46
17:45913719:TG:T&17.45911791:GT:G

Urate 0 5 11 Nucleotide le-7

FAM198B
4:159091864:G:A & 4:159091422:T:A

HETE 2 5 17 Lipid 5e-9

CD36
7:80300449:T:G

Oetanoylcamitine 1 1 50 Lipid 4e-8

PCSK9
1:55529215:C:A & 1:55512222:C:G
1:55524293:TG:T

Cholesterol 0 3 29 Lipid 5e-9

TEX15
8:30700833:TTC:T & 8:30694729:C:CA
8:30701535:C:A &8:30705099:CTCTA:C
8:30702839:CMCA:Cc

Mannose I 1 14 Carbohydrate 9e-9

C6orf25
6:31692558:C:T

Methionine sulfoxide 3 1 13 Amino acid 3e-8

Table 2: Genes harboring LoF mutation with significant effect on individual metabolites under study. The causal network parameters are
measured from the metabolomic causal network. Variant includes chromosome:position:reference allele:alternative allele.

Identified genome-metabolite-triglyceride pathways: Through
combining the results of the three steps above, we identify pathways
from the genome to plasma triglycerides via metabolomic network. By
inspecting the metabolites with direct effect on triglyceride levels and
those influenced by LoF mutations, we identified two direct pathways
linking the genome to plasma triglycerides: One path from LRRC46
through metabolite urate (LRRC46 UrateTriglycerides), and another
path from LRRC69 through metabolite deoxycarnitine (LRRC69
Deoxycarnitine Triglycerides). These pathways are visualized in Figure
6.

In Figure 7, we see the connectivity of the metabolites urate and
deoxycarnitine at the metabolomic network. Blue pathways depict
metabolites that influence urate and deoxycarnitine and the effect of
these individual metabolites on triglyceride levels is not significant
conditionally. In the left panel, propionylcarnitine and isovalerate are
lipids involved in fatty acid metabolism; docosahexaenoate is an
essential fatty acid; glycine is an amino acid involved in glycine, serine,
and threonine metabolism; and finally gamma-glutamylthreonine is a
peptide in gamma-glutamyl metabolism. In the right panel of Figure 7,
3-carboxy-4-methyl-5-propyl-2-furanpropanoate, azelate, and laurate

are fatty acids; citrate is a component of the tricarboxylic acid cycle
that is central to energy metabolism; and trans-4-hydroxyproline is a
modified amino acid associated with the urea cycle and is thought to
be associated with oxidative stress.

In addition to the above direct pathways from the genome to
triglycerides via metabolites urate and deoxycarnitine, another
pathway is identified from FAM198B and C6orf25 to metabolite HETE
with indirect effect on triglyceride levels. These pathways are through
palmitoylglycerophosphoinositol (Figure 8).

Figure 8 shows that the identified path to triglycerides is not
through arachidonic acid. Rather, arachidonic acid influences this path
through HETE. These results are identified using the metabolomic
causal network. The identified pathways through the systems approach
introduced here reduce false discovery and may facilitate
understanding underlying mechanism and generate hypotheses for
further experimental studies. Through a standard GWAS analysis, we
investigated genome-triglyceride relationship and no variant with
significant effect on triglyceride levels was identified. The results are
provided in Supplementary Table S2.
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Figure 6: Two identified direct pathways from LRRC46 and
LRRC96 to plasma triglycerides via metabolites urate and
deoxycarnitine respectively.

Discussion
The genetics of complex diseases, such as cardiovascular disease,

produce alterations in the molecular interactions of intermediate
phenotypes, such as metabolites, which contribute to early disease-
related changes [40,41]. The collective effect in cellular pathways may
become clear through integrated approaches to identify underlying
mechanisms. Powerful and advanced analytic strategies are required to
integrate largescale data in systems biology for the elucidation of
pathways across human biological levels. We introduced a systems
approach for pathway identification by integrating data at three
different biological levels using causal networks. Causal networks
compatible with structural equation modeling improve the power of
discovery by reducing the influence of phenotype-phenotype
associations to illustrate underlying relationships [8,42].

Figure 7: Red pathways: Direct pathways from the genome to triglycerides via metabolites. Blue pathways: Metabolites that influence urate and
deoxycarnitine at metabolomic network.

Figure 8: Indirect pathways from FAM198B and C6orf25 to
triglycerides through metabolite HETE and
palmitoylglycerophosphoinositol.

The introduced approach is toward mechanistic understanding
through pathway identification linking the genome to health/disease.
The pathways reveals the underlying relationships behind observations
[21,43,44], which do not play a significant role in more traditional
correlative analyses. We first construct a causal network over
metabolomics using instrumental variables/Mendelian randomization
[8]. Through a metabolomic causal network, we not only account for
association between metabolites but also confounders at
metabolomics. Second, we take an improvement in understanding the
role of metabolites in quantitative risk factors, here triglycerides [8].
This step filters the number of metabolites to a subset that impact
triglyceride levels. In addition, the visualization of underlying
relationships reveals even more information.

Through integration of the metabolomic causal network and
genome association study, two pathways were identified, from the
genome—leucine rich repeat containing 46, LRRC46, and leucine rich
repeat containing 69, LRRC69—linked to plasma triglycerides via the
metabolites urate and deoxycarnitine, respectively. Those metabolite-
triglyceride connections are consistent with known biochemical
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information. For example, urate is biochemically linked to the
thioredoxin system, which mediates cellular redox balance and has
been associated with triglyceride levels [45]. Similarly, deoxycarnitine
lies at a biochemical crossroad between triglyceride metabolism and
fatty acid oxidation, and carnitine metabolism has been implicated in
the regulation of triglycerides [46]. Further, carnitine is essential for β-
oxidation of long-chain fatty acids, and metabolic enzymes involved in
carnitine biosynthesis mediate a decrease in fatty acid oxidation and
increase in glycolysis in heart failure progression [47].

The genetic components LRRC46 and LRRC69 provide new
mechanistic insights into the regulation of triglyceride levels.
Experimental validation will need to be conducted to assess the
contributions of LRRC46 and LRRC69 to the modulation of
triglyceride levels, but our new approach allows such validation
experiments to be focused. For instance, instead of measuring only
triglyceride levels as an endpoint in a model biological system, we can
additionally measure levels of uric acid, deoxycarnitine, and other
metabolites known to be associated with each of them, such as
thioredoxins. For example, since thioredoxins have been found to
mediate cardioprotection, it may be possible to implicate LRRC46 in
cardioprotection upstream of thioredoxins regulation.

The leucine-rich repeat (LRR) structural motif is characterized by
the α/β horseshoe fold, composed of 20-30 hydrophobic amino acid
stretches of leucine. LRRs mediate protein-ligand interactions and in
the case of cascade interaction model in fatty-acid-uremic toxin-drug
system, in which long-chain fatty acids concentrations are increased,
cascade displacement of bound drugs occurs by a competitive
inhibitor, such as CMPF and uremic toxins containing an indole ring
[48]. Previous studies reveal a relationship between leucine-rich repeat
(LRR) and cardiovascular disease and triglycerides [49,50]. The
pathways identified here strengthen those associations and provide a
plausible mechanism for them.

Conclusion
The approach presented here provides a step toward addressing

challenges in modern biomedical research, such as large scale data sets,
highly correlated phenotypes, and integrating information at different
biological levels. Additionally, future method development will include
genome variation effects on multiple metabolites, hypothesized
pleiotropy in GWAS/WGS, to provide further insights into the
mechanistic underpinnings of chronic diseases.
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