
Open Access

Accounting & Marketing
Commentary
Volume 11:2, 2022

Insights on Identifying Key Classes in Software Systems
Using Entropy-based Metrics
Steve Oakes*

Department of Marketing, University of Liverpool Management, UK

*Address for Correspondence: Steve Oakes, Department of Marketing, University
of Liverpool Management, UK, E-mail: SteveOakes105@gmail.com.

Copyright: © 2022 Oakes S. This is an open-access article distributed under the
terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author
and source are credited.

Received: 02-Feb-2022, Manuscript No. jamk-22-65614; Editor assigned:
04-Feb-2022, Pre QC No. P-65614; Reviewed: 18-Feb-2022, QC No. Q-65614;
Revised: 23-Feb-2022, Manuscript No. R-65614; Published: 02-Mar-2022, DOI:
10.37421/2168-9601.2022.11.372.

Description

The functions of the software are increasing as the software system is
constantly updated, and the structure is becoming increasingly complicated.
In general, the high performance and reliability of a specific software are
inextricably linked to its ongoing maintenance. However, because developers
are constantly being replaced, new developers who want to maintain software
must be familiar with the structure and function of software, which adds a
significant time overhead to software maintenance. As a result, the field of
software engineering has gradually focused on how to maintain software
efficiently. When maintaining unfamiliar software, developers should first
understand the structure and main functions of the software, which can take
up to 60% of the total time

Software development documents are the traditional way for developers to
understand software. However, the abilities of developers in a team vary, and
development documents may not be easily understood by all members. As a
result, development documents alone are insufficient for developers to gain a
quick understanding of the software. Many software entities, such as attributes,
methods, classes, and packages, are included in object-oriented (OO)
software [1,2]. The interaction between these entities completes the software's
operation. Classes serve as the foundation for information encapsulation in
object-oriented software and are critical components of the software system.
Although there are many classes in a software system, only a few classes
perform critical software functions and are referred to as key classes.

In recent years, software has frequently been mapped into a complex
network, with the software entities (attributes, methods, classes, packages,
etc.) serving as network nodes and the coupling relationships between the
entities serving as network links. A network model extracted from software is
commonly known as a software network. As a result, the problem of identifying
key classes in software can be recast as the problem of extracting key nodes in
software networks. Researchers proposed various approaches for identifying
key classes, with the majority of them identifying key classes by constructing
static dependency networks. The network links represent the coupling
relationships that may exist between all entities in the software. These coupling
relationships include redundant relationships that may or may not exist when
the software is executed. (ii) Ignoring the number of node interactions: The
weights in the static dependency network constructed by analysing the
software's source code are calculated based on the complexity of the modules
and the number of method calls; however, such a quantitative relationship

cannot objectively reflect the true coupling strength between nodes when the
software runs [3-5].

To obtain the coupling relationship of the classes generated by method
calls while the software is running, we must insert a marker in each method
of each class to record the call path. Javassist, a byte code rewriting tool,
can assist us in accomplishing this goal. Before we get into how we get
class-level call information, we need to define a few terms. Instrumentation
in Java: Instrumentation refers to a separate agent programme that can be
used to monitor and assist the application programme running on the JVM.
The "javaagent" parameter specifies the agent programme in the "premain"
method of instrumentation. We can obtain the class-level call information
generated by calling all methods while the software is running by performing
the aforementioned operations. To execute all of the program's functions, we
use automatic execution rather than manually clicking the button. To begin,
the programme must be launched in order to display the Java GUI software's
window. Then, using the windows, we obtain the component list and insert the
event components from the component list into the event sequences. Some
components may contain sub-components; therefore, we must use recursive
methods to obtain all components. Finally, we execute the event sequences
based on the event type to obtain the class's dynamic call graph.

Conflict of Interest

None.

References
1. Francis, Bill B., Iftekhar Hasan and Qiang Wu. "Are female CFOs less tax

aggressive? Evidence from tax aggressiveness." J Am Tax Assoc 36 (2014): 171-
202.

2. Ittner, Christopher D., and David F. Larcker. "Quality strategy, strategic control
systems, and organizational performance." Account Organ Soc 22 (1997): 293-
314.

3. Koester, Allison, Terry Shevlin and Daniel Wangerin. "The role of managerial ability
in corporate tax avoidance." Manag Sci 63 (2017): 3285-3310.

4. Demerjian, Peter R., Baruch Lev and Melissa F. Lewis. "Managerial ability and
earnings quality." Acc Rev 88 (2013): 463-498.

5. Van Delden S. H, M. SharathKumar, M. Butturini and L.J.A. Graamans, et al.
"Current status and future challenges in implementing and upscaling vertical
farming systems." Nat Food 2 (2021): 944-956.

How to cite this article: Oakes, Steve. “Insights on Identifying Key Classes in
Software Systems Using Entropy-based Metrics.” J Account Mark 11 (2022): 372.

ISSN: 2168-9601

https://meridian.allenpress.com/jata/article-abstract/36/2/171/60882
https://meridian.allenpress.com/jata/article-abstract/36/2/171/60882
https://www.sciencedirect.com/science/article/pii/S0361368296000359
https://www.sciencedirect.com/science/article/pii/S0361368296000359
https://pubsonline.informs.org/doi/abs/10.1287/mnsc.2016.2510
https://pubsonline.informs.org/doi/abs/10.1287/mnsc.2016.2510
https://meridian.allenpress.com/accounting-review/article-abstract/88/2/463/127613
https://meridian.allenpress.com/accounting-review/article-abstract/88/2/463/127613
https://www.nature.com/articles/s43016-021-00402-w
https://www.nature.com/articles/s43016-021-00402-w

